RESIDUE CURRENTS OF
CAUCHY-FANTAPPIE-LERAY TYPE AND IDEALS OF
HOLOMORPHIC FUNCTIONS

MATS ANDERSSON

ABSTRACT. We define a residue current of a holomorphic map-
ping, or more generally a holomorphic section to a holomorphic
vector bundle, by means of Cauchy-Fantappie-Leray type formu-
las, and prove that a holomorphic function that annihilates this
current belongs to the corresponding ideal locally. We also prove
that the residue current coincides with the Coleff-Herrera current
in the case of a complete intersection. The construction is of global
nature and we also provide some geometric applications.

1. INTRODUCTION

Let f = (f1,--., fm) be a holomorphic mapping at 0 € C*. If f is
a complete intersection it is wellknown that a holomorphic function ¢
belongs to the ideal (f) if an only if R/ = 0, where R/ is the Coleff-
Herrera residue current associated to f. For more general f no such
characterization of the ideal (f) is known. In this paper we introduce a
current R/ for an arbitrary f which coincides with the Coleff-Herrera
current when f is a complete intersection, and such that ¢R/ = 0
implies that ¢ belongs to the ideal.

It turns out to be natural to adopt an invariant point of view so
we assume that f is a holomorphic section to the dual bundle E* of a
holomorphic m-bundle £ — X over a complex n-manifold X. We then
have mappings on the exterior algebra over E,

6;: ATTE — A'E,

where 07 is contraction (interior multiplication) with 27if. In partic-

ular, if eq, ..., e, is a local (holomorphic) frame for E, and e], ..., e},

is the dual frame, then f = ) fjei, and if ¢ = ) 1;e; is a section to
E = A'E, then
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Thus the holomorphic function ¢ belongs the the ideal (fy,..., fm)
locally, if and only of there is a holomorphic ¢ such that dy¢ = ¢.

To motivate the definition of the new currents let us recall briefly
how this kind of division problems can be solved (when possible) by the
Koszul complex. The first step is to start looking for smooth solutions
or current solutions. To this end we introduce the spaces (X, A‘E)
of smooth sections to the exterior algebra of £* @ T, which are (0, k)-
forms with values in A’E, and the corresponding spaces Dj , (X, A‘E)
of currents. Thus an element ¢ € & (X, A’E) can be written

¢:Z¢1/\€I,

|1|=¢

where ¢ are (0, k)-forms, and the prime denotes summation over in-
creasing multiindices. Notice that §; extends to mappings & (X, A‘E) —
Eox(X,A1E) and ’D{),k(X, AE) — D{),k(X, A“IE). Outside

Y = f71(0)
one can clearly find a smooth solution to d;u; o = ¢. Moreover, since
0y and O anticommute we then have that §;0u, o = —00y = —0¢ = 0
so, again at least outside Y, we can solve dus 1 = Juy 9. Proceeding in
this way we can successively find uy € &y 1(X, A*E) such that
(1.1) Spurto =@, Opupiip = Ougp—1, k> 1.

Suppose now that all uy ;i have current extensions across Y such that
the equations (1.1) still hold. In particular this means that Ot m—1 = 0
and if, in addition, we assume that X is Stein, then by successively
solving (%k,k,l = Up g1+ 0fVk+14, We finally arrive at the holomorphic
solution ¢ = u1 0+ d;v;1 to ;9 = ¢. Thus, if ¢ is not in the ideal (f)
then some of the equations in (1.1) cannot hold across Y’; this means
that there are residues.

It is convenient to introduce some further notation. Since 0 and d;
anticommute, L5 (X, E) = Df (X, A *E) is a double complex and the
corresponding total complex is
(1.2) iy £rY(X, E) L £1(X, B)
where

L'(X,E)= P L£*(X,E) @DOW A'E)
L+k=r

and V; = d; — 9. It is readily verified that the exterior product A
induces a mapping

LT(X,E) x L°(X,E) = LT(X,E)
and that V is an antiderivation, i.e.,
V(gAh)=VigANh+(-1)"gAVsh
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if g€ L7(X, E) and h € L£*(X, E). In particular, a function ¢ defines
an element in £°(X, E), and the system of equations (1.1) means that
v e LYX,F) and

(1.3) Vfu = ¢

If u is an element in £ (X, E), let uyx_1 denote the component with
values in A*E. Recall that A™F is a line bundle over X, the so-called
determinant bundle det E. Thus t, ,,1 is a det E-valued (0, m — 1)-
form (current).

