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ABSTRACT

The envelope process is a useful analytical tool which is of-
ten used to study wave groups. Most research on statistical prop-
erties of the envelope, and thus of wave groups, was focused on
one dimensional records. However for the marine application,
an appropriate concept should be two dimensional in space and
variable in time. Although a generalization to higher dimensions
was introduced by Adler (1978), little work was done to investi-
gate its features. Since the envelope is not defined uniquely and
its properties depend on a chosen version, we discuss the defi-
nition of the envelope field for a two dimensional random field
evolving in time which serves as a model of irregular sea surface.
Assuming Gaussian distribution of this field we derive sampling
properties of the height of the envelope field as well as of its ve-
locity. The latter is important as the velocity of the envelope is
related to the rate at which energy is transported by propagating
waves. We also study how statistical distributions of group waves
differ from the corresponding ones for individual waves and how
a choice of a version of the envelope affects its sampling distri-
butions. Analyzing the latter problem helps in determination of
the version which is appropriate in an application in hand.

NOMENCLATURE
E(p,t) Envelope field evaluated at a position p and a time in-
stant ¢.

g Gravity acceleration.
R; Rayleigh distributed random amplitudes.
S(w,0) Unitary spectrum for the sea surface, w € R is the time
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angular frequency and its sign indicates the direction
of propagation, § € (—m, ] is the azimuth.

S (w,8) Physical spectrum for the sea surface, w > 0, and 6 €
(—m, 7).

T(w,0) Transformation of arguments of the directional spec-
trum of the sea surface to arguments of the three di-
mensional spectrum.

V' Envelope speed along the principal wave direction.

V. Envelope velocity in the direction given by an azimuth .

W(p,t) Sea surface elevation above the mean level at a posi-
tion p and a time instant .

W (p,t) Hilbert transform of W (p, t).

W, Wy Partial derivatives of W (p,t) with respect to vari-

ables u,v = x,y,t which are put as subindices, the
same convention for W and E.

€; Uniform random phases.

I't Symmetry set determining a version of the envelope in the
directional spectrum domain.

Aijk  Spectral moments of the sea surface W.

AT Transpose of a vector A = (M1, A2, A3), the vector is
treated here as a one-column matrix and thus its transpose
is a one-row matrix.

AT Symmetry set determining a version of the envelope in the
general three dimensional spectral domain.

©*  Envelope u-level crossing contour intensity.

1y Envelope u-level crossing intensity along the principal
wave direction.

o(X\) General three dimensional spectrum of a Gaussian field

W(r).
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INTRODUCTION

In his pioneering work Longuet-Higgins (1957) has intro-
duced the decomposition of traveling random waves into the en-
velope (low frequency varying amplitude) and the carrier (high
frequency oscillations). Since then the envelope process was
studied on various occasions, for example, in the problem of find-
ing the distribution of the global maximum of the underlying pro-
cess, in finding the distribution of the height of wave crest, and in
analysis of statistical properties of wave groups. Despite that in
the original work of Longuet-Higgins the envelope was proposed
for moving random surface, most of the future work was done
for the envelope of univariate random processes with the notable
exception of Adler (1978,1981), where the definition and some
properties of the bivariate envelope field were discussed. We ex-
tend this original work and focus on applications to studies of
Gaussian sea surfaces.

There are several reasons for which studying the envelope
E(p,t) for the bivariate field W (p, t) evolving in time is par-
ticularly important for marine applications. First, E(p,t) if ap-
propriate chosen, is smoother than the underlying W (p, t) while
at high levels it generally follows its shape. Thus the high lev-
els are exceeded by one process if they exceeded by the other
and they can be used equivalently to derive statistics of the high
waves. More important however, is application of the envelope
field to studies of wave groups. The later are defined as, roughly
speaking, collections of waves with large ones in the center ac-
companied with small vanishing waves at the ends. The wave
groups are observed in empirical data where often a high wave
is preceded or succeeded by another wave which is higher than
average. Properties of such groups are important for ocean en-
gineers. For example, a group of waves can be responsible for
a capsize of the ship if she will not regain stability between on-
coming high waves in the group. It is often reported that groups
of waves do more damage than waves of the same size but sep-
arated by smaller waves [see, for example, Burcharth (1980)].
This is partially explained by the fact that energy propagate with
the rate corresponding to the speed of groups of waves. For deep
water waves this rate is slower than the speed of individual waves
and it can be demonstrated by physical arguments that for waves
having narrow band spectra it is the envelope that is responsible
for the transport of energy.

