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Abstract

The sea elevation at a fixed point is modelled as a quadratic form of a vector
valued Gaussian process with arbitrary mean. An apparent wave is a part of the sea
record observed between two following upcrossings of the still water level. Saddlepoint
method is used to approximate the intensity u(u), say, the sea level crosses the level w.
The intensity is then used to estimate more complicated wave characteristics like wave

period and crest height. Numerical examples are given.

Keywords: Crest distribution, non-Gaussian sea, Rice’s formula, wave period and

amplitude, Stokes waves.

1 Introduction

An accurate description of environmental loads, such as wind and ocean waves, is important
in design of offshore structures and evaluation of risks. The safety of a structure may depend

on extreme and rare events such as loads which exceed the strength of a component, or on
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everyday load variability that may cause changes in the properties of the material, e.g.
cracking (fatigue) or other types of ageing processes.

From experience it is known that an irregular sea surface with high waves is stationary
for a relatively short period of time, between 20 minutes and a few hours. Consequently, a
measured sea surface at a fixed point contains approximately between 100 and 1000 waves,
which can be considered to be equally distributed. This, limits the possibility to estimate
frequencies and properties of relatively rare and possibly dangerous waves. Since, in safety
analysis, the knowledge of the frequencies of big waves is important one often relays on
mathematical models of the sea surface and compute the so called short term distributions
of wave characteristics. Finally, one uses the long term statistics, describing the distribution
of times that a structure will be exposed to different sea conditions, to mix the short term
distribution. The mixed distribution gives the frequencies of waves, having wave character-
istics of interest, that can be expected during service time of a structure.

The deep water sea with moderate waves (not too steep) is often well described using
Gaussian fields based on the linear wave theory. However, for severe sea states considerable
asymmetry is observed; troughs are shallower while crests are higher than predicted by the
Gaussian model. Since the crests can be up to 20% higher, these effects can not be neglected.
In the literature one is often modelling the observed wave asymmetry by adding a random
quadratic correction to the Gaussian model term.

For Gaussian fields there are many tools developed to estimate the wave characteris-
tic distributions. The non-linear sea models are more difficult to analyse. The simulation
techniques can still be used but the analytical computations of the wave characteristic distri-
butions are very difficult. For example, even the one-dimensional density of the sea elevation
has to be computed using approximate methods; see Machado (2002) for a review of different
approaches. Here we shall be concerned with computations of the crossing intensity u(u),
i.e. expected frequency the sea level passes a fixed level u. This quantity is crucial in safety
analysis of offshore structures. In Section 2 we shall shortly present different applications of
u(u). In Section 3 a review of the basic properties of the second order sea model is given,

while in Section 4 the saddlepoint method will be employed to approximate the crossing



intensity. Finally, Section 5 contains numerical examples.

2 Rice’s formula and its applications

Assume that 7 is a strictly stationary process. For a fixed u, let u(u) be the expected number
of times the process 1 crosses the level v in the upward direction. The following classical

result is called Rice’s formula; see Leadbetter et al. (1983) for a proof.

Theorem 1 Let n(t) be a stationary, zero mean Gaussian process. If the derivative 7(t)

exists (in a quadratic mean) then
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where fr0),n(0)(u, 2) is the joint density of 1(0),7(0), and Ao, X2 are spectral moments equal
to the variances of n(0),7(0), respectively.

Rice (1944, 1945) and Kac (1943), obtained (1) for a certain class of Gaussian processes and
polynomials with random coefficients, respectively.

In engineering literature formula (2) is used to compute the upcrossing intensity u(u)
even for non-Gaussian processes as long as the density of 7(0),7(0) is available. Since
the density is not uniquely defined, equation (2) can not be true without some additional

conditions. However, the following general result can be shown:

—+oo
p(u) *=* / 2 fn(0),n(0) (4, 2) dz,
0

where “£" means that equality is valid for almost all u. For process 1 for which the right
side of the last equation is a continuous function of u, this somewhat weaker version of
Rice’s formula can still be applied in many engineering problems; see Rychlik (2000) and
the appendix in Baxevani et al. (2002) for discussion of validity and applications of Rice’s

formula in oceanography.