Notice that if Vju = 1in X \Y, then V;(¢u) = ¢ if ¢ is holomorphic.
In order to find a solution to Vju = 1 outside Y, let us assume that F
is equipped with some hermitean metric | - |, and let s be the section
to E with pointwise minimal norm such that d;s = |f|?. If the metric
is given by the hermitean matrix o;; in the local frame e, i.e.,

E
€1 = Z%‘/‘cfjgk,
ik
for sections £ = " ¢;e; to £, then

(14) s = ZSjEj = %(Zojkfk)ej.

k

Since dys = |f|* is nonvanishing outside Y,

s s = SsA(0) = sA(0s)
R R e R b Dy

is welldefined (observe that s has even degree) and Vju = 1 there.

If E =C™ x X with the trivial metric, €} is the trivial frame, and
f =23 f;€}, then s = Y 7" fe;/2mi and we get the Bochner-Martinelli

form _ o o
LS e A (S TF A )
=y

in f. The term with £ = m corresponds to the classical Bochner-
Martinelli form; the full Bochner-Martinelli (or more generally Cauchy-
Fantappie-Leray) form was introduced in [1] in order to construct inte-
gral formulas with weight factors in a convenient way. In the noncom-
plete intersection case not only the top degree term wu,,,, 1 but also
lower order terms give rise to residues as we will see.

Observe that if Re A > m, then the forms |f|**u and 9| f|** A u are
(locally) bounded and hence define currents on X. Our basic result
states that the smooth form v has a current extension across Y and
provides the residue current R/.

Theorem 1.1. Let f be a (locally nontrivial) holomorphic section to
E* — X and let Y = {f = 0}. The forms |f|**u and O|f|** A u
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have analytic continuations as currents to Re X > —e¢, and if U and Rf
denote the values at A = 0, then U s a current extension of u and

(1.6) VU=1-R/,
where RY has support on'Y ; moreover,

F — pf f
R = Rp,p+ +Rq,q’

where R;:j € Dy ;(X, NE), p= codim Y and ¢ = min(m,n).

If f is regular, then R/ = R/  has measure coefficients, cf., Ex-
ample 4, and hence hR/ = 0 if h is any (continuous) function that
vanishes on Y. In the general case we have
Theorem 1.2. If h is a holomorphic function that vanishes on'Y', then
hR/ = 0. Moreover, if in addition |h| < C|f|*, then hR,’;,c = 0.

For degree reasons we thus have: if h € O(X,AYE) and |h| <
C|f|min(mm=v) Jocally, then h A Rf = 0.

As intended, these theorems lead to results about ideals. To begin
with we have

Corollary 1.3. Assume that X is a Stein manifold, ¢ € O(X) and
¢R/ = 0. Then ¢ belongs to the ideal Iy, i.e., 6;¢ = ¢ has a holomor-
phic solution.

Proof. Since
Vi(pU)=Vip AU+ ¢V,;U = ¢(1 — RT) = ¢,

thus Vyw = ¢ has a current solution w, and therefore a holomorphic
solution 1), as in the introduction, cf., also (3.1). O

Combining Theorem 1.2 and Corollary 1.3 we get the following clas-
sical theorem due to Briancon and Skoda [6]: If f is an arbitrary holo-
morphic mapping, ¢ is holomorphic, and

(1.7) ¢l < CIf],

then ¢™n(™n) belongs (locally) to the ideal I;. If f is a complete
intersection, then R/ = an’m and hence V R/ = 0 means that §;R/ =
0. It follows that ¢ belongs to I; if and only if ¢RI = 0; this is the
Passare-Dickenstein-Sessa theorem, [7] and [11]. In the non-complete
intersection case, in general ¢ R/ = 0 is not a necessary condition to
belong to the ideal, see Example 2.

To formulate slightly more general statements we consider the com-
plex

(1.8) 0+ OX) <L O(X, E) <& O(X,A%E) <L ...

and its corresponding homology groups H,(O(X, A*E)).
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Theorem 1.4. Let X be a Stein manifold and let f be a (nontrivial)
holomorphic section to E* — X. If ¢ € O(X,A*E) and 6;¢ = 0, then
dpp = ¢ has a holomorphic solution if and only if V yw A R =¢ARS
has a smooth solution w.

Notice that V;R/ = 0. The last condition can be thought of as ¢
being V ;-exact on R’. In particular this holds if ¢ A R/ vanishes.

Proof. If the holomorphic solution ) exists, then we can just take w =
1 since Vi) = d51p. Conversely, if the solution w exists, then

ViUNp+R Aw)=(1—-RHYANp+ R ANV w = ¢,

and arguing as in the introduction, see also Section 3, it follows that
there is a holomorphic solution to dy¢ = ¢. O

For degree reasons we get

Corollary 1.5. If £ > m — p, then H,(O(X,A*E)) = 0. If ¢ €
O(X,A™PE) and ;¢ = 0, then §p1p = ¢ has a holomorphic solution
if and only if oA RT = ¢ A R};p = 0.