In truly two dimensional set-up where even individual waves
are hard to describe a formal manner, it is difficult to introduce
the notion of wave groups. On the other hand the envelope field
is defined in an arbitrary dimension and its properties naturally
extend from the one-dimensional case. Take for example the
sea surface given by the swell spectrum shown in Figure 1, [de-
tails on the model of this spectrum can be found in Torsethau-
gen (1996)]. The difference between dynamics of surface and
envelopes can be illustrated by recording contour movements in
two time instants within 5[s]. For each of the field, let us consider
the contours crossing the significant wave height level (the signif-
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Figure 1. EXAMPLE OF SWELL SPECTRUM

icant wave height, in this case, is 2.2[m], thus the crossing level
or the significant crest height is 1.1[m] above the mean sea level).
For the sea surface, in order to obtain a more transparent picture
of the contours we have also added crossing contours at the level
equal to 90% of the significant wave height. Several important
features can be noticed from the graphs presented in Figures 2,
5. First, the envelope field is indeed grouping the waves as its
contours cover areas in which we observe clearly separated con-
tours of the sea surface. Next, the displacements for the envelope
are evidently smaller than for the sea surface — the envelope ap-
pears to move slower than the sea surface. Note also that waves
entering the envelope contours are growing while these which
are leaving are diminishing — expected behavior when the waves
group are moving slower then the individual waves.

In this paper, we approach the observed and related features
of the envelope in a systematic way using statistical properties
of this multivariate field. We devote some space to discuss the
definition of the multivariate envelope which does not lead to a
unique concept. In fact there is certain freedom associated with
a choice of the envelope. Thus we start with a discussion of the
“proper” choice of the envelope for evolving sea surface. Later
we derive some statistical distribution of “truly” spatial charac-
teristics of the envelope and its velocities. Finally, these distribu-
tions are compared with the analogous distributions obtained for
the underlying sea surface in both analytical and numerical man-
ner. Numerical computations are performed for a Gaussian sea
having a JONSWAP directional spectrum. Our numerical studies
are supported by the MATLAB toolbox WAFO — Wave Anal-
ysis in Fatigue and Oceanography — containing a comprehen-
sive package of numerical subroutines and programs for statis-
tical analysis of random waves. This toolbox is available free of
charge at ht t p/ / ww. mat hs. | t h. se/ mat st at / waf o.
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Figure 2. LEVEL CROSSING CONTOURS FOR SEA SURFACE

DEFINITION OF ENVELOPE FIELD
Sea surface

Throughout the paper we assume that the sea surface is mod-
eled by a homogeneous Gaussian field defined uniquely by its
(continuous) spectrum for which one can take, for example, a
JONSWAP spectrum. Although this model is intrinsically con-
tinuous, in order to give a more explicit definition of the envelope
field let us consider its discretized version. The general case is
discussed in Baxevani et al. (2002).

Consider a discrete set over the R® given by {A;} =
{(A1j,A25,A35)}, § € N, of which none is equal to zero. The
spectrum of W (1) = W (p,t) is given at A; by masses o(\;).
Since we deal with a real valued random field, the set has to be
symmetric, i.e. if A; is in it, then also —A; must be there and
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Figure 3. LEVEL CROSSING CONTOURS FOR ENVELOPE

both the frequencies have equal masses o(A;) = o(—A;). The
spectral representation of the sea surface is given by

W(r) = Z \/20(X;)R; cos()\jT‘r +¢5), (1

)\jEA+

where A¥ is an arbitrary set in R* such that —A* N A+ = () and
—At U AT = R*/{0}. Moreover, {R;} and {¢;} are two in-
dependent sequences of independent identically distributed ran-
dom variables, the first one distributed according to the Rayleigh
density f(r) = re=""/2, 7 > 0, and the second one distributed
uniformly on [0, 27].