Rice’s formula extends also to non-stationary processes. Let E[Nt(u)] be the expected
number of times the process n(t), t € [0,T], crosses the level u; then
T ptoo T
W] =" [ s dsdt = [
Here p¢(u) is the time variable crossing intensity. An important application of the crossing in-
tensity is to bound the distribution of the size of the highest wave crest M7 = maxo<¢<T 1(t)
the offshore structure is exposed to during a specified period of time 7T'. If p;(t) is known

then the distribution of M7 can be bound as follows
P(Mr > u) < P(n(0) > u) + E[N7(u)]. 3)

(The last inequality is referred as the “Rice’s method”.) The time variable crossing intensity
pt(u) is constant for the duration of the sea state, and can be computed using (2). The last
inequality is sharp for a high level u, long periods T and when fOT pt(u) dt is small.

Another important problem in safety analysis is to model the ageing process in the mate-
rial, as damage accumulates with a rate depending both on the frequency and the magnitude
of waves. Here the knowledge of the crest height distribution is essential. Consider first the
stationary case and denote by m the still water level. Then often one assumes that the
intensity of waves is equal to u(m). (We propose to choose m as the level which is most
frequently crossed by 7.) An important characteristic in fatigue analysis is the distribution
of the height of wave crest A., say. As shown in Rychlik (1993) and, Rychlik and Leadbetter
(2000), we have

p(h)
P(A. > h) < , 4
(4> 1) < B (@
with equality as h tends to infinity. By means of (1) one has that P(A. > h) < exp(—h?/2my),

for a Gaussian sea.

Next, let us consider the distribution of crest heights that a structure may experience
during its service time T'. For long T periods the stationarity assumption can not be justified.
In such a case the probability P(A. > h) is defined as a normalised expected number of waves

with crest heights exceeding h in [0, 7). Similarly as in the stationary case, the probability



can be bounded as follows r
P(A, > h) < M.
Jo wi(m)dt
Here we have also assumed that the still water level m is constant during the whole service
period T

Finally, we shortly address the problem of computing the joint distributions of wave
characteristics, for example the joint distribution of crest period T, and crest amplitude A,
defined as the distance between upcrossing and the following downcrossing of the still water
level m and the maximum height in the interval, respectively. This is a very complicated
problem even for the Gaussian sea model; see Podgérski et al. (2000) for a review of different
approaches. For the non-Gaussian sea one possible approach is to approximate the sea
elevation by some simpler process for which one has methods to compute the distributions
of wave characteristics.

A class of processes that can be used in this way is that of the transformed Gaussian
processes, i.e., processes 7n(t) such that n(¢t) = G(7(t)) for some continuous increasing func-
tion G and a Gaussian process 7(t) with variance one. Since the intensity of high crests
above u is well approximated by the crossing intensity p(u), Rychlik et al. (1997) proposed
to choose G so that G(7j(t)) has crossing intensities equal to u(u). Actually the inverse

function g(u) = G~!(u) is needed in the computations and is given by

B Vv=2In(u(u)/p(m))  if u>m,
9(u) = ‘ (5)
—v/=2In(u(w)/u(m)) if u <m.

In Section 5 we shall compare the joint distribution of 7., A, computed for n(t) = G(7(t))

with the density estimated from simulations.

3 Second order description of the sea surface elevation

We begin with the linear sea model, which postulates that the sea surface is a sum of simple
cosine waves. In this paper we consider only long crested sea, i.e. the surface does not

depend on the direction y. In addition we consider an unidirectional sea, where all waves



travel along the z axis with positive velocity. The linear sea 7;, consisting of N cosine waves,

is given by
N

An (wnt—KnT
nl(xat): Z 76( ntbtin )7 (6)

n=—N

where for each elementary wave A,, denotes its complex valued amplitude, w, angular fre-
quency and k, wave number. We assume that A_, = A,,, where Z denotes complex con-
jugate of z. Since 7; should be a real valued field, we need to assume that w_; = —wj,
k_j = —kj. Finally, the linear wave theory postulates that x and w, are functionally related

by the so-called dispersion relation
2 = gk tanh(hk), w >0,

where g and h are the earth acceleration and water depth, respectively. This equation
implies that long waves travel faster than short ones.

Measurements of the real sea show that the linear wave model is often too simplistic and
leads to errors in the predicted crest height (in deep water) of about 10-20%. The model can
be corrected using “second-order” (or “quadratic”) terms allowing for interactions between
the elementary cosine waves. Following Hasselmann (1962), where the detailed derivations

are given (see also Langley (1987)), the quadratic correction 7, is given by

Z Z mm E wn,wm) i(wnt—nnz)ei(wmt—nmz), (7)

—Nm=—N
where the amplitudes A, angular frequencies w and wave numbers & satisfy the same relations

as in the linear model. The quadratic-transfer function (QTF), E(w,®), is given by

oE _ L(w? + @+ wi) + §eE e —_—
Bw,@) =22 2wawts) _ IRR D24 G2 1 ug),  (8)
1-yg (wt@)2 tanh(:‘i + R)h 2w 2g

where k, % are wave numbers which are computed using the dispersion relation from the
angular frequencies w, @, respectively. (We also define E(0,0) = 0.) It is important to note
that for any positive w and @, the QTF satisfies the symmetry relations E(w,®) = E(@,w),
E(w,®) = E(—w,—w) and E(w,—&) = E(—w,®). These properties imply that 7, is a real
valued field.



