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Abstract

We consider Glauber dynamics at zero temperature for the ferromagnetic Ising
model on the usual random graph model on N vertices, with on average v edges
incident to each vertex, in the limit as N — oco. Based on numerical simulations,
Svenson [1] reported that the dynamics fails to reach a global energy minimum for
a range of values of 7. The present paper provides a mathematically rigorous proof
that this failure to find the global minimum in fact happens for all v > 0. A lower
bound on the residual energy is also given.
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1 Introduction

To find the global minimum in a complicated energy landscape using a local search
algorithm may be a difficult task. One example where this is well-known is spin glasses,
whose ground states are hard to find or even to characterize. Perhaps surprisingly, local
search algorithms based on single spin flips (i.e., Glauber dynamics) may also fail to
find the global minumum in a model as simple the purely ferromagnetic Ising model. In
particular, this may happen when the search is carried out at zero temperature, meaning
that moves that increase the energy are not merely discouraged, but even disallowed.
Svenson [1] studied this phenomenon for the Ising model on a random graph, and the
purpose of this note is to shed some further light on his findings. For other interesting
aspects of zero-temperature dynamics in the ferromagnetic Ising model, see, e.g., Camia,
De Santis and Newman [2].

To define our context, we recall the usual models of random graphs. We start with a
complete graph on N vertices, with one edge linking each of the (]; ) pairs of vertices; let
us denote this graph by Gy = (Vy, En). Following the terminology of Janson, Luczak
and Rucinski [3], we define binomial and uniform random graphs as follows.

e The binomial random graph, denoted Gy, (N, p), with p € [0, 1], is the random
graph obtained from Gy by removing each edge with probability (1 — p), thus
keeping it with probability p, and doing this independently for each edge.
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¢ The uniform random graph, denoted Guit(N, M), with M € {0,...,(5)}, is
the graph obtained by considering all

@

possible subgraphs of G with the property of containing all N vertices and
exactly M edges, and picking one of these subgraphs at random, i.e., according to
uniform distribution.

These two models are closely related — a fact that we will exploit later. The most
interesting way to scale the parameters p and M as N — oo is to fix a v > 0 and to let
p= x7and M = 72ﬂ, respectively in the two models. This keeps the expected number
of retained edges incident to a given vertex constant equal to -y in both models. One
reason to use this sort of scaling is that a phase transition takes place at v = 1, in that
the probability of having a “giant” connected component, containing a nonvanishing
fraction of the vertices as N — o0, is 0 if y < 1 and 1 if v > 1. See [3] for this and
much more precise information on this phase transition.

For the uniform random graph with such scaling, we need to take care of the annoying
detail that % is not always an integer. To keep things well-defined in this case too, we
set Gunir (NN, 72ﬂ) to be simply Gunir(NN, L72ﬂj), i.e., we drop the noninteger part of %ﬁ

The ferromegnetic Ising model is a certain correlated assignment of the values
+1 (spin up) and —1 (spin down) to the vertices of a graph G = (V, E), in a way that
favors configurations whith a lot of agreement between neighboring vertices. Zero-
temperature dynamics for the ferromagnetic Ising model on G is a discrete-time
{+1, —1}V-valued Markov chain with transition mechanism as follows: At each integer
time, a vertex v € V is chosen at random (uniformly), and then the spin at this vertex
is flipped (changed from +1 to —1 or vice versa) if and only if such a flip does not
cause the spin at v to be aligned with strictly fewer vertices than before. (This sort of
dynamics may also be defined in continuous time; it will be easy to see that our results
below go through irrespectively of whether time is discrete and continuous.)

The energy of a spin configuration ¢ € {+1,—1}" simply counts the number of
edges in the graph whose endvertices take opposite spin values. Following [1], we shall
normalize the energy by the number |V| of vertices, and therefore define the energy D
of a spin configuration ¢ € {+1,—1}" as

D =v| ' Y LS (1)
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Clearly, the energy is decreasing as a function of time, under zero-temperature dynamics.
What Svenson [1] did was to study in more detail how the energy behaves starting from
a random spin configuration on a random graph chosen according to Gynis (NN, 72ﬂ) By a
random spin configuration, we here mean that the initial spin at each vertex is +1 or —1
with probability % each, independently for each vertex. In particular, does the energy
reach its global minimum D = 07 Based on numerical simulations, Svenson concluded
that for large N, the answer to this question seems to depend on the value of v. More
precisely, he observed that for small or large v, the global minimum is reached, while
for a range of intermediate values, the dynamics fails to find this minimum. It turns
out that this apparent qualitative dependence on =y is just a consequence of N not being



sufficiently large in the simulations. In one of our main results (Theorem 1.2 below), we
shall show, with mathematical rigor, that, in the limit as N — oo, the energy D fails
to approach 0 for any nonzero value of ~.

