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Abstract

This paper studies the relative error in the crude Monte Carlo pric-
ing of some familiar European path-dependent multi asset options. For
the crude Monte Carlo method it is well-known that the convergence
rate O(n~'/2), where n is the number of simulations, is independent of
the dimension of the integral. This paper shows that for a large class
of pricing problems in the (multi-asset) Black-Scholes market also the
constant in O(n~"'/?) is independent of the dimension. To be more spe-
cific, the constant is only dependent on the highest volatility amongst
the underlying assets, time to maturity and degree of confidence inter-
val. The main tool to prove this result is the isoperimetric inequality
for Wiener measure.
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1 Introduction

The application of the Monte Carlo method to option pricing was first pre-
sented in Boyle [5] and it has proved to be an extremely useful tool for the
valuation of contingent claims. The popularity of the Monte Carlo method
in finance depends mainly on the fact that it provides a robust and simple
method for performing integration. For example, Monte Carlo integration
converges at a rate O(n~'/2), where n is the number of simulations, that
is independent of the dimension of the integral. For this reason, the Monte
Carlo method is sometimes the only viable method for a large number of
high-dimensional problems in finance.

*The author would like to thank Christer Borell for comments and suggestions.



Previous work on the Monte Carlo pricing of European derivatives pri-
marily focuses on different so called variance reduction techniques. Kemna
and Vorst [11] consider the technique of control variates in the pricing of
Asian options. Barraquand [1] exploits the idea of quadratic sampling.
Glasserman, Heidelberger, and Shahabuddin [8] study importance sampling
and stratification for the pricing of path-dependent options. These articles
are just a small part of the research about the Monte Carlo technique in
option pricing. For a more complete discussion, see Boyle, Broadie, and
Glasserman [6].

The main purpose of this paper is to derive error estimates for the crude
Monte Carlo pricing of European options, with particular emphasis on path-
dependent options. We must underline that we will only consider the crude
Monte Carlo technique. A discussion about the error in the so called quasi
Monte Carlo method can be found in Caflish [7].

The present paper presents extensions of some previous results by Borell
[4], where, among other things, he investigates the relative error in the
Monte Carlo pricing of simple European options in a multi-dimensional
Black-Scholes market. A simple option is an option that only depends on
the underlying asset prices at the maturity date of the option. In particular,
it is shown in [4] that for some simple options not only the convergence
rate but also the constant in O(n~1/2) is independent of the dimension. To
be more specific, the constant is only dependent on the highest volatility
amongst the underlying assets, time to maturity, and degree of confidence
interval. This paper will show a similar result as in [4] for a large number
of European styled path-dependent contracts.

The main results and the structure in this paper can be described as
follows. In Section 2 we will, to begin with, consider an arbitrary market
with a martingale measure (). Assume that X is the payoff of a contingent-
claim in the market, which we assume has a p-th moment, p > 2, and non-
zero expectation @ = E¥[X]. Section 2 shows that the size of the relative
error for the Monte Carlo estimation of the expectation « is controlled by
the value of the functional Dp(X), 2 < p < oo, defined by

X —allze
Dp(X): ol (Q), for 2 < p < 0,
and
esssup X — essinf X
Deo (X)) =

|

The main tools to prove this result are the Rosenthal and the Hoeffding
inequalities. These classical inequalities will also be discussed in Section 2.

The goal for the remaining part of this paper, Section 3 and 4, is to
establish upper bounds for Dj(X) in the case that X is a contract on the
Black-Scholes multi-asset market.



To be more specific, Section 3 compares the moments between path-
dependent call (put) options and plain vanilla call (put) options in the Black-
Scholes multi-asset market. The main result about call options in Section 3
can be stated as follows. Suppose that X is a payoff function of an option
included in a certain class Cx. This class will be properly defined in Section
3.1 and it turns out that options like lookbacks and Asian or Asian styled
basket calls with strike price K, K > 0, will be members of the class Cx. It
will be proved that if the real number € > 0 is chosen such that

1Xl11 () = | max(8S5™ — K,0)|| 11 ()

where {ng)} denotes the price process of the most volatile asset of the
underlyings, then

1X]| o (@) < || max(0S5™ — K, 0) |0 (q)

for each 1 < p < 0o. A similar result for path-dependent put options will
be derived as well.

To prove this and other results in Section 3 various geometric inequalities
in Wiener space will be used. In particular, the isoperimetric inequality for
Wiener measure.