For the deep water waves the QTF simplifies, and for positive w,® we have

1
B(w,®) = % (W + &%), (9)
1
E(w,—@) = —— |w? — &?
(0, -0) = —5_ | = 7]

Since limy,_,o, tanh(k h) = 1 the dispersion relation simplifies to w? = g.

Definition 2 The deterministic Second-Order Stokes Wave is defined as

7 (2,8) = m(@,t) + (e, 1) (10)

where m; and ng are the linear and quadratic processes given by Egs. (6) and (7), respectively.
The Gaussian second-order sea is obtained by assuming that the complex amplitudes A,
n > 0, are independent and normally distributed variables, i.e. A, = o, (U, —iV,,), where
Upn, Vs, are independent zero mean and variance one Gaussian variables, and o2 is the energy

of waves with angular frequencies wy, and —w,.

Often it is assumed that the linear Gaussian process 7; has a spectral density. This case

is not covered by Definition 2. The following remark addresses this problem.

Remark 3 For a sea model with linear one-sided spectrum S(w), 0 < w < w,, where w,
is the cut off frequency, we define n(z,t) as the limit, as N tends to infinity, of the second
order Gaussian sea 0™ (x,t) given by (10). The individual waves have angular frequencies
w; = jwe/N and energy

O'JZ' = S(wj)Aw,

j=1,...,N, while Aw = w./N. The cut off frequency w. is often used in oceanography
to reduce the noise in the models. The small wiggles, caused by the high frequencies, on
the top of the main body of an apparent waves are irrelevant in applications. The Gaussian
process with band limited spectrum is smooth, i.e. has a.s. derivatives of all orders. The
conditions for convergence of distributions of wave characteristics observed in ™ (0,t) to
the wave characteristics in 1(0,t) were discussed by several authors, see for example Eplett
(1986), Rychlik (1987), Seleznjev (1991) and references therein. We shall not consider this

type of problems in this paper.



In the following section we shall estimate the crossing intensity w(u) for the process
nN(0,t). In order to simplify the notation we shall write n(t) for n™V(0,t). By (2), the
computation of u(u) requires estimate of the joint density of 7(0),7(0). However, an explicit
closed form formula for the joint density of (0),7(0) is not known at present (except when
N =1). Even the marginal densities of 7(0), 7(0) have to be derived using approximate
methods; see Machado (2002) for a review of the existing approximations. Here we shall use
the saddlepoint method to approximate f;(0),5(0)(,2). In order to employ the method one
needs the explicit formula for the characteristic function of 7(0), 7(0), which will be given in

the following subsection.

3.1 Characteristic function of 7(0),7(0)

In order to write the formula for the characteristic function in a transparent way we shall
first rewrite the defining equation for the process n(t).
Assume that the angular frequencies w; and average energies o, j = 1,..., N, are chosen.

Denote by o the column vector containing o; while w be the column vector of w;. Define
Z(t) = [(Uy — iVi)e™ ... (Un — iVn)e™™]T,
and let X(t), Y(t) be the real and the imaginary parts of Z(t), i.e.
Z(t) = X(t) +3Y(¢).
Using the notation, the linear part of the random sea writes

m(t) = soTZ(t) + -67Z(t) = aTX(t). (11)

2

We shall rewrite the nonlinear part in a similar way. First let us introduce some matrices

Q = [tmn], Gmn = (E(Wm, —wn) + E(Wn,wn))omon, (12)
R = [rmnl, 7Tmn = (E(wm,—wn) — E(Wm,wn))omon, (13)
W = [Wnnl, Wmm = —Wm, and wy, = 0 if m #n, (14)
S = QW-WR, (15)



where m,n = 1,..., N. Some simple algebra shows that

ma(t) = X(@TQX() + 5 Y ()TRY (1) (16)
and hence
n(t) = o7X (1) + L X()7QX() + ;Y ()TRY (1), (17)
Furthermore, since
X(t) =WY(t), Y()=-WX(t), (18)

we have the following formula for the derivative 7(t):

oTWY (1) + X(t)TQWY (t) — X(t)TWRY (t)

i(t)

sTWY (1) + %X(t)TSY(t) + %Y(t)TSTX(t). (19)