Assuming that f is a complete intersection, i.e., p = m, we get back
the Passare-Dickenstein-Sessa theorem. From Theorems 1.2 and 1.4 we
get
Corollary 1.6. Suppose that ¢ € O(X,A*E) and d;¢ = 0. If moreover
|p| < C|f[min(m=tn) then ¢ is exact.

When ¢ = 0 this is (implies) the Briancon-Skoda theorem.

If f is a complete intersection, i.e., p = m, then it follows from
Proposition 2.2 below, that R/ = an,m is independent of the metric
and hence intrinsically defined. In fact, it coincides with the Coleff-
Herrera residue current.

Theorem 1.7. Suppose that f is a complete intersection. Then in any

local holomorphic frame ey, ..., e, to E,

1 -1 =1
1. = O— NA...NI=Ne1A...Nep.
(1.9) Ry o0 T T el e

Here the right hand side denotes the Coleff-Herrera current times
e1 A ...\ ep; it is an immediate consequence that this current defines
an intrinsic det E-valued current. More explicitly, if A is an invertible
holomorphic mapping then

_ 1 1 _ 1 _1
deth)0— A .. NOQ—=0—AN...ANO—.
(deth)o77s A 7

This was proved already in [8].

The local form of Theorem 1.7, and with R/ defined by the trivial
metric (i.e., by the Bochner-Martinelli form), was proved in [13], but we
can supply a more transparent argument. In short, we define currents
V and U AV such that V;V =1 — th, where th is the right hand
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side of (1.9), and V(U AV) =V —U. These two equalities together
then yield the theorem.

In Section 2 we define the currents and prove Theorems 1.1 and 1.2,
and in Section 4 we discuss Coleft-Herrera-Passare currents defined by
analytic continuation and supply a proof of Theorem 1.7. In Section 7
we have collected some examples and applications.

I am grateful to Jan-Erik Bjork and Mikael Passare for valuable
discussions on this subject.
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2. RESIDUES OF CAUCHY-FANTAPPIE-LERAY TYPE

The proof of Theorems 1.1 is based on the possibility to resolve
singularities, i.e., Hironaka’s theorem, and the following simple lemma,
whose proof is obtained, e.g., just by a series of integrations by parts,
see Section 6.

Lemma 2.1. Let v be a strictly positive smooth function in C, 1 a test
function in C, and p a positive integer. Then

\ s /’UA‘S‘Z)‘@U(S)dS/\dS

sp

and J
Ao /a(v*|s|”) Ab(s)

both have meromorphic continuations to the entire plane with poles
at rational points on the negative real axis. At X\ = 0 they are both
independent of v, and the second one is a distribution of v supported at
the origin and they only depends on powers of 0/0s of the test function
. Moreover, if ¥(s) = 3¢(s) or v = d5 A @, then the value of the
second integral at X = 0 is zero.

Proof of Theorem 1.1. Both the definition and the statement is clearly
local and therefore we can assume that the bundle E' is trivial. The
proof relies on the possibility to resolve singularities locally with Hi-
ronaka’s theorem. Given a small enough neighborhood U of a point in
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X we have an n-dimensional complex manifold U and a proper holo-
morphic mapping II: U — U C X such that if Y = II~ (Y) then TI
restricted to U\ Y is biholomorpic, and so that moreover ¥ has normal
crossings in U. This means that locally in U we have that TT* f; = u;u;,
where u; are nonvanishing and j; are monomials in some local coordi-
nates 7; on U. To each normal crossing one can find a further resolution
in a certain toric manifold, following [4] and [13], so that the pullback
of one of the f; divides all the other ones. To simplify notation, let us
assume, somewhat abusively, that already p; divides all the other y;.

Now assume that ¢ is a test form with compact support in a set U
as above. Since II is proper, the support of ¢ = II*¢ can be covered by
a finite number of local coordinate neighborhoods as above. In such
a coordinate neighborhood, cf., (1.4), the pullback II*s is f; times a
smooth form, thus IT*(s A (0s)%1) is iif times a smooth form, and
| f|? = | u1|2v where v is a strictly positive smooth function. (In fact,
if puj = pap; and p' =37 piel then [pf| > 0 since py = 1.) If ReA >m

therefore
s A 85 =1
[1rPuns- Z/m” A

is a finite sum of integrals like

and
(2.1) [,
. s

1

where « is a smooth form and p is a cutoff function from some partition
of unity. Since

= Tjoih . T]ijk
is a monomial, an application of Lemma 2.1 for each 7; that divides y,
gives the desired analytic continuation. Since

(2.2) Vut = [f[* = 0|f* A

and clearly | f|*} has a continuation to Re A > —e which is 1 for A = 0,
the desired continuation of the last term follows, and if we define the
currents U and R’ as the values of the correpsonding terms at A = 0,
then (1.6) follows from (2.2). In particular, it follows that R/ has
support on Y.