Note that because of the symmetry of o the statistical distri-
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butions of W do not depend on the choice of AT. However, it is
important to bear in mind that the choice of At affects sampling
properties of the envelope which is discussed later. Therefore
the choice of At becomes an important issue. Clearly, there are
infinitely many possible such choices however, because of some
additional symmetry of random sea surface, it is natural to take
A7 containing

{($1,$2,$3)€]R3 :$3>0}. 2)

The spectral moments of W, if they are finite, are defined as
Xiji =2 / N XAEdo(N). 3)
AT

If i + j + k is even, then );;; does not depend on a choice of
AT because of the symmetry of . However for odd i + j + k,
different AT can, in general, lead to different Aijr which will be
important when the distribution of the envelope field is discussed
later in the paper.

For the sea surface, due to the dispersion relation, we have
additionally

2 2
A=A(w,0) = (w_ cosf, w sin0,w) ,
g g

where w € R and 6 € (—m, 7], while g is the gravity accelera-
tion. Moreover,

o(A) = S(w,0)AwAd,

where S is the unitary spectral density and Aw, A# are incre-
ments over a cell of the grid of w’s and §” corresponding to {\; }.
The problem with directional spectra for the sea surface is
that they are degenerated in the full three dimensional space.
This is due to the dispersion relation which reduce dimension
of the spectral domain by one. In order to manipulate between
the mathematically convenient three dimensional domain R? of ¢
and the physically justified two dimensional domain R x (—, 7]
we define a natural transformation between these two domains

— (_ ,(9—7?) iff € [0777]7
T(w,6) = {(—3,0—{—71') if§ € [—m,0).

This a little bit technical definition can be interpreted more intu-
itively if we consider Rx (—, 7] as the union of two polar coor-
dinate systems one corresponding to positive w, [0, 00) X (—, 7],
and other, the anti-system (—o0, 0] x (—m, 7], corresponding to

negative w. The transformation 7" takes a point from one system
to the anti-system and then rotates it there by 7. The original
symmetry condition for ¢ translates now to

S(T(w,0)) = S(w,0). Q)

Further, the set A™ corresponds in the reduced domain to '™ =
A7' (A1) and a choice of AT C R3 is equivalent to a choice of
I't C R x (—m, ] such that

T(CH)Nrt =0
T(TH)UuT* = R/{0} x (=, x].

Note, that the unitary spectrum is uniquely related to the
physical spectrum S(w, 6), w > 0, which is more frequently seen
in engineering applications, by

S(w,0) =25(w,0),w > 0.

Because of mathematical convenience throughout the paper we
often use the unitary spectrum instead of the physical spectrum.

Envelope field
The Hilbert transform of the process W given by (1) has the
form

W(r) = Z \/20(Xj)R; sin()\]T‘r +€j).

A]' EAT

The Hilbert transform has the same unitary spectrum and thus the
same distribution as the original field. Also at each fixed point
(p, t) the two are independent. However treated as stochastic
fields they are dependent. For example, the covariances between
derivatives of W and W are given through the spectral moments
of W as, for example,

Cov(Wy, W) = Ao = —Cov(W, W,).

We have already remarked that these covariances are affected by
a choice of A and thus so is the dependence structure of W and
w.

