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Abstract 

This is the first in a series of three papers studying the economical worth of groundwater 

contaminant sampling in applications of increased complexity. This paper presents the 

theoretical basis for Bayesian data-worth analysis and discusses the non-spatial case with one 

hydraulically isolated cell of uniform and isotropic conditions. The two subsequent papers 

will discuss data worth in two one-dimensional models and in a two-dimensional spatial 

setting. The main contribution of this paper is that it provides a new theory for estimating the 

worth of simultaneous sampling in more than one location, which is an especially important 

aspect in cases of large sampling errors. Data worth depends directly on the prior probability 

of contamination and we compare a case in which this probability is completely known with a 

case in which it is known with given uncertainty. In the latter case, we show that the data 

worth is sensitive with respect to the selected design criteria. 

 

 

Introduction 

Contaminated soil and groundwater is a problem of growing concern in our society and is 

today a major issue in land use planning and management, real estate assessment, and 

property selling. Investigation and remediation of contaminated areas are often associated 

with high costs. As an example, the Swedish Environmental Protection Agency (EPA) 

provides more than the equivalent of $50 million annually of governmental resources to the 

Swedish county authorities for investigation and remediation of contaminated areas where no 

responsible part can be found. Still, the bulk of necessary investments for investigation and 

remediation come from responsible landowners and operators. The Swedish EPA (1999) 
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estimates that there are 22 000 contaminated sites in Sweden, of which approximately 4000 

are in need of remediation. Similar, or even more severe, situations are present throughout 

Europe and North America. 

 

The Polluter Pays Principle, which is the regulatory philosophy in the European Union, puts 

large financial pressure on responsible companies and authorities. The regulatory framework 

is therefore a strong incentive for both the public and private companies for applying cost-

efficient investigation and remediation strategies. In addition, the environmental legislation in 

many countries, e.g. in Sweden, state that the environmental value of remediation must be in 

proportion to the remediation costs in order to provide proper prioritization of resources and 

to achieve sustainable use of land and water.  

 

Due to a combination of complex geological, hydrogeological, and geochemical conditions at 

contaminated sites and high investigation costs, it is usually not possible to obtain complete 

information or characterize a site with a high degree of certainty. Investigations of 

contaminated areas are therefore typically associated with large uncertainties regarding e.g. 

type and extent of contamination and possible future contaminant spreading. These 

uncertainties transform into substantial economical risks in the remediation process. To 

handle these risks properly and to achieve a cost-efficient management of contaminated sites, 

it is therefore of primary importance to design investigation strategies considering both the 

sampling costs and the economical risks associated with making incorrect decisions regarding 

remediation.  
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The number and type of new data in contamination studies are often estimated with respect to 

the potential for reduction of uncertainty. However, in order to be cost-effective the worth of 

new data should be evaluated with respect to the reduction of the risk-cost of making incorrect 

decisions, rather than uncertainty. In a cost-benefit perspective, the worth of sampling 

depends on the sampling cost and the risk-cost reduction it provides with respect to failure of 

successfully solving the specific problem at hand. The risk-cost must then incorporate all 

expected costs for the decision-maker related to improper evaluation of the situation, e.g. 

change of remediation strategy, prolonged clean-up times, restrictions on land-use, and loss of 

environmental values. A tool for achieving cost-effective investigation is Bayesian data-worth 

analysis, evolving from an economical decision analysis framework. Bayesian data-worth 

analysis in hydrogeology has been described by e.g. Freeze et al (1990; 1992), James & 

Freeze (1993) and James & Gorelick (1994). The basic philosophy behind this approach in 

remediation projects is to integrate the cost of sampling, the reduction of the risk-cost of 

failure, and the cost and efficiency of the remedial design in order to find the best sampling 

strategy among a given set of alternative strategies. The data-worth analysis is made 

iteratively according to Figure 1 until no further sampling is considered justifiable.  