The final section, Section 4, combines the results in the Sections 2 and 3.
Section 4 shows how to obtain explicit upper bounds for the relative error
in the Monte Carlo pricing of several different path-dependent contingent-
claims. It will be proved that for a large class of pricing problems, the upper
endpoint of a confidence interval of degree 100(1—¢)% for (the absolute value
of) the relative error is bounded by

Kxe 0.2 T 1

— (e9mt —1)2
where o, denotes the highest volatility among the underlyings, T" is time
to maturity, and k¢ is a constant only dependent on e¢. The constant k.
is closely related to the best constant in Rosenthal’s inequality and will be
specified in Section 4.

bl

2 Error Estimates for the Monte Carlo Method

From now in this section assume that (2, F, Q) is a given probability space
and X is a random variable in LP(Q, F, Q), 2 < p < oo, with E?[X] = a # 0.
In addition, let Xi,...,X, be stochastically independent observations on
X and set

_ 1 <&
X, = E;Xi.



Here X, is called the Monte Carlo estimator of X. In what follows we
abbreviate

- llp = 11 lzr (@)
if 2<p< oo, and
l(X) = esssup X — essinf X.
Finally, put

I —al,

DP(X) ‘a|

, 2<p<oo,

and

[(X)

If R, denote the relative error after n simulations, i.e.

Xn —«
@

bl

R

the Chebychev inequality gives that for any 0 < e < 1

Q(Rns%) >1-¢ (1)

where

_ D(X)
==

Thus, equation (1) yields that the convergence rate of the relative error in
the Monte Carlo estimation is O(n~'/2) with a constant that is bounded by
Ce.

By applying the central limit theorem it is easily seen that the conver-
gence rate O(n~'/?) is the best possible in the sense that if §,, — 07 when
n — oo then

C. (2)

Q(Rng(i—”ﬂ> — 0, asn— oo.
n

However, in certain cases it may be possible to improve the constant C¢ in
equation (2). The purpose of the remaining part of this section is to find
better estimates of the constant C..



First we recall a heuristic and well known argument which shows that
it is plausible to improve the constant C,, provided n is sufficiently large as
will be the case in most Monte Carlo simulations. In fact, by letting

XZ'—O[

= i=1,2,..., 3

the central limit theorem gives that the random variable
1 n
% ZZ_; fz

is approximately distributed as a normal random variable with mean 0 and

variance 1. Thus, for any A > 0,
1 < WD
<)\ = - | < AV
Q(Rn <) Q(‘\/ﬁ;& s Dg(X))

a7
n25)

where ® denote the standard normal distribution function, that is

Y 22 d.'E
d = e 2z .
(v) / T

Suppose ®~! is the inverse of ®. By letting

_DQ(X) -1 €

in equation (4) we obtain

Q(Rng%> %1—6,

where

C. = \/6@1(1 _ %)c
with C, defined as in equation (2). If € is close to zero then it is evident that
the constant CN‘6 will be considerably much smaller than C.

In order to make the above argument more precise we will recall some
classical inequalities for random walks. The next theorem is known as the
Rosenthal inequality.



Theorem 1. Let ¢ and (' denote independent Poisson random variables
with parameter 1/2 and let T' be the gamma function. Suppose X € LP(Q),
2 < p < o0, is a symmetric random variable. Then

n
IS Xilly < 7y max (ﬁllela, nl/pnxnp),
=1

where

op/2 p+1 1/
.o 1+ Z5r(2)) , 2<p <y,
||C_CI||IJ’ p24

A proof of Theorem 1 with r, = 2P can be found in Rosenthal [17].
The value of the constant r, given in Theorem 1 can be found in Ibragimov
and Sharakhmetov [10]. Table 1 shows an upper bound for the value of the
constant 7, for various values on p. The table will be useful in the sequel.

P 3 4 5 6 7T 8 9 10
rp (<) 1.37 141 1.60 1.77 1.94 210 226 2.41

Table 1: An upper bound for the value of the constant 7, in the Rosenthal in-
equality.