Write D, for the energy at time ¢ of the zero-temperature dynamics. Since Dy is
decreasing and bounded, it has a well-defined limit as ¢ — 0co; we denote this limit by
Dy,. Furthermore, when considering a sequence of graphs indexed by their number N
of vertices, we write DS,éV ) for the limiting energy as ¢ — oo in the graph with N vertices.
Our main results are as follows.

Theorem 1.1 Fizy > 0, and pick, for each positive integer N, a random graph accord-
ing to Gpin(N, ﬁ), and run zero-temperature dynamics starting from a random spin
configuration, chosen by giving each vertex independently spin +1 or —1 with probability
% each. Then, for any € > 0,

5_,—67
lim P (DM >2° — ) =1, 2
N oo ( © 756 © @)
Theorem 1.2 Fizy > 0, and pick, for each positive integer N, a random graph accord-
ing to Gynit(N, 72ﬂ) , and run zero-temperature dynamics starting from a random spin
configuration, chosen by giving each vertex independently spin +1 or —1 with probability
% each. Then, for any € > 0,

5,—67
lim P [ D) ye 1.
N oo ( o' o5 €

Neither of these results are sharp: the lower bound % on the limiting energy can be
improved in both theorems, by more careful considerations along the lines of the proofs
presented here. We conjecture that the limiting energy is asymptotically nonrandom as
N — o0, in the sense that there exists a deterministic function f(-y) such that for any
e > 0 we have

lim P(f(7) —e < DY) < f(3) +¢) =1

N—oo

in both random graph models Gpi, and Gypir. To actually compute f(y) seems like a
complicated combinatorial problem.

The remaining sections are organized as follows. In Section 2 we treat the case
Ghin of binomial random graphs — which is slighly easier to handle compared to Gynif
due to the independence between different edges — and arrive at a proof of Theorem
1.1. Then, in Section 3, we show how this result can be carried over to the case of
uniform random graphs, thus proving Theorem 1.2. Finally, in Section 4, we indicate
some generalizations of these results that follow from easy modifications of our proofs.

2 The binomial case

To see that it is indeed possible for the zero-temperature dynamics to get stuck in a
configuration whose energy is nonzero, consider the graph on 6 vertices in Figure 1. If
we run zero-temperature dynamics on this graph, and the spin configuration at some
time 7' is as in the figure, then that spin configurations will remain for all ¢ > T, so
that (using the defining formula (1)) we get Doo = Dy = ¢.
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Figure 1: An example of graph G = (V, E) with a spin configuration ¢ € {—1,1}" that
is stuck despite the energy being nonzero. Any change of a single spin variable will
result in a configuration with strictly larger energy. The same example appeared in [1,
Fig. 2].

The idea of our proof is to show that for large N, the random graph Gyin (N, 757)
contains (with probability close to 1) an abundance of connected components shaped as
the graph in Figure 1, and that a substantial fraction of these start off in the spin con-
figuration indicated in the figure. Each of those connected components will contribute a
small share to the ﬁlgal energy Dc(,év ), and these contributions will (asymptotically) add

up to the quantity % 265_667 in (2).

The key lemma is the following Law of Large Numbers-type result for certain con-
nected components in the random graph Gyin (N, 527). For an edge e € Ey, define the
random variable H, to be 1 if, in the random graph, e is the “center bar” (i.e., the hori-
zontal bar in the letter “H”) of a connected component that contains exactly 6 vertices
and has the H-shaped topology of the graph in Figure 1. Also let H =} ,.p, He. In
other words, H is the number of connected components in the random graph that have

6 vertices and the topology in Figure 1. As with the energy, we write HéN) and H(V)
when the graph is the N:th one in a sequence indexed by N.

Lemma 2.1 Fiz v > 0, and pick a random graph according to Gyin(N, w5) for each
N. For any € > 0, we have

lim P (1 56_67—8<ﬂ<l S 4l =1
N—o0 87 N 87 o

Proof: Let us begin by checking that the expected value E [#] tends to %’756_67
as N — oo. For an edge e € Ex to form the horizontal bar in an H-shaped connected
(N72)2(N73) X (N74)2(N75) different ways to choose
6(N—6)+10

component on 5 vertices, there are
the other four edges, and for each such choice we have probability p3(1 — p)
that all five edges but none of their neighboring edges are present. Hence

(N =2)(N =3)(N —4)(N —5) 5

E[#{")] = . p(1—p)oN 2 (3)

and by summing over all () edges in Gy, we get

E [H(N)] _ N(N - 1)(N — 2)(1\/;;— NV )N — 5)p5(1 _p)6N726
N(N —1)(N — 2)(N — 3)(N — 4)(N —5) v 6N—26
- 8(N —1)5 7 <1_N—1) '
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Using also the observation that

y 6N —26 .