 

Our work will be presented in a series of three papers of which this is the first. The main 

purpose is two-fold: (1) to analyze and describe how economical factors, sampling 

uncertainty, and prior assumptions regarding contamination affect cost-efficiency of the 

sampling strategy and (2) to present a spatial statistical model for Bayesian data-worth 

analysis. We focus on the non-spatial aspects of data-worth in the first paper, 1-dimensional 

aspects in the second paper, and 2-dimensional aspects in the third paper. The fist two papers 

in this series are directed at analyzing economical and statistical implications of data-worth 
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analysis in a single cell1 and along a line of several cells. We present conclusions and give 

recommendations regarding a number of strategic decisions to be taken when applying 

Bayesian data-worth analysis. In the third paper we present a 2D spatial statistical data-worth 

model, based on Monte Carlo Markov Chain (MCMC) analysis. To fully understand and 

appreciate the capabilities and limitations of Bayesian data-worth analysis, implications on 

lower dimensionalities need to be studied and evaluated before full 2D and/or 3D applications 

can be made correctly. We believe that the work presented in these three papers provide 

important knowledge for an increased cost-efficiency in projects on investigation and 

remediation of contaminated soil and groundwater. 

 

General description of Bayesian data-worth analysis 

We state that the worth of sampling data can be best evaluated by the use of Bayesian 

decision analysis, which has been applied for contaminated soil and groundwater by several 

authors, e.g. Massmann & Freeze (1987), Marin et al (1989), Freeze et al (1990, 1992), 

Massmann et al (1991) James & Freeze (1993), James & Gorelick (1994), James et al (1996), 

Rosén & Wladis (1998), Wladis et al (1999), Norrman (2001), Back (2001) and Rosén 

(2001). A special application of Bayesian decision analysis is referred to as Bayesian data-

worth analysis, which is described below, primarily based on the works by Freeze et al (1992) 

and James & Freeze (1993). We describe the methodology, assuming a simple case involving 

a decision of whether to remediate or not, that this decision depends on the contaminant levels 

with respect to a defined action level, and that failure occurs if no action is taken when 

contamination occurs. 

                                                

1 A cell is a homogeneous part of the contaminated site 
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Let C denote the event of contamination above a specific action level in a hypothetical cell, 

which is hydraulically isolated, and let Cc denote the complementary event that contamination 

is not present. The probability Pr(C) is then the prior probability of contamination for this cell. 

Typically, Pr(C) is not known with certainty. In early stages, an estimate may therefore be 

based on professional judgment using existing site information and experiences from other 

sites. Given that remediation has to be made if contamination occurs, the prior risk-cost is 

defined as: 

 

)Pr(0 CkR F=  (1) 

 

where kF denotes the monetary consequences of failure. Thus, R0 is the expected cost of no 

action. Let kR denote the remediation cost. Another alternative is to take a sample to see if any 

contaminant is present and to act accordingly. Let D and Dc denote the events that the 

contaminant is detected and not detected, respectively, given that the cell is sampled. Bayes’ 

theorem gives us the pre-posterior probability of failure to remediate, given that no 

contaminant is detected:  

 

)|(Pr)(Pr)|(Pr)(Pr

)|(Pr)(Pr
)|(Pr
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CcDCcDC
+

=   (2) 

 

and the pre-posterior risk-cost is:  

 

)|Pr(1
c

F DCkR =  (3) 
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Let kM denote the sampling cost. The expected risk-cost of taking a sample is: 

 

)Pr(],min[)Pr( 1
c

RR DRkDk +  (4) 

 

since the cell is remediated if contamination is detected, and if contamination is not detected 

the cell is remediated only if the remediation cost is less than the pre-posterior risk-cost. 