The real envelope process E(p, t) is defined as

E(1) = \/W(T)2 + W (1)2. (5)
Note, that the envelope field is positive and always stays above
the sea surface and it is also depending on a choice of AT be-
cause of the dependence between W and W. The following two
subsections illustrates importance of the choice of A*.
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“Narrow-banded” example The following example is
often used to illustrate the concept of the envelope for narrow
banded processes. Assume that AT consists of the two atoms
A—d,A+dando(X—8) =o(A+9) =1/2. We have

W(T) = Ry cos [(A+8)T"T+ €] + Rocos [(A = 8)TT + €]
= 2Ry cos(ATT +€) cos(6” T + &) +
+(Ry — Ry)cos [(A = 8)TT + &)

W(r) = Risin [(A+ 8)TT + e1] + Rysin [(A = 8)T7 + e]

E(r) = \/(Rl — Ry)? + 4R Ry cos?(87 T + &),

where € = (e; + e2)/2.
Since (R2 — R;) is small relatively to R; with large proba-
bility, we often observe

W(r) ~ 2Ry cos(AT T + &) cos(8” T + ) (6)
E(T) ~ 2R | cos(6" T + €)|. @)

If we assume that |§| is essentially smaller than |A[, then the
signal X (1) is a cosine function corresponding to the high fre-
quency |A| and modulated by a cosine amplitude having the low
frequency |0|. We see that the envelope coincides with this low
frequency varying amplitude. This simple example illustrates the
usual interpretation of the envelope process as a process which
is governing slow frequency modulation of amplitudes of high
frequency components in the signal.

We conclude this example with analysis what can happen if
we choose a wrong version of the envelope. Clearly, for the two
atoms A — 8, A+ 9, in the full spectral domain there exist the two
anti-atoms § — X, —\ — &, and we can choose At in such a way
that now § — A, A + 4 belong to it. The whole above analysis
remains valid except that now we switch § with A. Consequently,
now the envelope will by modulated by high frequency |\| and
thus its usual interpretation as the low frequency component fails
completely.

Crossings intensity in the principal wave direction
Let us consider the intensity of crossings of a u-level by the en-
velope in the direction y = 0. It follows from the Rice formula
that this intensity is given by

U /@h0) |y 5 ),

ug = E(EO)|IE©) = w) - 1=

Straightforward computations of the above conditional expecta-
tion lead to

2A200 /\% u a2
u _ 1— 00 ) e w /(2)\000), u> 0.
Bo =\ "7 A000A200  Aooo

[See also Lindgren (1989).] The highest intensity is reached for
the level u = 1/Agoo often called the reference level for the en-
velope, and is equal

2 1
U=y [/ X200 Ma0o — A2g,.-
Mo T € Moo 200 A000 100

We observe that the intensity of envelope crossing in the direction
y = 0 depends on the choice of A+ only through A1go and in such
a way that larger |A1g9| corresponds to lower crossing intensity.
We expect that the envelope to smooth the sea surface so the
goal is to obtain low crossing intensity. We reduce this problem
to minimizing the spectral functional

2

Atoo = 2 / Mdo(A) = 2 / “ 050 (w, 8) dwsdb.
A+ r+ g

In general, the optimal choice will depend on the form of a spec-
trum in hand. For example, consider a spectrum having sym-
metry properties similar to these exhibited in Figure 4 by the
JONSWAP spectrum used in the examples. Considering the
symmetry given by (4), it is rather obvious that the choice of
I't ={(w,0) :0 € (—%, %], w € R/{0}} is the optimal in such
a situation.

For comparison, the natural choice corresponding to (2) will
result in A\1go smaller by

2
—4 / / Y c0s0S(w, 8)dwde.
w>0 Joe(—m,—n/2]u(x/2,x] 9

This is essentially negligible if we deal with directional spec-
tra obtained by vanishing spreading functions. Such spectra are,
for all practical purposes, equal to zero for § € (—m, —m/2] U
(w/2,7]. However this condition will no longer be true if, for
example, there will be an additional swell portion of the spec-
trum corresponding to these values of azimuth 6.

Finally, consider AT = {(z1,%2,23),22 > 0}. If spec-
trum S is symmetric with respect to 6, then it is clear that in
this case A1gg is equal to zero. Thus the intensity of envelope

crossing is equal to 4/ % v/ A200/Aooo- For comparison, the in-

tensity crossing of the sea surface at the reference level zero is

given by %\ / X200/ Aooo, thus the ratio of this intensities is equal
to v/2m/e ~ 1.52. This “wrong” envelope has by 50% more
crossings than the sea surface.