) Y g 4

N (1 N— 1) c @
we obtain -

: H _ 1,5 —6v

N B [T] =g 5)

2

The idea is now to establish that the variance Var [H](\I,V)] =E [(# — [#]) ]

tends to 0 as N — oo. Once that is done, Chebyshev’s inequality yields

(N) (N) 4Var [
P(H__E[H_ >g) _ Avar [45]

N N 3 —0as N — 0. (6)

For any § > 0, we can then use (5) and (6) to deduce that for all sufficiently large N
we have

HWN) £
Bl | — 1 5,67 hd
‘ N | gY'e < 5
and N [
H H €
_ z 1—
P (‘ N E N < 2) > )
so that -
H
P <‘T—%’)’56_67 <8) >1-96.
Sending § — 0 then proves the lemma.
It remains to show that
HW)
Nli_r)nooVar[ N ] =0. (7)

To this end, we first calculate E HéN)HJ(cN)] for e, f € Eg. Similar considerations as
those leading to (3) yield

(N—2)(N—3L(N—4)(N_5)p5(1 — p)SN—26 ife=f

E[HMHM] =< 0 if e ~ f
(N*4)(N*12)"-(N*11)p10(1 _ p)12(N712)+56

otherwise

where e ~ f means that e and f share one vertex. Hence

E [(H(N))Q] -y Y E [HéN)H](cN)] _
e€Eqg feEq
_ NN-1)---(N - 5)]05(1 )N

5 N(N_ 1)(N_11) 10(1_p)12N—88
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so that

Var [H(N)] —E [(H(M)z] _ (E [H(N)D2 _

— 8 ) p'(1 _p)12N—52
1 N—-6)(N-7)---(N-11 _ N(N-1)---(N-5
x(p5(1_p)6N_26+( MENESLESD S GRS B ))
_ N(N_l)“‘(N_5) 10 _ v \12N-52
- 8(N —1)10 (1= 7=)
N —-1)° N-6)(N-7)---(N-11 N(N-1)---(N-5
x<75(1<_ﬁ;6N_26+( V=D N 1D g yose - MOV =)o ))_

By expanding the last two polynomials in N, and using (4) again, we get that

—36
1012y [(N —1)5 (1— L_) -1

(M1 . € ( N-1 6 5
Var [HM)] = N e . N® 4+ O(N?)

_ ((1 ) - 1) O(N?) + O(N)

—36
as N — oo. Note also that limy_, ((1 - —'L) - 1) =0, so that

N-1
~ Var [H (N )]
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But
g Var [HO]
Var = ,
N N2

so (8) immediately implies (7), and the proof is complete. O

Now that we are equipped with Lemma 2.1, the proof of Theorem 1.1 is quite simple.

Proof of Theorem 1.1: Consider the initial random assignment of spins to the random
graph. Each connected component of the type studied in Lemma 2.1 has probability
276 of getting precisely the spin configuration in Figure 1, and probability 276 of get-
ting of getting the “opposite” spin configuration, obtained by flipping all six spins.
Each of these two configurations has a nonzero energy and is a fixed-point of the zero-
temperature dynamics. The probabilites of the two configurations add up to 275. The
usual Law of Large Numbers therefore ensures that, given £ > 0 and sufficiently many
such H-shaped components, the probability that at least a fraction 27 — ¢ of them start
off in such a spin configuration can be made arbitrarily close to 1. If we write H®M)
for the number of such connected components receiving the desired kind of initial spin
configuration, then we can combine Lemma 2.1 with the usual Law of Large Numbers
to conclude that
HN)  g©)
< e) =1,

< e and ‘———

HW)
lim P (| — LySe 67
s < 87 ¢ N 32N

N—oo N




for given € > 0. Hence,

TN 567
lim P (‘ _Te

33 —
<3—;)_1.

N—oo N 256
Sice € was arbitrary we may replace 33%5 by € in the last expression, so that in particular
we have AW et
A}iinoop< N~ 256 _5>:1'
But % > Dc(,év ), so the theorem follows. O

3 The uniform case

In this section we carry over our analysis from the case of binomial random graphs to
that of uniform random graphs. The key result that we need to obtain is the following
uniform random graph analogue of Lemma 2.1.

Lemma 3.1 Fiz v > 0, and pick a random graph according to Gypi(N, %) for each
N. For any € > 0, we have

lim P [ 1~5c—67 HM ) —6y _
Nl_l)noo gYe —e<T<§ve +e|=1.
Once this lemma has been established, we get a proof of Theorem 1.2 by copying the
proof of Theorem 1.1 word by word, with the sole exception of referring to Lemma 3.1
rather than to Lemma 2.1.

