Rational points on weighted plane curves
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Let w = (wy,...,wy,) be an n—tuple of positive integers. The w—degree of a

monomial z™ = g™ - .. 2" is

deg,, (™) = (wymy + - - - + wymy,) [ lem(wy, . .. ,wy,).

For integers r > 0, let S, be the free Z—module spanned by monomials ™ =
z]" - -z of w-degree r. The direct sum €, Sy is then a commutative
graded ring which we denote by S. The weighted projective space P(w)
with weights w = (wy,...,w,) is defined to be Proj(S). There are other
equivalent definitions (see e.g. [3, 7]). If K is a field, then K-points of
P(w) correspond to equivalence classes of non-zero homomorphisms I' —
K, where I' is the multiplicative semigroup of monomials in S. Two such
homomorphisms ; : I' = K and 1, : ' = K are equivalent if

i (a™) = BTy (a™)

for some o € K*. If K is a number field, then there is a natural toric height
function H : P(w)(K) — Ry defined in the following way (see [1, 9]). Let

[ =lem(ws,...,wy),
lZ:l/wZ’ ‘i:1,2’...,n.

Let ¢ : I' = K be a homomorphism representing P € P(w)(K). Then

H(P) =] sup =11 sw [pm))”

v 1<i<n T™ESy

()

for any positive integer r. Here v runs over all places of K and | |, are
normalised such that [], |af, = 1 for all « € K*. It is clear from the
product formula that H(P) is independent of the choice of ¢ : I' — K. In
this paper we are only concerned with Q-points. In that case we may write

H(P) = sup |¢()

0<i<n

bl

where ¢ : T' — Z is a representative of P € P(w)(Q) such that

ged(p(zl), ..., p(zl)) = 1.



We shall assume throughout the paper that Q-points are always represented
by such “primitive” ¢ : I' = Z.

For any subscheme X C P(w) we may define a counting function
N(X,B) = #{P € X(Q) : H(P)< B},

We may also consider the cardinality

N(X;B) = #{PeX(@ : [p(a})

<B (0<i<n)},

where B = (By,..., By). The following result is a generalisation of a theo-
rem due to Heath-Brown [6]. He considers the case w = (1,1,1).

Theorem. Let X C P(wi,wq,w3) be defined by F = 0, where F(x) =
Y omamx™ € Sy is irreducible over Q. Let € > 0, By,By,Bs > 1 be given
and put

V =B1ByBy and T = sup (Bi”lmlB;"zm2B§”3m3)l/l.
z™eSy
am#0

Then
wijwaws

N(X, B) <<w,d,5 (T—l/dZVI/d-i-E) gl2 ’

where g = ged(wy, we, ws). In particular, if B > 1, then

wiwow

N(X,B) <<w,d,g (BQ/d+E> 912

The rest of this paper is devoted to the proof of this result. We shall use
the conventions from [6] that the implied constants may depend on w and
d, and that |G|| denotes the the maximum modulus of the coefficients of a
polynomial G € Z[xz1,...,z,]. The proof is similar to Heath-Brown’s proof
in the case w = (1,1,1).

For any prime p we have a map X(Q) — X,(F,) where X, = X @ F,. It is
given by 9 — 1, where ¢ : T' — 7Z represents P € X(Q) and ¢ : ' = T, is
the composition of ¢ : I' = Z and Z — F,. Remember that we assume that

ged(y (), (28), 9 (a)) = 1

so:T — [, is non-zero. Let

S(XB,p) = {PeX(Q : [w(a}) <




and
S(x;B) = {P e X(@ : [p(a})

where Xy, is the smooth locus of X. Note that

<B; (1<i<3),P€Xm(@},

N(X;B) = #5(X;B) + 0(1) (1)
since #Xing(Q) = O(1) for the singular locus Xing of X.