We turn now to derivations of the formula for the characteristic function of 5(0), 7(0),
denoted by M (61,0:1) = E[exp{i(811(0) + 627(0))}]. In the computation of M (61, 6:1) we will

employ the following well known result from Cramér (1946):

/+00 . ”/+0° #etTZ_%ZTAz dzi...dz, = 1 ezt AT (20)
—00 —o0 (27r)n/2 " \/det(A)

Here, the real (n,n)-matrix A must be symmetric, non-singular and positive definite. (Ob-

viously, t, z are n-dimensional column vectors.)

Lemma 4 The characteristic function of the variables n(0),n(0), defined by (17), (19),

respectively, is given by

1 1,71 Ay—1
M(6,,6,) = megt (I-A)""¢ (21)

where I is a (2N, 2N)-dimensional identity matriz. The matriz A = A(i61,:02) and the

vector t = t(i61,102) are defined as follows

s
A(ac,y)=le Y ] t(z,y>=l i ] (22)
yST zR Y



Proof: The variables X(0), Y(0) are independent standard Gaussian and their joint density

f(z) is given by

1
f(z) = e 21z,

hence the characteristic function

M(6:,6,) = E[exp(i(6:11(0) + 621(0)))] = / (2;)Neth_%zT(I_A)zdz1... dzon.

Since I — A satisfies the assumptions of formula (20) the lemma follows. O

The characteristic function defines uniquely the density function by means of the inverse

Fourier transform

1 +oc +oo .
f(u,y)=w / f e {O1ut629) N1(9, | 0,) dy dbs, (23)

and hence the crossing intensity can be computed by combining formulas (2) and (23), viz.

1 +o0 +o0 +o0 .
) = g [ [ v 20 00) dos (24)

Obviously the integration in (24) has to be done numerically. In previous works, see Neess
and Machado (2000) and Michna and Rychlik (1995), numerical procedures to evaluate
(24) have been presented. The advantage of the numerical integration procedure is that
it usually gives very accurate results. However, since typically the matrix A is large, may
have dimension (500,500) and more, and since each evaluation of characteristic function
requires evaluation of the inverse (I — A)~! the numerical integration becomes extremely
slow. Here we shall propose two simplifications in the estimation of p(u). The first is to use
the saddlepoint method to approximate the joint density of 5(0),7(0); this can be seen as an
approximation of the integral in (23); see Daniels (1954) for discussion of the one dimensional
case. The second is to reduce the dimension of the matrix A. In examples the proposed
method will be called ”SPM”. The SPM-approximation will be compared with estimated
crossing intensities from simulated second order sea and with p(u) computed by means of
numerical integration in (24). This procedure will be called ”"NM” and the resulting values

of p(u) will be treated as being exact.
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4 Approximation of y(u) using the saddlepoint method

The saddlepoint density was first introduced by Daniels (1954) as a formula to approximate
the probability density function from its cumulant generating function. We shall apply
the method to approximate the density of 7(0),7(0). The cumulant generating function
K(s1,s2) of n(0),7(0) is defined as

K (s1,52) = In(E[exp{s1m(0) + s27(0)}]), (s1,82) € S,

where S is the set of arguments for which the last integral converges. (Obviously (0,0) € S).
The cumulant generating function can be computed from the characteristic function M by

means of the relation K (s, ss) = In M(—is;, —is3). Using Lemma 4 we have that
1 Lz -1
K(s1,82) = —gln(det(I —A)) + Et (I-A)"t, (s1,82) €S8, (25)

where A = A(s1,s2) and t = t(s1, s2); see (22). Since A(s1,s2) is a matrix of continuous
functions of (s, s2) it follows that S is an open set. It is also known that S is convex.

The saddlepoint approximation f (u,y), say, of the density f;0).4(0)(u,y) is defined by
Flu,y) = (2m)7H K (51, 82)| % exp{K (51, 82) — 1u — 501}, (u,y) € R (26)

The so called saddle point (§1,52) € S is the unique solution of the following system of

equations
Ki(s1,02) = #5502 =, (27)
— aK(sl’s2) —
Ks(s1,82) = =522 =y.

Furthermore K is the Hessian matrix (containing second order derivatives) of the cumulant
generating function K.