STATISTICAL DISTRIBUTIONS FOR ENVELOPE
Intensity of envelope contours

In the previous sections we have computed intensity of the
crossings by the envelope along the principle wave direction.
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Table 1. VERSIONS OF ENVELOPE IN TERMS OF At and T't.
# | AT r+

Comment

1|21 >0 0¢€ (—g %] Maximizes A1gg,

2| z2>0|0¢€(0,n]

A100 =0,
Natural choice for the sea
3123>0 | w>0 surface.

Since we are studying the envelope field it is more natural to
consider the intensity of the contour lines rather than individual
crossings along a straight line. It follows from generalized Rice’s
formula that this intensity is given by

e/ (o00) gy,

pt=E ( B2 + E2|E(0) = u)
A000

After some rather standard calculations involving the covariances

between W, W, W,, W, W, and W, one can obtain that this

intensity is given by

Pt =B (/X2 + X2 ) e/ @o00) gy 5,
Aooo

where (X7, X5) is a Gaussian vector with variances Aggp —
A200/A000> Ao20 — Ad10/Aooo, respectively, and the covariance
equal to 1o — )\100)\010/)\000. Thus functional form of this
intensity is identical to the intensity of crossing along a line al-
though constants are different. In the special case of the sea sur-
face we obtain some simplifications. First, it is usually assumed
that the coordinates system for W () is taken in such a way that
A110 = 0. Moreover, for spectra S(w,8) exhibiting symmetry
with respect to 8 (for example, for the spectra shown in Figures 1
and 4) we have also Ag19 = 0. Consequently, X; and X are in-
dependent Gaussian with variances X200 — A%39/Aooo and Aozo,
respectively.

Velocity

There are variety of ways to introduce a concept of veloc-
ity for moving surfaces [see Baxevani et al. (2002)]. We focus
here on the velocity describing the motion of a contour level in
the specified direction given by an azimuth . We define this
velocity by the equations

|: Ew Ey :|Va — |:-E0t:| , (8)

—sina cos o

where the first equation in the system guarantees that the motion
following V, stays on the same envelope level and in this sense

describes motion of the constant level contours, while the second
equation implies that the velocity points always in the direction
a, so the motion is along a straight line if « is constant.

Let us assume that « = 0, i.e. that we are interested in
the constant direction coinciding with the principle direction of
waves. It follows from (8) and (5) that the speed V' = |V ] is
given by

o W WEWe- W 9)
Wy W+W, - W

“Narrow banded” example continued Let us assume
that in this example we have A — § = (w?/g,0,w;) and A +d =
(w2/g,0,w2), where w; = w—§ and wy = w+4J for some § > 0.
Using the approximation (6) we obtain that the high frequency
modulation speed, i.e. the speed of individual waves, is given by

2w
Vw = D )
W= 99,2 + 262
while by (7) the envelope is propagating with the speed

V= 99,
This illustrative example demonstrates that the speed ratio
VYw/V = m < 2 and is approximately equal to 2 if
§%2 <« w?. As we will see this result extends also to the enve-
lope generated by JONSWAP spectra.

We are interested in the statistical distribution of V' when
measured at an arbitrarily selected point on the sea as well as the
so-called biased distribution obtained by measuring this veloc-
ity on the fixed level contour. It is well known that these two
distributions are essentially different, the first one is simply the
distribution of random variable V' while the second one has to be
computed with a use of generalized Rice’s formula. Relatively
straightforward although tedious calculations [see Baxevani et
al. (2002)] lead to the following form of the distributions of ve-
locity V' in the direction of the line y = 0:

—a- (b+\/c-d—62§),

1
“= A200 — Agg/Aavo’
b = A1o1 — A100A001/Aooo,
¢ = X200 — Ajgo/Ao0o,
d = Xooz2 — Ao1/Aooo,
e = A101 — A100A001/Ao00,
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Figure 4. DIRECTIONAL JONSWAP SPECTRUM USED IN EXAM-
PLES.

variables X and Y are independent, X having the standard nor-
mal distribution while the distribution of Y is

a) the standard normal if we deal with the unbiased sam-
pling,

b) the Rayleigh distribution if we deal with the biased sam-
pling distribution of velocity V' sampled at points (p, t) such that
E(p,t) = u.