Lemma 1. Let r be the largest integer less than log(||F|| V), where V =
B1ByBs. If A >1og?(||F|| V), then there are distinct primes py,...,py such
that and A K p; K A fori=1,2,...,1 and

T

S(X;B) = |J S(X; B, pi).

=1
Proof. Let yg,-..,yn be all the monomials of Sp for some D. Assume that
P(w) = P*, (zo,z1,22) — (Y0,---,Yn)

is an embedding and let Y be the image of X. Then, by the Jacobian
criterion, Yy, is defined by

Gi=-=Gr=0

for some forms G; € Zlyo,...,yn] which satisfy log||G;|| < log|F|| and
deg(G;) < deg,,(F). Hence,

log |Gi(4(yo), - -, % (yn))| K log([|[F[| V),
if : T' — Z represents P € S(X;B).

Let p1,...,p, be the first primes larger than cA for some constant c. Since
A > r? this yields p; < cA fori = 1,2,...,7. Let Q € Y5 (Q) be the image
of P € S(X;B). Then @ is represented by

y = (¥(o),---,¥(yn)) € Z"TL

Moreover, @ € Y,(F,) is represented by ¥ € IF'ZH since

ged(¥(vo), - -, ¥(yn)) = 1.

Without loss of generality we may assume that G1(y) # 0. If p; | G1(y) for
1=1,2,...,r, then

rlog(cA) <log|Gi(y)| < log(||F|| V) < r.

This is contradictory for some suitable choice of ¢ = c(w,d). Hence, Q €
(Yp) (Fp) for some p € {p1,...,pr}. That is, P € S(X;B,p;) for some
i=1,2,...,7. O



Lemma 2. LetY C P(w) be the intersection F = G = 0 for some F,G € S.
If F and G do not have a common factor in Q[z1,x2,z3], then

#Y(Q) < 1*(deg,, (F))(deg, (G))-

Proof. Let m : P2 — P(w) be given by (21,72, 73) — (271,252, 252). Then
the forms 7*F,7*G € Z[z1,x2,z3] have degrees [deg, (F) and ldeg,(G),
respectively. The lemma thus follows from Bezout’s theorem provided that
m*F and 7*G do not have a common factor. One can check that a common
factor of 7*F and 7*G is equal to H(z{",z5?,25?) for some common factor
H of F and G. U

Lemma 3. Let p be a prime such that
wijwawy

p> 4 (r )

where g = ged(wy, we, w3). Then #S(X;B,p) = O(p).

Proof. Since #X,(F,) = O(p) (see [8]), it suffice to show that there are
O:(1) points P € S(X;B,p) with P = P; for a fixed P, € S(X;B,p). Let
Py, ..., P, be all such points. The idea is to find G € Sp such that F { G
but G(P;) = 0 for i = 1,2,...,n. Then n < dDI? according to lemma 2.
That is, #5(X;B,p) = O:(p) provided that D = O.(1).

Assume that the positive integer D is fixed and bounded in terms of w,d,
and e. It will become clear later how to choose D. We may assume that
Sk+1)p = SpSkp for all k > 0 since this is true for all sufficiently large D.
Let 2™ € Sy be a monomial such that
(B;ulm,l B;UzmgB;U:’,mg)l/l =T = sup (B;ulml B;ugm2B§13m3)1/l,
z™eSy
am#0

where F(z) =, ampz™. Let 2™,..., 2™ € Sp be the monomials which
are not divisible by ™. Tt is proved in [6] that it is impossible for F to
divide a non-trivial polynomials such as

€
G(z) = Zcixmi € Sp
i=1

(the proof is for w = (1,1,1) but the argument carries over to the general
case). Let ¢; : I' — Z represent P; € P(w)(Q) for 7 = 1,2,...,n. Then
there exists a non-trivial ¢ = (c¢1,...,¢.) € Z¢ such that G(P;) = 0 for
1=1,2,...,n if and only if the matrix

Pr(z™) oo (™)
M=| :



has rank at most e — 1. We may assume that e < n so rank(M) < e if and
only if the e X e-minors of M vanish. Without loss of generality we may
counsider the minor