The existence and uniqueness of the saddle point for all (u,y) € R2 is the consequence of
the fact that S is open and that the support of the range of the density of 1(0),7(0) is R2.
Since K is a strictly convex function on S the Hessian K is positive definite. Finally, note
that f (u,y) usually does not integrate to one and hence it is not a density. Some further
properties of cumulant generating function and the saddle point method can be found in

Barndoff-Nielsen and Cox (1989).

11



Although the saddlepoint estimate f (u,y) seems to be explicitly defined function this
is not the case since it operates on §;, 8> which are defined as the solutions of a non-linear
equation system (27). Often §;1,3, have to be found by means of a numerical method.
The use of an efficient algorithm to invert equation (27) is important, since each evaluation
of K (s1,s2) requires the computation of the inverse of a large matrix. In the examples
presented here we have used standard procedures supplied by MATLAB. We now turn to the

algorithm used to estimate the crossing intensity u(u).
Algorithm: Evaluate K (s1,s2) on a grid, then, for fixed level u, find a contour line
C(u) = {(s1,82) € S: K1(s1, 82) = u}.

On the contour a sequence of points s* € C(u), k = 1,...,n, is chosen. For each s* compute

yk = KZ(sk)a and
5= flu,yh) = @m) MK (sH)| 7 exp{K(s*) — sfu — s§Ka(sh)},

if y* > 0, f¥ = 0 otherwise. Finally, use (v*, f¥), k = 1,...,n, to estimate the crossing
intensity
+co +oo fk+fk71
p(u) = / Y fn(0),n(0) (4, y) dy & / yf(u,y)dy ~ Zykwi)lyk "
0 0
O

In the following remark we present some simple properties of the cumulant generating

function K for the Gaussian second order sea which are used in the algorithm.

Remark 5 From formulas (17) and (19) it follows that K(s1,s2) = K(s1,—82). Conse-
quently one needs only to find the contour C(u) for (s1,s2) € S and s2 > 0. Actually the algo-
rithm first finds the one-dimensional saddle point associated with (u,0). Since K2(s1,0) =0
then 83 = 0 while §1 is the solution of the equation K1(s1,0) = u. The saddle (31,0) can be
used to compute f(u) (the saddle point approzimation of the marginal density of n(0)) and
as the starting point for the algorithm searching for the contour C(u). Next we give some

estimates on the size of the set S in which the contour C(u) is contained.

12



Let a;, Bi, i =1,...,2N, be the eigenvalues of the following two matrices A(1,0), A(0,1),
defined by (22). By symmetry of the matrices all eigenvalues are real. It can be shown, see

Langley (1987), that > a; = 0 and hence
a_ =min{e;} < 0 < max{e;} = a4.

Further, let 8 = max{|B;|}. Now by studying zeros of det(A(s1,0)) and det(A(0,sz)) we
obtain that

SN{(s1,82):82 =0} = (a:l,all), SN{(s1,82) :861 =0} = (—572,,8*2).

Finally, in examples the derivatives K1, Ko and the Hessian K are computed numeri-
cally. We compared the values of one dimensional saddlepoint density f(u) computed using

numerical derivatives and based on explicit formulas (exzact). The error was negligible.

Since the number of cosine waves N building the signal 5(¢) can be large, often N > 250,
the computation of K(s1, s2), which involves inverting a (2N, 2N) dimensional matrix I— A,
can be a limiting factor. (The inverse has to be computed for each pair s = (s1,52).) In the

following subsection we shall present some approximations of K (s, s2).

4.1 Approximations of the cumulant generating function

As we mentioned before, the computation of K(sy,ss), the cumulant generating function
of 1(0),7(0), requires the evaluation of (I — A)~!. In this section we shall discuss some
approximations that will speed up the computations.

The matrix A, see (22), has a block structure. The two blocks on the diagonal, namely
the matrices Q and R, reflect the influence of the non-linear part of the sea model 7(t); see
(17). In the following we shall simplify the quadratic term 7,(t), defined by (16), leading to
a faster computation of the crossing intensity. This will be accomplished by means of the
diagonalization of the quadratic forms X(¢)TQX(t) and Y (¢)TRY ().

Let Py be the (N, N) matrix whose rows are the eigenvectors of Q ordered according to

increasing absolute value of their eigenvalues, which we denote by A;, j = 1,..., N, and let

13



A be a diagonal matrix with the )\; as elements. Similarly, let denote by v;, j =1,..., N
the eigenvalues of R, let I be a diagonal matrix with the y; as elements, and let P2 be the
(N, N) matrix whose rows are the eigenvectors of R ordered by increasing values of the |v;|.