In the above, \;j; are spectral moments of W (p,t) as de-
fined by (3).

For comparison, the analogous velocity of the sea surface
has the same form but with the constants a = 1/A209, b = A101,
¢ = A200, d = Ago2, and € = Ajo1.

Notice for the second choice in Table 1 on for JONSWAP
type spectra, i.e. A1go = 0, these coefficients coincide with the
ones for the envelope. Thus statistically velocities of the enve-
lope and of individual waves are identical which again demon-
strates how bad things can go with a wrong choice of the enve-
lope.

It is interesting that both the velocities have the biased sam-
pling distributions on u-level contours which do not depend on
the level w, i.e. they are the same independently of the elevation
at which the velocity is measured.

EXAMPLES

In this section we consider the directional Ga~ussian sea
surface obtained from the JONSWAP spectrum S(w,6) =

0.5
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0.1r
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Figure 5. DISTRIBUTIONS OF VELOCITIES FOR ENVELOPE AND
SEA SURFACE.

S(w)D(w,d), where

o 4/ 4
Ee 1.25w, /w p'z/;(w)’

Sw) =9’
with ¥(w) = e_(“’_“’P)z/(Q"Z“’;), where o is a jump function of
w:

(007 if wjw, <1,
7790.09 if w/w, > 1.

and « is a scale, p controls the shape, and w, is the peak
frequency. The spreading function is given by D(w,f) =
Gy cos?¢(6/2). The alternative data driven parameters can be
introduced by the relations [see Goda (1990)]:

_ 2 4
a = 5JH1/3wp7

and

_0.06238(1.094 — 0.01915log p)
~0.23+0.0336p — 0.185(1.9 + p) 1’
1 —0.132(p + 0.2) 70559
Y3
T3

Bs

Wp =

’

where H, /3 is the significant waves height, T} /3 their average
period. The following values of the parameters where assumed
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Figure 6. DISTRIBUTIONS OF VELOCITIES FOR CLASSICAL ENVE-

LOPE AND ONE DIMENSIONAL SEA RECORD.

in the computed examples: Hy,3 = 7[m], the peak period
27 /w, = 11[s], p = 2.3853, ¢ = 15. The spectrum is shown
in Figure 4. For the envelope we have chosen AT given in (2)
which corresponds to 't = (0, 00) x (—m, 7).

In Figure 5, we present the unbiased and biased sampling
distributions of velocities both for the envelope and for the sea
surface. The solid lines represent the unbiased densities and
the dashed-dotted ones corresponds to the biased sampling den-
sities. We see that the biased sampling distribution which are
more important for applications, are more concentrated around
its center. The group velocity is smaller than that of individual
waves as it is observed in the real life records. The peaks are at
—5.58[m/s] and —10.98[m/s]. Thus waves are roughly twice
as fast as groups, the result in agreement with conclusions of the
narrow banded example.

CONCLUSION

It is important to realize that even for studying the statisti-
cal properties of sea surface in the direction along y = 0, i.e.
of W(z,0,0), the envelope field is a different concept from the
envelope process defined for one dimensional record W (z, 0, 0),
the latter often used in ocean engineering for analysis of wave
movements. Indeed, we have computed also the distribution of
velocities for the classical one dimensional envelope and in our
case the resulting distributions are presented in Figure 6. As we
can observe, the distributions are not identical, the one dimen-
sional record distributions are slightly more peaky.

From the formal point of view the multidimensional enve-
lope is not essentially harder to study than its one-dimensional

version. Thus for the sea surface which is a three dimensional
field, it is more appropriate but also manageable to study ef-
fectively such “fully” dimensional objects and concepts as wave
contours, envelope contours, or vector velocities. In this work we
demonstrate this for few simple examples. Through similar ap-
proach one can tackle many other important “multidimensional”
problems. This is however left for future studies.
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