Pr(az™) - Pr(z™e)

A= : : .
Pe(z™) - te(z™)
If we write m; = (mj1, mj2,m;3) for j =1,2,... e, then
N 3 Ly | WkME i wm;
i(e™)|" = T |wil=f) <[[ B for 1<ij<e.
k=1 k=1

Hence,

Al < e (B By B,
where

e
e = iji for 1=1,2,3.
j=1

We shall see below that ord,(A) > e(e — 1)/2. Consequently, if

2wieg 2woen 2wgeg

2. Dle(e—1) ple(e—1) ple(e—1)
P > ee_lBle e BQe e B3e e )

then A = 0.
Now my, ..., m, are the different solutions a = (a1, as,a3) € Z3; of
wial + woeag + wszaz = DI
a; < m} or ag < mf or ag < mj.
Hence, if
E(w,k) = {a € Z%O : wial + weag + wiaz = k} ,
si(w, k) = Z a; for 1=1,23,
a€E(w,k)
then

¢ = #E(w, Dl) — #E(w, DI — dl),
e; = si(w, DI) — (s;(w, Dl — dl) + mi#E(w, Dl — dl)).



The formulas from lemma 5 in the appendix gives

Ddgl?
e=—9"_ 1 0(),
wiwows
D?%gl?
=9 (@~ wimh) + O(D
€; 2wiw1w2w3( wzmz)+ ( )’
2w;e; wiwgws (1 wym] 1
- - o).
le(e—1) _  gP2 (d 2 ) ToP)

We can thus choose D, bounded in terms of w, d, and ¢, such that

2wy ey 2woen 2wgeg wijwawa

P 1_Ble(e I)Ble(e I)Ble(e 1) < (Tfl/d2V1/d+E) gl? <p

It remains to show that ord,(A) > p(p — 1)/2. Let yo,...,y, be all the
monomials of Sp and assume that 1 (yo) # 0. Let z; = y;/yo for i =
1,2,...,q and put

_ (¥%ily) ¢z‘(yq)> ¢ for -
a; (%(yo)"“’%(yo) €Z; for i=12,... e

Here Z; denotes the p-adic numbers. Since S;11)p = SpSgp for all k > 0,
we have

(S/(F))(yo) = Z[zl" e ’ZQ]/(fla"'afk)

for some fi1,..., fr € Z[z1,...,2,)- The assumption P, € (X,)  (F,), im-
plies that the Jacobian matrix

oh ... %A
021 0zq
fw ... 9
0z1 0zq

has rank ¢—1 modulo p when evaluated at a;. We can thus find a parametric
solution of f; = -+ = fr = 0 in a neighbourhood of a; according to the
implicit function theorem (see chapter III, §4 in [2]). Let gi,...,94-1 €
Zy[[#]] be such that if b = (b1,...,b;) € Zj satisfies f;(b) = 0 for i =
1,2,...,k and b = a1 (mod p), then

b = gi(by) for i=1,2,...,q—1.

Let
1, 7=0
h](z): g](z+a'lq)7 j:152aaq_]—
Z—I—aiq, JZQa



and put z; = (a;q — a1q)/p € Zp for i = 1,2, ..., e, where a; = (a;1, ..., aiq).
Then

e hiy(pz1) -++  hi (pz1)
A= (H wi(yo)) :
=t hiy(pze) -+ hi.(pze)
for some i1,...,ie € {0,1,...,q}. By using elementary column operations

over Zjp on this determinant we see that ord,(A) > p(p —1)/2 (see [6]). O

If we combine (1), lemma 1 and lemma 3 we get

waw3

N(F;B) <. (T-/OV/) o | F|e.

The following observation completes the proof of the theorem, just put B =
V.

Lemma 4. Suppose that the coefficients of F € Sy are relatively prime.
Then either N(X, B) < (dl)? or ||F| < B3%.