Following Freeze et al (1992) we define the data worth as:   

 

)}Pr(],min[)Pr({],min[ 10
c

RRR DRkDkRkW +−=  (5) 

 

Since the quantities involved in the calculation of the worth W typically are known only 

approximately, one may require that W be significantly larger than the sampling cost in order 

to justify sampling. This analysis applies to all cells of the region of interest and the most 

elementary and naive way to proceed would be to say that the cells that should be analyzed 

further are those with W sufficiently larger than the sampling cost. However, such an analysis 

does not take into account the obvious spatial dependence that exists in any remediation site. 

The effects of spatial dependence are further described in the second and third papers in this 

series. Below, we present an analysis of economical and statistical implications on the data-

worth without spatial considerations. 
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The worth of taking additional samples 

Now consider a cell to be investigated with respect to groundwater contamination. Prior to 

analyzing the value of additional samples, we have two alternative options: (1) to remediate 

the cell to the cost of kR; (2) to “do nothing” with a remaining risk-cost of R0=kFPr(C). The 

decision rule is to do nothing if Pr(C) ≤ kR/kF and remediate if Pr(C) > kR/kF. A third 

alternative is to take new samples and act according to the outcome of these (see also Figure 

1). An objective function, Φ(n), is defined for each sampling alternative in which the number 

of new samples is n=1,2…. The objective function of the optimal action is a priori, before 

considering any new samples: 

 

))Pr(,min()0( Ckk FR=Φ  (6) 

 

We will now consider the possibilities of taking one or several imperfect samples with the 

conditional detection probabilities Pr(D|C) (which may be much less than 1) and Pr(D|Cc) 

(which may be considerably larger than 0). Let kM denote the cost of one new sample and 

kM(n) denote the cost of simultaneously taking n new samples. A sample cost function that we 

have used in our work is: 

 

,.....2,1,)( 1 == − nnrknk n
MM  (7) 

 

where r ≤ 1 is a discount factor. The objective function of taking n new samples is: 
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where Dn (n=1, 2, …) is the total number of contaminant detections in n independent samples. 

The conditional probabilities Pr(C|Dn = k) can be shown, by means of Bayes’ rule, to be: 
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where 

 

)|Pr()Pr()|Pr()Pr()Pr( c
n

c
nn CkDCCkDCkD =+===  (9b) 

 

Pr(Dn = k|C) is the binomial probability of getting k successes in n independent trials with 

success probability Pr(D|C) (an analogous statement holds for Pr(Dn = k|Cc)).  

 

The optimal number of samples is:  

 

)(minarg
0

nn
nopt Φ=

≥
 (10) 

 

Note that )( optopt nΦ=Φ  is the expected cost of the optimal action, which is “do nothing” if 

nopt = 0 and Pr(C) < kR/kF, “take nopt samples and act accordingly” if nopt ≥ 1, and “remediate” 

if nopt = 0 and Pr(C) ≥ kR/kF. 
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The “Expected Net Value” (ENV) of taking n samples is: 

 

,....2,1),()0()(ENV =Φ−Φ= nnn  (11) 

 

This is related to the “Expected Value of Sample Information” (EVSI) discussed in Bruce & 

Freeze (1993) and Bruce & Gorelick (1994). It is necessary to include the sample cost in 

ENV, since it depends on the number n of samples, while it is not included in the EVSI, 

which therefore is positive for all values of Pr(C). Another difference of our approach to 

evaluating the worth of additional samples is that Bruce & Freeze (1993) and Bruce & 

Gorelick (1994) discuss the value of taking one additional sample, whereas we are open to the 

possibility that it may be cost-effective to simultaneously take several additional samples.  

 

Obviously, it is cost-effective to take samples only if: 

 

0)(ENVmaxENV
1

>=
≥

n
n

 

 

Examples – ignoring uncertainty in Pr(C) estimates 

Having described the general theory of Bayesian data-worth analysis, we now present two 

hypothetical cases on using the described methodology for evaluation of the data-worth of 

additional samples. In this first presentation of cases, the purpose is to illustrate the 

application of the data-worth assessment approach described in this paper. In the subsequent 
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section, we introduce uncertainty assessment of input variables and investigate the impact of 

this on decisions regarding the design of the sampling program. 