By a standard result in probability theory, if X and X’ are i.i.d. random
variables in L”(Q) with E9[X] = 0 then || X ||, < ||X — X'||, (cf. p. 263 in
Loeve [14]). Since the random variable X — X’ is symmetric the Rosenthal
inequality implies

Corollary 1. If X € LP(Q), 2 < p < 00, and o = EQ[X] then
n
I3 X; = naly < 2y max ( VALX ~ al, 071X ~ al, ).
i=1
where 7y, is defined as in Theorem 1.
The next theorem is often referred to as the Hoeffding inequality.

Theorem 2. If X € L*®(Q) and a = EQ[X] then

n 9 AQ
Q(‘;Xi—na‘ Zn)\> §2exp(— pr(z—X))

for every X > 0.



For a proof of Theorem 2, see Hoeffding [9]. The bound in Theorem 2 is
not the best possible, see Talagrand [19] for a further discussion.

More results on tail probabilities and moment estimations for sums of
independent random variables can be found in Petrov [15].

We are now in the position to establish the main result in Section 2.

Theorem 3. Suppose X € LP(Q), 2 < p < o0, and a = EQ[X] # 0.
Moreover, assume that the constant v, is defined as in Theorem 1. If R,
denote the relative error after n simulations, i.e.

R, = ‘Xn_a ;
(07
then
Ce
Q(Rn<%)>1—€, 6>0,

if Cf is any of the numbers

1
CEZEDQ(X)a
2 11
Cér)zé%max(D?(X)’”’“ sz(X)), 2 < p < oo,

or

Proof. The case Cf = C, has already been shown. To prove the other cases,
let & be defined as in equation (3) and observe that
1 n
526
n -

=1

R, = Dy(X)

Firstly, let
cr=qcln

€ €

and suppose that A > 0. The Chebychev inequality yields
BN 1> &illp
- P >A) < i=1 P
Q( ‘n ;5 > ) <

npPIP
which in combination with Corollary 1 implies

1 n
Q(‘ngi

(2rp)P 11
> 2) < 2w (1, )"



Note that [|&;]|p = Dp(X)/D2(X). Set

l;Dp(X)>

2r
P 1, ns 3
Jrel/p X ( "Dy (X)

and we are done.
Now suppose

cr=cM.
Theorem 2 gives
1 & 2n)\2)
- | > A <2exp| — 5
(5 2e]22) =20 (-7

for any A > 0. In particular, if we chose

_ [In(2/¢) .
A=y Tl(fz),

the proof is complete. O

We conclude this section by making some comments on the error con-
stant CG(T) in Theorem 3. Observe that CE(T) is dependent on the number of
simulations n. However, if n is sufficiently large or D, (X) sufficiently small
then

1

1
max(Lb(X),nE*EI%(X))::zb(xj
and thus, under some additional assumptions, the constant CC(T) is indepen-
dent of n.
In Section 4 we will compare the value of the constants C, and CC(T) in
some special cases.

3 Comparison of Moments

In this section we will compare the moments between some familiar path-
dependent contracts and plain vanilla call or put options.

3.1 Preliminaries and Main Result

From now on the sample space Q = Cy([0,T]; R™) consists of all functions
w = (w1,ws,... ,wn) such that, for each ¢ = 1,... ,m, the function w; :
[0,7] — R is continuous and w;(0) = 0. The space (2 is equipped with the
norm || - ||¢,, defined by

lwllco =, max  max |wi(t)].

8



The measure ) will henceforth denote Wiener measure on 2. Defining
Wiw) =w(t), 0<t<T, weQ,

the process {W;}]_, is a standard m-dimensional Brownian motion with
respect to (). A vector in R™ is interpreted as an m by 1 matrix.
We use the convention that

S = (e<1,642,...,ecm), (ER™

CT’ = (C1771, C2772’ s 7Cmnm)7 Cﬂ? € ]Rma

(Cw)(t) =Cw(t), (eR™, weQ, 0<t<T,
and
(e)t)=eD, we 0<t<T.