Proof. Let Pp,...,P, € P(w)(Q) be the points counted by N(X,B) and
W, : ' = Z for 1 = 1,2,...,n the corresponding primitive representatives.
Let y1,...,yq be all the monomials of Sg. The rank of the matrix

Yi(yr) - P1(yg)
M = N .

is then at most ¢ — 1 since the vector a € Z? consisting of the coefficients of
F' is a non-trivial solution of Ma = 0. If the rank is less than ¢ — 1, then
there exists another solution ¢ € Z9 which is linearly independent of a. The
corresponding polynomial G € Sy is not divisible by F' because deg,,(G) = d
and F is irreducible. By lemma 2, F and G have at most (dl)? common zeros
in P(w)(Q). On the other hand, if the rank of M is equal to ¢ — 1, then

one non-trivial solution ¢ = (c1,...,¢.) € Z¢ of Mc = 0 is given by the
(g — 1) x (¢ — 1)-minors of
1/%1 (yl) Tt 'lpi1 (yq)

Vig_ (1) - iy (Yg)
for some 1 <4y < -+ < 431 < n. By expanding the minors and using the
trivial bound g < (d;’Q) < 3d?, we get

I

leil < ((g—1)BH)T ' < B3 for i=1,2,...,q.

The elements of a are relatively prime so ¢ has to be an integer multiple of
a. Hence, |F| < B3* as promised. O



Appendix

Lemma 5. Assume that the elements of a = (a1, a2,a3) are relatively prime
positive integers and let

E(a,n)={z € Z;O i a171 + agTy + azry = n},

si(a,m) = Z z; for i=1,2,3.

z€E(a,n)

If by = ged(ag, a3), by = ged(aq, as), bs = ged(aq,az), and

g
—1+2Z C]al for 1=1,2,3,

where (; = exp(2mv/—1/b;), then

#E(a,n) = — (n —I—nZazxz >+oa(1),

2a1a2a3 i—1
1 nd  n?
Si(aan) = m F + 1 jz_lanj(n) - a'z'Xi(n) + Oa(n)'

Proof. 1t is straightforward to establish the formula for #E(a,n) by using
its generating function. We only show the basic idea and leave the details
to the reader. If we put & = exp(2nv/—1/a;) for i = 1,2,3, then

3 3 1 a;—1 1

n __ 1 _ - _
> #E(a,n)t _gl_tai_g “igl—fgt —

n>0

3 a;i—1

1
a1a203 1—t3+;]§:1 l—t fit) *
3 a;—1b;—1
DI

k
zlgOk1 Ct)

(2)

where the missing terms do not contain any quadratic factors and therefore
only contribute O4(1) to #E(a,n). By using the formulas

TENE :Z%(n+1)(n+2)tn

n>0

1 B Z Ant? ABnt! N B"tl(n +1) p
(1 — At)(1 — Bt)? _n>0 (A-B)2 (A-B)? B—A ’




in (2) we obtain the asymptotic formula for #E(a,n). The generating func-
tion of s;(a,n) is

3
1 1 1
S stan = i 1 = 2 5 bt
n>0 j=1 n>0
S0
qg—1
si(a,qa; + 1) = Z#E(a,jai +7r) for 0<7r<a;.
j=0

One can check that

q_l . .

(g Oalyg ifi =k,
> ixw(Gai+r) = qza( ) _
=0 L xk(r) + Oq(g) otherwise.

Hence,
qg—1
2a1a2a3 Z #E(a,jai + 'r') =
j=0
g-1 q—1 3 q—1
a2+ 20y j+a . (ak Y jeliai+r) | +Oulg) =
3=0 7=0 k=1 §=0

¢ ¢ 2 [
az? (3 - 5) + airg? +az'5 ;aka(T) —aixi(r) | + Oalq).

By putting ¢ = (n — r)/a; in this last expression and collecting the powers
of n we obtain the formula for s;(a,n). O
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