 

Case 1 

Consider a hydraulically isolated cell of uniform and isotropic conditions. The cost functions 

and the conditional detection probabilities, which reflect the errors of the chosen sampling 

technique, are shown in Table 1. As seen from the table, we assume relatively large sampling 

errors. We further assume that the sampling cost is small compared to the remediation cost, 

and that the failure cost is significantly larger than the remediation cost. Note that we used no 

discount factor in the sample cost function, kM, in this example. Using the procedure for 

calculating the optimal number of samples, nopt, described above, the optimum number of 

samples for different Pr(C) was calculated and is shown in Figure 2. Figure 3 shows the prior 

expected cost (Φ(0)) and the optimal cost (Φopt) for different Pr(C). Figure 4 shows the ENV 

for different values of Pr(C). Considering the results shown in these figures, we take Pr(C) = 

kR/kF = 0.4 prior to any samples, since this represents the “maximum decision uncertainty”. 

As can be seen from Figure 2, the optimal number of samples for Pr(C) = 0.4 is 3. The four 

possible outcomes of taking three samples, D3, are shown in Table 2. Given the information 

about the cell and the data-worth analysis, we thus conclude that three additional samples 

represent the most cost-effective sample alternative. The example also illustrates that even if 

contamination was to be detected in one sample (D3 = 1), the decision would still be to “do 

nothing”, due to the large sampling error associated with the sample technique that we have 

chosen. In real world applications the sampling error is often ignored.  
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Case 2 

The conditions of the second hypothetical case, also assuming a cell of uniform and isotropic 

conditions, are shown in Table 3. Also here, we let Pr(C) = kR/kF = 0.4 prior to any samples. 

In this case we estimate the sampling error to be smaller than in the first example and we use 

a discount factor for the kM cost function. Figure 5 shows the prior expected cost (Φ(0)) and 

the optimal cost (Φopt) for different values of Pr(C). Figure 6 shows the ENV for different 

Pr(C). Calculating the optimum number of additional samples yields nopt = 1. The two 

possible outcomes of taking one sample, D1, are shown in Table 4. If the single new sample is 

made the decision would be “do nothing” if contamination was not detected and “remediate” 

if contamination was detected. This example illustrates the situation of an expensive, but also 

reasonably accurate sampling technique, which makes remediation cost-effective when 

contamination is detected in a single sample. 

 

Examples – including uncertainty in P(C) estimates 

In the two hypothetical cases just studied, Pr(C) is taken to equal kR/kF since for this value, the 

expected net value (ENV) is maximal. However, it is typical that one has some idea about the 

true Pr(C), but that the estimate is associated with some uncertainty. An evaluator may 

therefore want to express the estimation as Pr(C) ≈ 0.65 and 0.5 ≤ Pr(C) ≤ 0.8. This 

information may be turned into a prior distribution of Pr(C). The most obvious prior is the 

triangular distribution with mode 0.65 and support (0.5, 0.8). This prior distribution gives 

mass 1 to the interval (0.5, 0.8). Thus, it does not account for the fact that the expert 

specification 0.5 ≤ Pr(C) ≤ 0.8 might be wrong.  
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A more realistic prior is therefore the beta distribution, having density function: 

 

11 )1(
)()(

)(
)( −− −

ΓΓ
+Γ= βα θθ

βα
βαθf  (12) 

 

for 0 < θ < 1 (in order to avoid a cumbersome notation, we now write θ instead of Pr(C)). The 

parameters α and β concretize the expert opinion and Γ denotes the Euler gamma function. A 

beta prior allows for wrong expert estimates. For example, note that Pr{θ < 0.5} = Pr{θ > 

0.8} = 0.05 if α = 16.4, β =8.6. This beta distribution is plotted in Figure 7. 