Assume in the remaining part of this paper that the dynamics of the
underlying asset price vector S under the measure @) is given by

Sy = Spe?WHeCWe g <t < T,

where C' is a non-singular m by m matrix such that each row ¢; in C satisfies
|ci| = 1, where | - | is the Euclidean norm in R™,

So = (S5",...,S™) € (0,00)™
denotes the initial asset prices and
o= (Ula"' 70m) € (ano)m

stands for the volatilities of the underlying assets and 7' > 0 can be thought
of as the maturity date of some given option. Moreover, v € € is defined by

), 0<t<T,i=1,...,m,
where r € R is the interest rate. Finally, suppose that

max o; = O,
i=1,...,m
that is, asset price number m has the greatest volatility. Henceforth we will
denote the price process of the i:th asset, i = 1,... ,m, by {S’gi)}tT:O.
Next we will define a certain class £ of functionals F' on the space
C([0,T;RT). We will say that FF € £ if F > 0 and for any fixed s € R
the map

w — In F(se?)



is Q-Lipschitz with constant 1, i.e.
|In F(s¢#%) — In F(s¢*)]| < @],
for all w,® € €. Clearly, this definition equivalently means that F' > 0 and
F(se¥79) < €ll@llog (se®)

for all w,@ € Q.
In addition, let K > 0 and set Cx = (£ — K)*, that is, Fx € Ck if, and
only if, there exists an F' € £ such that

Fg = max(F — K,0).

In particular, Cy = £ and Cx CCp, if K < L.
We next give some examples of functionals in the class Ck.

1. Assume that uj;, j = 1,... ,m, are positive and bounded Borel mea-
sures on [0, 7). It is evident that the functional

F) (5e Z/ sje” u] (dt)

belongs to the class £. Thus, for any fixed K > 0, if
FI((“) (se”) = max( F (se¥) — K, 0)
then Fx € Cx. Moreover, set
X = F(s).

Depending on the measures pj, 5 = 1,...,m, X equals the payoff
function of an Asian or an Asian styled basket call option with fixed
strike. It should be emphasised that the measures p;, 7 = 1,... ,m,
must be positive, otherwise F*) will not be a member of the class L.
The case of signed measures p; will be further discussed in Section
4.3.

2. If M C[0,T] and 3; € Ry, j =1,... ,m, then the functional

FMB)(se¥) = max sup B sje“’j(t) (5)
_7:1,...,m teM

is included in £. Hence, for fixed K > 0,
FMP) (se2) = max(FMA)(S) — K, 0)
is a member of Cx. By setting
X = Fs)
X is the payoff function of a lookback option with fixed strike if m = 1

and a so called maximum option if M = {T'}.

10



3. Other examples of functionals in the class Cx can be constructed by
taking the maximum or minimum of members of Cx. To see this, if
F,G € L then it is evident that
max(F,G) € L and min(F,G) € L.
Thus, if K < L and Fx € Cx, Gt € Cr, then
max(Fg,Gr) € C;, and min(Fg,Gyp) € Cr,
since Cx C Cy.
Our main result about path-dependent call options is
Theorem 4. If Fix € Cx, K > 0, and @ is chosen such that
|1k (8)lr = || max(6S§™ — K,0)]]1,
then
|1k (S)llp < || max(6S5™ — K, 0)]|,
for each 1 < p < oo.
Theorem 4 will be proved in Section 3.2.

Next we will define a class of path dependent put options. Let £ be
defined as previous and set

Pk =max(K — £,0), K >0.

Theorem 5 below is the counterpart to Theorem 4 for put options. The
proof of Theorem 5 is indicated in the next subsection.

Theorem 5. If Fx € Px, K >0, and 6 is chosen such that
|Fic(S)]l = || max(K — 055, 0,

then
|Fkc(S)]lp < || max(K —0S5™,0)]l,

for each 1 <p < 0.

11



3.2 The Isoperimetric Inequality for Wiener measure; proof
of Theorem 4

In order to present the isoperimetric inequality for Wiener measure we first
introduce the so called Cameron-Martin space H. The space H consists
of all functions h = (hy, hg,... , h,,) such that, for each i = 1,... ,m, the
function h; : [0,7] — R is absolutely continuous with a square integrable
derivative and h;(0) = 0. The space H is equipped with the norm || - ||z,
defined by

= (32 [ ooy ), nen

Next we state the so called isoperimetric inequality for Wiener measure.

Theorem 6. Let O be the set of all h € H such that ||h||lg <1. If A is a
Borel set in Q2 and

then
QA+ X0) > d(a+ A)
for each real number X\ > 0.

Theorem 6 is a special case of the isoperimetric inequality for Gaussian
measures, which was discovered independently by Borell [3] and Sudakov
and Tsirelson [18]. In both papers the proof was based on the isoperimetric
inequality on the sphere. Recently, Ledoux [13] has developed a short and
self contained proof based on the Ornstein-Uhlenbeck semigroup. A stochas-
tic calculus version of the proof for the Gaussian isoperimetric inequality can
be found in Barthe and Maurey [2].