Since Q, R are symmetric its eigenvalues are real and
Q =PFAP,, R=PITP..
Similarly as in Langley (1987), let us introduce
Z1(1) = P1X(t), Za(t) =P>Y(1).
Using (18) and the fact that Py, Py are orthonormal matrices, we obtain
Z1(t) = PyWPIZ,y(t), Zo(t) = —P,WPTZ(1).

The sea surface 7n(t) and its derivative can now be written as

M) = (Pro)TZu(t) + S ()AL (1) + L Z() T2 1) (28)
n(t) = oT WP Zs(t) +Z:1(t)" (APyWP; — PyWPIT) Zs(t)
= oTWPTZ,(t) + %Zl(t)TSZQ(t) + %Zz(t)TSTzl(t). (29)

Observe that ZT (0), ZZ (0) are vectors of independent standard Gaussian variables and hence
have the same distributions as X7 (0), YZ(0), respectively. Furthermore, equations (17),
(19) and (28), (29), defining processes 1(t),7n(t), have the same structure. Consequently,

K (s1,s2) can be written in the alternative form

1 1
K(s1,82) = —3 In(det(I — A)) + itT(I —A)'t, (30)
where now
s1A sS 81X
A(s1,s2) = ) t(s1,52) = ) (31)
SzST 81:[‘ S22y
S = AP,WP!_-P,WPIT, x=P,0, y=P,;Wo. (32)

Obviously, (30) can be derived by means of matrix algebra, i.e. there is no need to introduce

the processes Z (t), Z2(t). However, we found the representation (28) useful to propose an

14



approximation 7,,(t), say, of n(t). The processes Z;(t) and Zy(t) will also be used to
investigate the error caused by the approximation. We turn now to the definition of 7,,(t).

For most sea spectra, a considerable number of the eigenvalues A\; and ~; are very close
to zero. We propose to replace them by zeros and use (28), (29) to define 7,,(t). More
precisely, from this point on assume that the m smallest eigenvalues \; and v; are replaced

by zeros and let

Toplt) = (P10)7Za(0) + 52 (07 AZ(0) + 520" T2 0, (33)

Nap(t) = oTWPLZy(t) + Z1(t)TSZa(t), (34)

where A, T' are the matrices A, T' with the first m rows replaced by zeros, and § =

AP, WP — P,WPIT. Since
V(0(0)) = V(0ap(0)) = 2003 + ...+ A0 + 77+ + 1), (35)

m can be chosen so that the standard deviation of 7,,(t) is only a fixed percentage, for
example 0.1%, smaller than the standard deviation of n(¢).

We turn now to the estimation of crossing intensity p(u) of n,,(t) using the saddle-
point method. Denote by K,,(s1,52) the cumulant generating function of 7,,(0), 94, (0).
Obviously, K4p(s1,s2) is given by formula (30) with A matrix replaced by

- 51.& SQS
A(s1,82) = i} }
$2ST T

The matrix A is (2N, 2N)-dimensional but it contains blocks of zeros. Using this block

structure of A, we derive the following, numerically more convenient, expression for Kj:

1 moa? LS 1
Kop(s1,82) = —iln(det(B)) + 52 2 21 ! 4 52 2; 21 L4+ irTB_lr, (36)

where B is a (2(N —m),2(N —m)) dimensional matrix and r is a 2(N — m) column, both
dependent on s, s2. The expressions for B and r are given in the appendix, see (37), while

X, y are defined by (32).
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5 Example

In this example we shall compare the crossing intensity and other wave characteristics,
estimated for the linear and for the second order Gaussian sea. We shall also investigate
the accuracy of the saddlepoint method. In all examples the linear Gaussian sea, 7;, has
continuous one sided spectrum of JONSWAP type. The spectrum is a parametric formula
that was derived in the JOint North Sea Wave Project carried out, during 1968 and 1969,
in the North Sea; see Hasselmann et al. (1973). This spectrum is often used for deep water
conditions. The unknown constants in the spectrum can be computed from the sea state
parameters (significant wave height H; and peak period Tp), and the peak-shape parameter
7. For this example we have considered Hg = 7 [m], Tp = 11 [sec] and -y = 2.385. The g
process is approximated by nlN , where the cut off frequency w. = 3 [rad/sec] and N = 25T7;
see Remark 3.