 

This is one strategy to concretize and quantify the reliability of the experts. Another strategy 

would be to specify the uncertainty using an estimate of the most likely value, θ , and a 

number n of equivalent samples representing the reliability of this estimate. The appropriate 

beta distribution then is the one with 1)1(,1 +−=+= θβθα nn . This follows from the well-

known fact that the beta distribution is conjugate to the binomial (Bickel & Doksum, 1977). 

 

Providing θ (=Pr(C)) with a beta prior forces us to redefine nopt. Firstly, we specify a design 

criterion such as the expected value or a suitable percentile in the distribution of Φ(n) for 

various number of samples n. Secondly, if the expected value is taken, then  

 

)]([minarg
0

nEn
nopt Φ=

≥
 

 

Similarly, if the 100pth percentile is chosen, then 
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pGn n
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−
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=  

 

where )(1 pGn
−  denotes the percentile function of the distribution function 

})(Pr{)( xnxGn ≤Φ= . We now return to the two hypothetical cases. 

 

Case 1 

The conditions for this case are identical to the first case in the previous section (see Table 1), 

except that we now introduce uncertainty in the θ (=Pr(C)) estimate. Let us assume that the 

experts agree on the following: θ ≈ 0.45 and the uncertainty (or reliability) of this statement is 

equivalent to the one achieved after taking 8 independent samples. An appropriate 

parameterization of the prior beta distribution is then α = 4.6 and β = 5.4. This beta 

distribution is plotted in Figure 8. From Figure 2 it is seen that the optimal number of samples 

is nopt = 3 if θ = 0.45. However, if the uncertainty is taken into account, the optimal number of 

samples is 2 if the design criterion is the expected value, i.e. )]([minarg
0

nEn
nopt Φ=

≥
. In Figure 

9 the density of Φ(2) is plotted. Notice that it has a discrete component: Pr{Φ(2) < 11} = 

0.982 and Pr{Φ(2) = 11} = 0.018. Note also that if the uncertainty in θ instead corresponds to 

a larger number of independent samples, e.g. 50, then nopt =3 if the design criterion is the 

expected value.  

 

Case 2 

In the second hypothetical case, nopt = 1 for 0.157 ≤ Pr(C) ≤ 0.627, 2 for 0.628 ≤ Pr(C) ≤ 

0.657 and 0 otherwise. This means that if it is estimated that θ ≈ 0.4, then nopt = 1 also if any 
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reasonable uncertainty is taken into account. The situation changes, however, and becomes 

similar to what we observed in Case 1, if θ ≈ 0.62.  

 

Assume that the expert opinion is 0.50 ≤ θ ≤ 0.75. Assume also that the experts are regarded 

as highly qualified and reliable by the responsible decision-maker. A quantification of the 

reliability of the expert opinions may therefore be expressed as: Pr{θ < 0.5} = Pr{θ > 0.75} = 

0.05. This holds for α = 24.82 and β = 14.65. In this case minn E[Φ(n)] is obtained for both n 

= 1 and n = 2 if the design criterion is expectation. This holds true also if the median is 

chosen. However, if the design criterion is the 75th percentile, nopt = 2.  

 

The outcome would differ if the decision-maker would be less willing to depend on the expert 

opinion. If the reliability of the expert opinion was instead expressed as: Pr{θ < 0.5} = Pr{θ > 

0.75} = 0.3, this would correspond to α = 2.70 and β = 1.71. In this case, the optimal number 

of samples would be 1 if the design criterion is expectation, 2 if the median is the design 

criterion and 1 if the criterion is the 75th percentile. 