A consequence of Theorem 6 is

Corollary 2. Assume that F € L. If, for a,b > 0,
Q(F(8)>b) =Q(5%” > a),
then
Q(F(S) > 9b) <Q(S™ > da)
for each real number 9 > 1.

Proof. Fix ¢ > 1 and let X\ > 0 be given by the equation ¢ = exp(o,, VT)).
We first prove that

Q(F(S) <db) > Q( ”h|i‘r11{f<1F(S(- + Ah)) <b). (6)

12



Firstly, note that the random variable inf|, <1 F(S(- + Ah)) is Borel
measurable since F'(S(+)) is continuous and O is a compact subset of 2, and
thus, the supremun can be taken over a dense denumerable subset. Now,
suppose that h = (hq,... ,hy,) € H and let (, ) denote the inner product in
R™. Since

t
h(t):/ W(z)dz, 0<t<T,
0

the Cauchy-Schwarz inequality gives for 0 <t <T and j=1,...,m

o = (é ( /Otihxu)muyf

m_ ot 1
< Vi ( Z/ (y(w)*du)
i=1 70
= Vi|hlln
and thus ||cCh||¢, < omVT||h| 1. Next, observe that if w € Q then

F(S(w)) =F(S(w+ h)e_”Ch)
< ellChlico F(S(w + h))
< eamx/TllhllHF(S(w +h))

and consequently

inf F(S(w+ A\h)) >
[Ip]| <1 ( ( )) -

F(S(w)),

| =

which proves equation (6).
Next, note that Theorem 6 implies

Q(inf F(S(+x) <b) 2 Qe7mVS < a).

Moreover,
Qe VS < 0) = Q(S§ < da)
and therefore, according to equation (6),
Q(F(S) < 0b) > Q(S™ < da),

which implies the statement in Corollary 2. O

13



Proof of Theorem 4. Suppose Fx € Cx and
|Fk () = [[max(6S{™ — K, 0)]|. (7)
We want to prove that
EQ[Fx(S)"] < E?[max(65y™ — K,0)7]

for each 1 < p < 0.
Write Fx = (F — K)* where F € £ and set

b(@) = Q(F(S) > 2) — Q67" > x).
Partial integration now gives

E°[Fx(8)] - B[ max(6S7™ — K,0)7]

[e.e] o
—so-1) [ @K [ iy o
K T
Thus, it is enough to prove that
o0
| vy <o (¥
T

for all z > K.
Equation (7) gives

/: P(y)dy = 0.

Let y* = inf{y > K : 9(y) < 0}. According to Corollary 2 we have that
¥(y) < 0for all y > y*, which implies equation (8) and the proof of Theorem
4 is complete. O

Theorem 5 can be proven in a similar way. The details are omitted.

3.3 A Remark on Barrier Options

This section is concluded with an example of a payoff function which satisfies
the converse inequality compared to Theorem 4. The example we have
chosen is a down-and-out call option.

From now on assume that the market only consists of one asset, i.e.
m = 1. The price process will for simplicity be denoted {St};f:(), where

St == Soeu(t)+awt, 0 S i S T,
with v(t) = (r — 0?/2)t and o > 0. In addition, set

T=inf{t € M| S < H(t)},

14



where M is a closed subset of [0,7] and H : M — R, is continuous. In
particular, the random variable 7 is Borel measurable. The payoff function
of a down-and-out call is defined as

max(ST - K, 0)1{’T>T}

with K > 0.
The following so called shift inequality will be useful in the sequel.

Theorem 7. Assume that A is a Borel set in Q. If ||hllg = 1 and

then

P(a— ) <Q(A+Ah) < P(a+AN)
for each A > 0.

For a proof of Theorem 7, see Kuelbs and Li [12].

Corollary 3. If, for a,b >0,

Q(ST >a,T> T) = Q(ST > b),
then

Q(St > da, 7 >T) > Q(Sr > 9b) (9)
for each real number ¥ > 1.

Proof. Set

If A > 0 satisfies exp(Aoh(T')) = ¢ then
Q(ST >da, T > T) = Q(e_)‘”h(T)ST >a, 7> T).
If A={Sr>a, 7> T} we have
Q(e "M Sr >a, 7> T) > Q(A+ \h).
Theorem 7 implies

QA+ Ah) > Q(e MM 51 > b)
= Q(Sr > 9b)

and the proof is complete.