In Figure 1 (left) we compare the crossing intensity estimated for the second order
Gaussian sea 7 computed using the saddlepoint method (SPM), with m = 231 eigenvalues
replaced by zeros (N —m = 26), and the numerical integration (NM). The irregular line is
the observed p(u) in a simulated sample of 7(t), t € [0, T, with T' = 3600 [sec] and sampling
frequency 5 [Hz]. Except the region around the level zero the agreement is good. Observe
that the sadlepoint density f (u,y) usually does not integrate to one (here the integral is
equal 0.92) consequently the crossing intensity estimated using SPM can not be accurate in
the whole support. Next we present the accuracy of the approximation in the upper tail,
see Figure 1 (right). The agreement is good even there. The crossing intensity computed
for the Gaussian part, see (1), is presented in the figure using the dashed-dotted line. As
we mentioned before, the use of linear approximation for the sea underestimates frequencies
of crossings of high levels. For example the 10-hours wave is underestimated (by means of
Gaussian model) by approximately one meter.

To speed up computations, as referred in Section 4.1, we suggest to replace the m smallest
A; and «y; eigenvalues by zeros; introducing 74, (t). In the example we have replaced m = 231

eigenvalues A; and equally many ; by zeros. (The 13 highest (in absolute value) eigenvalues
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Figure 1: Left: Comparison of crossing intensity p(u) estimated from simulated sample path
of the second order Gaussian sea 71 (irregular line) and computed using SPM (solid line),
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are given in Figure 2.) This reduced the dimension of matrices, that have to be inverted,
from (514,514) to (52,52) without noticeably affecting the accuracy of the SPM method,
see Table 1 where we compare u(u) computed for N —m = 100, 25, 10, 3, 2 and 1. In the
table the computed intensities are denoted by pun_m,(u). It seems that, in this example,
only few eigenvalues contributes most to the nonlinear correction of the Gaussian sea. For
the Gaussian sea 7; the crossing intensities u(u), v = 0, 2, 4, 6, 8, 12 are 0.1178, 0.0613,
0.0083, 3.301 1074, 3.314107¢, 7.259 10~ '2, respectively.

Table 1: p(u) estimates for different m values

u  pioo(u) pas(w) p1o(w) pa(u) p (u) pa (u) pn ()
0.1142 0.1142 0.1142 0.1143 0.1143 0.1139 0.1181

0

2 0.0662 0.0661 0.0659 0.0657 0.0636 0.0651 0.0688

4 0.0131 0.0130 0.0130 0.0129 0.0122 0.0125 0.0141

6 1.043e-03 1.039e-03 1.033e-03 1.018e-03 9.544e-04 9.611e-04 1.270e-03

8 3.860e-05 3.845e-05 3.816e-05 3.746e-05 3.484e-05 3.432e-05 5.696e-05
12 7.885e-09 7.844e-09 7.765e-09 7.550e-09 6.940e-09 6.477e-09 1.708e-08

Another measure of the approximation error introduced by replacing some eigenvalues
by zeros is V(1(0)) — V(145(0)) see (35). In Table 2 the difference between the variances
are given for different m-values. Even here we can see that almost all eigenvalues could be

replaced by zeros without significantly affecting the variance of the process 7.

Table 2: Approximation error (35)
N-—-m 100 25 10 3 2 1

V(n(0)) — V(nap(0)) 2.175e-09 4.090e-07 5.569e-06 2.152-04 8.555e-04 0.022

In the following subsections we shall illustrate the different applications of the crossing

intensity discussed in Section 2. In all examples m = 231.
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5.1 Exceedance probability, “Rice’s method”

The most common (and important) application of the crossing intensity u(u) is to bound
the distribution of the size of the highest wave crest M, during a specified period of time T';
see (3). The bound is accurate for high levels u and long time periods 7. Here we consider
the levels above 7 meters and the maximum is taken over the interval 7' = 3600 [sec]. (We
assume that the process is stationary for the period of one hour.) Since the probability
P(n(0) > w) for u > 7 is negligible in comparison to Tu(u) it is omitted in (3). Note
that an analytical expression for the distribution of 7(0) is not known and hence one has
to compute it using the saddlepoint- or numerical-method. In Figure 3 the probability to
have M7 higher than the level u (in the logarithmic scale) is shown and we can see that
the bound is relatively close to the empirical distribution of M7 based on 100 simulated
values. Finally we consider also the bound for Mt (T = 3600 [sec]) computed for the linear
Gaussian sea 7;(t) is also presented in Figure 3; the dash-dotted line. We can see that the
design values based on the linear model would be ca. 20% lower than the one computed

using the nonlinear quadratic model of the sea.

5.2 Bound for the distribution of A,

The distribution of heights of crests of individual waves is an important quantity in estima-
tion of fatigue life time (time for creation and growth of cracks in components of offshore
structures). The computation of the distribution is a very difficult probabilistic problem
related to solving the first passage problem. Here we shall investigate the accuracy of the
bound (4) for the crests heights in the quadratic Gaussian sea 7.