 

Conclusions 

The following conclusions were made with respect to the non-spatial case of Bayesian data-

worth analysis:  

 

1. Given the expected costs for sampling, remediation and failure, the probability of 

contamination, and the sample error, the optimal number of samples to be taken 

simultaneously in the next investigation phase can be calculated.  
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2. Bayesian data-worth analysis is directed at minimizing the sum of investment and risk 

cost. The sampling cost is compared to the reduction of the economical risk of failing to 

meet set up management goals of the site, implying that the risk reduction should exceed 

the sampling cost in order to make sampling cost-effective. This is in contrast to more 

commonly applied variance reduction approaches, which are directed at reaching a level 

of acceptable uncertainty, rather than looking at the cost-efficiency of the sampling 

program. 

3. Bayesian data-worth analysis provides a possibility for formal incorporation of the 

sampling error in the valuation of the cost-efficiency of the sampling program. As shown 

in the 1st hypothetical case, that even if contamination is detected remediation may not be 

economically motivated if the sampling error is large. 

4. Different results can be obtained, depending on whether uncertainty in the prior estimate 

of the probability of contamination is included or not.  

5. Different results can be obtained, depending on the strategy for handling the uncertainty 

of the prior estimation of the probability of contamination. If the uncertainty of the prior 

estimate is taken into account, the decision is sensitive to the selected design criteria, e.g. 

expected value, median or another percentile. We present an approach to model this type 

of uncertainty using a beta-distribution. Also remediation costs and failure costs may be 

associated with substantial uncertainties, which may have large impact on the final 

decision. We do not present specific approaches for handling these uncertainties, but 

recommend that they are included in the same manner as the contamination uncertainty.  

 

Finally, the Bayesian data-worth analysis approach presented in this paper incorporates the 

possibility of taking several new samples simultaneously, and therefore differs to some extent 
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to the previous works by e.g. James & Freeze (1993) and James & Gorelick (1994). We also 

illustrate the importance for handling uncertainties in the estimates of the key variables of the 

data-worth analysis. We do this without the complexities of spatial statistical models. This 

will be further explored in the 2nd and 3rd papers in this series.  
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Figure 1. Schematic description of Bayesian data-worth analysis (after James et al, 1996). 
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Figure 2. Plot of nopt vs Pr(C) for the 1st hypothetical case.  
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Figure 3. Plot of Φ(0) (dashed) and Φopt vs Pr(C) for the 1st hypothetical case. 

 

 

 



 21

 

 

0.2 0.4 0.6 0.8 1
PHCL

2

4

6

8

10

FH0L,Fopt

 

Figure 4. Plot of Φ(0) (dashed) and Φopt vs Pr(C) for the 2nd hypothetical case. 
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Figure 5. Plot of ENV vs Pr(C) for the 1st hypothetical case.  
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Figure 6. Plot of ENV vs Pr(C) for the 2nd hypothetical case.  
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Figure 7. The beta(16.4, 8.6) density function. 
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Figure 8. The beta(4.6, 5.4) density function. 
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Figure 9. The distribution of Φ(2) for the 1st hypothetical case for a beta(4.6, 5.4) prior on θ = 
Pr(C). 
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Table 1. Costs and probabilities for 1st hypothetical case. 

kM(n) kR kF Pr(D|C) Pr(D|Cc) 

0.5n  10  25  0.67 0.25 

 

 

Table 2. The four possible outcomes of taking three additional samples, D3.  

k Pr(D3 = k) Pr(C|D3 = k) kFPr(C|D3 = k) Decision 

0 0.27 0.06 1.4 “do nothing” 

1 0.34 0.26 6.5 “do nothing” 

2 0.26 0.68 17.0 “remediate” 

3 0.13 0.93 23.2 “remediate” 

 

 

Table 3. Costs and probabilities for 2nd hypothetical case. 

kM(n) kR kF Pr(D|C) Pr(D|Cc) 

2n0.8n-1  10  25  0.85 0 

 

 

Table 4. The two possible outcomes of taking one additional sample, D1.  

k Pr(D1 = k) Pr(C|D1 = k) kFPr(C|D1 = k) Decision 

0 0.66 0.09 2.3 “do nothing” 

1 0.34 1.00 25.0 “remediate” 

 