15



Proposition 1. Suppose K > 0. If 6 is chosen such that

| max( ST — K, 0)11;571 [[1 = || max(6Sr — K, 0) |1,
then

| max( St — K, 0)1r>myllp 2 || max(6Sr — K, 0)|,
for each 1 <p < .

Proof. The result follows from Corollary 3 in the same way as Theorem 4
follows from Corollary 2. O

There is a similar result as in Proposition 1 for certain other barrier
options such as up-and-out put options. The details are omitted here.

4 The Error in the Monte Carlo Pricing of Some
Familiar European Path-Dependent Options
This section shows, using Theorems 4 and 5, how to obtain an explicit upper
bound of D,(X) for different choices of payoff functions X and thereby

establish error bounds for the Monte Carlo pricing of X. To begin with we
will consider call options.

4.1 Call Options
First we state a lemma, taken from Borell [4].
Lemma 1. Assume that K > 0 and p > 2. The function

_, [max(855™ — K, 0)],

, 08>0,
| max (605%™ — K, 0)|x

1§ non-increasing.

Now, consider a lookback option written on the m:th asset with payoff
function

_ (m) _
Fg(S) = max(géz}v)[( S; K,0),

where M C [0,7] and K > 0. Clearly, if # <1 then
I1Fk (S) 11 > || max(6S5™ — K, 0)])1.
Thus, according to Theorem 4 and Lemma, 1,

|Fic(S)]2 _ |l max(S§™ — K, 0)]|2
1P (S ™ | max(SS™ — K, 0)||,

16



and therefore

Dy(Fx (S)) < Dy(max(S{™ — K, 0)) (10)

1
X113 )2
Dy(X) = ( -1
) [:qlfi
provided E9[X] > 0.

Since the right hand side in equation (10) can be evaluated analytically
we may easily obtain an upper bound for Dy (Fk (S)) in the case that Fg (S)
is the payoff of a lookback option with fixed strike.

However, there are two disadvantages with this approach. Firstly, the
right hand side in equation (10) may be very large since

because

Dp(max(OS(Tm) - K,0)) > 00, as K — oo,

for any # > 0 and any p > 2. Moreover, for an arbitrary payoff function
Fk(S), F € Ck, it may be very difficult to find an upper bound for 6 other
than zero such that

|F5(S) 11 > || max(6S™ — K, 0)]|1.
However, there is a way to get around these problems. If Fx € Cx then
Frg = max(F — K,0) = max(F,K) — K

for some F' € L. Thus, to price the option with payoff X = Fk(S) we only
need to estimate the expectation of the random variable

Y = max(F(S5), K).

It is easy to find an upper bound for D,(Y’). Namely, since max(F, K) € Cy
it follows

1Vl _ 155"l _ ip-vor
Yl = sty

which yields, in combination with the Minkowski inequality in the case 2 <
p < 00,
1
(eonT —1)2,  ifp=2,
Dy(Y) < (11)
3(p-1)op,T '
e2 mt 41, if2<p<oo.

Remarkably enough, the estimate is only dependent of p, the greatest volatil-
ity and time to maturity.

17



Figure 1: The graph of € = 8, and € — 7, (cf. equation (12)) for 0.056% < € < 5%.

Next we will consider the relative error for the Monte Carlo simulation of
EQ[Y] and give two numerical examples, see the Figures 1 and 2. The first

example will compare the value of the error constants C, and Ce(T), given in
Theorem 3, for varying e. Recall here that Theorem 3, among other things,
stated that the upper endpoint of a 100(1 — €) % confidence interval for the
relative error in the Monte Carlo estimation of E?[Y] is bounded by

min(C, C’e(r))
Vn

where n is the number of simulations,

i _D2 (Y) (,’,) _ 2’]"p 1_1
=~/ and C = <1/p Tmax <D2 (Y),nv ™2 Dp(Y)).