From simulated sample path of 5 the probability P(A. > h) is estimated and presented
in Figure 4 as the irregular line. This empirical survival function is compared with the
bound (4) with crossing intensity computed using SPM (solid line) and NM (dashed line).

We can see that except small crests the bound is close to the estimated survival function.
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u [m]

Figure 3: Estimated probability that during one hour the highest crest in 7(t) exceeds w,
P(Mr > u), based on 100 simulated values; the irregular solid line, compared with the bound
(3) with p(u) computed using: SPM (solid line), NM (dashed line). The corresponding

bound computed for linear sea 7; (the Gaussian sea) dash-dotted line.

5.3 Joint distribution of crest period and height

We turn now to the problem of estimating joint distributions of wave characteristics for
the non-Gaussian sea. As mentioned in Section 2, one possible approach is to approximate
the sea elevation by some simpler process for which one has methods to compute the wave
characteristic distributions. Following this idea, we evaluate g(u) defined by (5), with input
u(h) computed by: SPM (solid line), and NM (dashed line). As we can see from Figure
5 (left), the transformations are almost identical.

We define crest period, T, as the time between an up-crossing and the next down-
crossing while crest A, is the highest value during the period. In Figure 5 (right) (thin line)
the kernel estimate of the (T¢, A.)-density (based on 100000 simulated waves) is presented.
Each of the level curves encloses the percentage of waves mentioned in the legend of the
plot. For example, if we look to the outer curve; it means that 99.9 % of the simulated
waves are inside this curve, and 0.1 % are outside. The estimated density is compared with

the computed density of T, A, for transformed Gaussian process, see Podgdrski et al (2000)
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Figure 4: Empirical distribution (left) and exceedance probability (right), of crest height A,
(irregular line) compared to the bound (4) (P(A. > h) < p(h)/un(m)); where p is estimated
using: SPM (solid line), and NM (dashed line).

for description of the algorithm. The transformation g was derived by means of (5) with u
computed using the saddlepoint method. The isolines of the density are presented using the
bold lines in Figure 5 (right). We can see that the density of T, A, for transformed Gaussian
model misses the steepest waves. However, the densities are very similar in all other areas.
Since the steep waves are usually the most dangerous our results indicates that further
development of tools is needed for prediction of frequencies of steep waves or having other
characteristics of interest. All results presented in Figure 5 are computed using WAFO-
toolbox which is available free of charge at http:/www.maths.1lth.se/matstat/wafo/; see

Brodtkorb et al. (2000)).
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Figure 5: Left: Transformation function g(u) define by (5), where u(u) is computed using:
SPM (solid line), and NM (dashed line). Right: Isolines of the computed joint density of
T, A; for the transformed Gaussian process (defined using the transformation from the left
figure) - bold line, compared to the kernel estimate of the density based on 10° simulated

waves - thin line.
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Appendix

Consider the formula (36). For each pair (s1,s2) one needs to evaluate det(I — A) and find

(I— A) 1. We shall use the block structure of I — A to speed up the computations. Let us

define the blocks

s1A11 s1A1s s2A43 s2Aqy S1X1
T
~ S1A12 s1Az  s2A23 s3Any 51X2
A- = T T ’ t(Sl, 52) = ’
s2Ajs s2A3;3 s1A33 s1A3z S9X3
T T T
52A14 82A24 31A34 51A44 S9X4
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where Aq1, Ai3 have dimensions (m,m), and Aj2, Aj4 have dimensions (m, N —m). This

defines uniquely the dimensions of the remaining blocks. Next, let x;, x2, x3, x4, have

dimensions m, N — m,m, N — m, respectively. Note that A;> and A3, contains only zeros

then introduce

then

B(s1,s2) =1-D - C”C,

0 s2A14
32Ag13 0

I'(Sl, 82) =

§2X4

51A2 s2A94
b
T
| 52A24 s1A44
51X3 51X1
-cT . (37)
52X3

(Note that matrices Az and Ay4g are zero outside main diagonals.) The derivations are

based on the following lemma, which was used with E = 1.

Lemma 6 Assume that

E C

CT

is symmetric and non-degenerate matriz, then

tTA 't =

E C
cT D

[SleSQyT]

-1

D

$1X

Sy

=sixTE"'x +

[szyT + 851 (CTE_lx)T] {D — CTE_10}_1 [s2y + slcTE_lx].

Furthermore det(A) = det(E) det(D — CTE~!C).
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