The precise connection between binomial and uniform random graphs is as follows.
The distribution of a binomial random graph Gy, (N, p) conditional on having exactly M
edges present is (regardless of p), exactly that of the uniform random graph Gyt (N, M).
This property is immediate from the invariance of both distributions under permutation
of the edge set Ey.

Another obvious property of the uniform random graph model, that will be useful
in the proof of Lemma 3.1, is the following. If we pick a random graph according to
Gunit (N, M), and then add one edge at random, picked uniformly from the set of absent
edges, then the resulting graph is distributed according to Gynir(N, M +1). Likewise, we
can go from Gyt (N, M +1) to Gynit(IN, M) by deleting one of the present edges, chosen
uniformly at random. These insertion and deletion procedures can of course be iterated,
allowing us to go from Guynit(N, M1) to Gunit(N, M) for any M1, My € {0,1,...,(3)}-

Proof of Lemma 3.1: This proof will involve two random graphs Gy, (N, 7) and
Gunit (N, 72ﬂ) We will count the number of H-shaped connected components on six

vertices in each of them, so that the notation H*Y)

risks getting overloaded. We therefore
write Ht(gl) and Hl(livn)c for these counts in the two different graphs.

Start from the binomial random graph Gyin (N, 557), and write Xéﬁ) for the (ran-
dom) number of edges in that graph. By the discussion preceding this proof, we can

then obtian the uniform random graph Gyy;s(N, %) as follows:

o If Xl()f\r? > L%J then delete one edge chosen at random (uniformly), and repeat
until we are left with exactly I_%J edges.

7



o If Xéﬁ? < |_7N | then add one edge chosen at random (uniformly), and repeat until
we have exactly |1~ N edges.

Note that E [Xl()N)] =B g = 72ﬁ Furthermore, by the Law of Large Numbers for
the binomial distribution, we have, for any ¢ > 0, that

X
lim P(‘ﬂ—l <5> ~1,

N—oo N 2
~ N
X -2 <) -1

or in other words

lim P(

N—oxo

This means that the probability of flipping at most Ne edges when going from the
binomial to the uniform random graph as described above, tends to 1 as NV — oo. It is
easy to see that each edge that is turned on or off can affect the number of H-shaped
connected components of the desired kind by at most 2. Hence,

lim P

N—oo

<2Ns) —1.

‘ umf b1n

Dividing by N, and combining this information with Lemma 2.1, we get

(N)

g™ g J25S
A}i_r)nooP <‘—J‘<}“f R}“ < 2¢ and R}n 1756_67 <e|=1
so that
H (N'% 1.5,-6
lim P | |22 242 7 <3| =1.
(- vrev] )
Since € was arbitrary, we can replace 3¢ by ¢, and the lemma is established. O

4 Some additional results

Let us finally point out a couple of easy generalizations of the results obtained in the
previous sections.

1. Svenson [1] reports having observed similar phenomena for zero-temperature dy-
namics for the ferromagnetic Potts model, as for the Ising model. In the Potts
model, there are ¢ > 3 different spin values rather than the two spin values of the
Ising model. If we define energy, analogously to the Ising case, as % times the
number of edges having different spins at its endvertices, then Theorems 1.1 and
1.2 carry over to the Potts case with

67 (g —
hmP<D< ) ve—<q1)_€>:1_
N—oo 8q5

This follows by applying Lemmas 2.1 and 3.1 similarly as in the proof of Theorem
1.1.



2. Write (™) for the number of connected components in the random graph having
7 vertices and the topology indicated in Figure 2. By similar calculations as in the
proofs of Lemmas 2.1 and 3.1, we get a Law of Large Numbers for I(V)| stating
that % is close to %’)’66_77 for large N, both in the binomial and in the uniform
random graph. If the initial spin configuration on such a connected component is
as in Figure 2, where “?” may be either a 4+ or a —, then the three vertices to
the left and the three to the right will stay put forever, while the middle vertex
will keep changing its mind forever — a so-called blinker. For large N, close to a

1

fraction 35 of the connected components with the topology in question will start

in such a spin configuration. Hence, the fraction of blinkers among the N vertices

will, asymptotically for large N, be at least 76;5;77_ This bound, like the ones in

Theorems 1.1 and 1.2, is open to improvement.
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Figure 2: Suppose that we start zero-temperature dynamics on this graph with the
indicated initial spin configuration, where the “?” may be either a 4+ or a —. Then the
three vertices to the left, as well as the three vertices to the right, will keep their spin
values forever, whereas the middle vertex will keep flipping back and forth between a
plus spin and a minus spin indefinitely.
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