If we assume that the option parameters are o,, = 0.3 and 7' = 1 and that
n > 10%, then the estimate in equation (11) and some calculations give

Ce

1

max (D5 (V), n#™ 7 Dy(Y)) < (5T —1)%, 4<p<T0.
Thus, if n > 10* then
O < 22 (R _1)2, 4 <p<10.
Since the estimate in equation (11) also yields that

C. < i(e"'gnT - 1)

™
[N
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upper bound for the relative error (%)

Figure 2: An upper bound for the relative error in the Monte Carlo estimation
of the quantity E%[Y] as a function of the number of simulations n. The option
parameters are o,, = 0.3 and T = 1. The value of n varies between 10* and 10°.

it would be of interest to compare the numbers

Be = \% and 9= min o 621% (12)
as functions of € > 0. The reason that the minimum is taken over the set
{4,5,...,10} is simply that we have computed the value of r), for these num-
bers, see Table 1 in Section 2. Of course, one could include more numbers
in the set {4,5,...,10} and thereby obtain a smaller value of .. However,
this will not radically change the value of 7., at least not for interesting
values of €, say between 0.05% and 5%.

Figure 1 shows the values of 8. and 7, for 0.05% < € < 5%. As the figure
shows, if € is approximately greater than 2% then £, < ~y,, but if € is smaller
than 2% then B¢ > .. Moreover, if € is close to 0 then ~y, is considerably
much smaller than S,.

The next example, which is presented in Figure 2, describes the number
of simulations that is required to obtain a certain accuracy of the Monte
Carlo estimation of the quantity E?[Y]. According to the previous discus-
sion we may bound the upper endpoint of the confidence interval of degree
100(1 — €)% for the relative error by

min(ﬁe,')’e) (egfnT _ 1)%
Vn
In the example we have chosen the option parameters to be ¢ = 0.3 and

T =1, the same as in the previous example. Figure 2 shows that the relative
error is smaller than 1% if n > 3 % 10° for any € > 0.1%.
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4.2 Put Options

Much of the discussion in Subsection 4.1 is also relevant for put options. It
can be proved that the function

| max( K — 65, 0)],
[ max(K — 650, 0)||;”

0 >0,

is non-decreasing if K > 0. Moreover, every Fx € Pk can be written
Fx =K —min(F,K), Fe€L.

Thus, to price a derivative with the payoff Fg(S) it suffices to estimate the
expectation of

Y = min(F(95), K).

Since min(F, K) € £ we now once again get the same estimate of D, (Y) as
in equation (11). Thus, the example given in section 4.1 is relevant for put
options as well.

4.3 Options with a Floating Strike Price

There is a large class of options that are not included in neither Cx nor Py,
namely options with a floating strike price. That is, the fixed strike price
K is replaced by F#)(S), where F(®) is defined as in Subsection 3.1. This
subsection discusses a method to estimate the relative error in the Monte
Carlo pricing of these options, a method which has certain similarities with
the use of control variates in the Monte Carlo method, see e.g. [7].

Firstly, consider the payoff functions

X = max (F(S) — FW(S),0) or X =max (F®(S)—F(S),0),

where F' € L. For instance, if each measure yj;, j = 1,... ,m, is a positive
linear combination of Dirac measures on [0, T, then EQ[F(#)(S)] can easily
be evaluated analytically and therefore it suffices to estimate the expectation
of

Y = max (F(S), F¥(S)) or Y =min(F(S), F¥W(S)).

As previously, the value of D,(Y') can be bounded as in equation (11).

4.4 A Remark on Barrier Options

Another large class of options which is not included in Cx or Pk are con-
tracts which have a discontinuous payoff, that is, the payoff X = F(S)
where F' ¢ C([0,T];RT). Most barrier options are examples of such con-
tracts. This subsection describes a method which gives an estimate of the
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relative error for some barrier options, namely those barrier options which
have a bounded payoff.
Consider for instance an up-and-out call with payoff

X = max(Sy — K, 0)1{T>T}
where K > 0, S; is defined as in subsection 3.3 and
T=inf{t € M|S; > H(t)},

where M C [0,T], T € M, and H : M — (0,00). For simplicity, below M is
finite. The range of the random variable X is obviously bounded by

Moreover, one can easily find a lower bound ayy;, for @ = E9[X], namely
(67 Z EQ [max(ST — K, 0)1{maxogt§T St <Hmin }] = Oympin

where Hin, = mingeps H(t). Note that am, can be evaluated analytically
by using well-known formulas, see e.g. Rich [16]. Thus, Theorem 3 implies

the error estimate
c
< >1—
< (R” Sm) T

where

oh) < In(2/€e) H(T) — K.

6 —_
2 Amin

Whether or not this is a good estimate depends mainly on the value of ayr.
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