For the more precise form of R/ we have to consider the definition of
more carefully. Notice that the term R{’ ¢ 1s the analytic continuation of

OlfPA A s A (0s)1/|f|? to A = 0. The latter term, integrated against
the test form ¢ (of bidegree (n,n — £)), gives rise to a finite sum of
terms like

a
(23) [ awm) A5
231
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Again Lemma 2.1 gives the proposed analytic continuation, and this
time the value at A = 0 only depends on the germ of ¢ at {u; =0} =Y,
which means that R£ ¢ has support on Y, as we already know. However,
we want to prove that it vanishes at A = 0 if / < p. To this end we
may assume that ¢ = ¢y AdZ, A...AdZ;,_, where ¢; is an (n, 0)-form.
Now dz;, A ... A\ dZz;,_, vanishes on Y for degree reasons if £ < p and
hence TT*(dzs, A ... A dz;,) vanishes on Y = {4, = 0}. However, this
is a form in d7; with antiholomorphic coefficients and therefore each
of its terms either contains a factor d7; or a factor 7; for some 7; that
divides p;. However, in both cases (2.3) vanishes for A = 0 according
to the lemma. Thus Theorem 1.1 is proved. O

Proof of Theorem 1.2. Suppose that h is holomorphic and vanishes on
Y. Then IT*h vanishes on Y, i.e., where 11 = 0, and hence II*h must be
divisible with each 7; that divides p;. If therefore ¢ = ht, then (2.3)
vanishes at A = 0 according to the lemma. This means that AR/ = 0.

In the same way, if |h| < C|f|¥, then (each term of) IT*h must be
divisible by p*, and hence any denominator yf{ is killed by IT*h if £ < k.
This means that h A R, =0 if £ < k. O

We now consider what happens if we have two different metrics.
Proposition 2.2. Suppose that U and U' are the currents with re-
spect to two different metrics on E, then there is a current U AU’ €
L%(X,E) such that
(2.4) Vi UANU)=U"-U+ M,
where

M — Mp—l—l,p NI Mm,m—l'
In particular, if f s a complete intersection, then
Vi(UANU")=U"-U.

Thus; if f is a complete intersection and R/ and R’/ denote the two
currents, it follows that 0 = V;(U'—U) = Rf — R'/, and so the current
R/ is independent of the metric. In the general case

0=ViUAU)=VyU' -U—-M)=R; — R —V;M.

Proof. Let u and u' be the forms corresponding to the two different
metrics and let |f|? be the norm with respect to either of the two
metrics. Then

V(I Pund) = [fIPu = [f[Pu =0 Aun'.

We claim that |f|**uAu' as well as 0| f|> AuAu' define currents U AU’
and M when A = 0. If so, then (2.4) follows. Since both IT*u and IT*u/'
are sums of terms like oy /¢, as before the integral

/ B(IF ) Aun Ad
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is a finite sum of terms like

[0,

1

Again this integral has an analytic continuation to A = 0 that vanishes
if ¢ has bidegree (n, k) and £ > n — p. Thus the current M is defined
and has components MPTLP 4 ... 4+ M™™=L1  In the same way the
current U A U’ is defined. O

Remark 1. Let h: X — X be a proper holomorphic mapping and let
E — X and E* be the pullbacks of F and E*, equipped with the
induced hermitean metric. If f is a holomorphlc section to E*, then
h* f is a holomorphic section to E*, which is naturally identified with
the dual of E. If the section s to E corresponds to f as before, then
h*s corresponds to h* f and thus h*u is the form corresponding to h* f
in X \ Y. It follows directly that

R = h,R"/!

where h, denotes pushforward. O

3. COHOMOLOGY OF THE V;-COMPLEX

Assume that £%* is a double complex with vanishing cohomology in
the k-direction except at £ = 0 where the cohomology is A;. Then A,
is itself a

Let H™(L(X, E)) be the cohomology groups of the complex (1.2),
and let H™(Lsmootn(X, F)) be the cohomology groups of the corre-
sponding complex of spaces of smooth forms. If we assume that X is a
Stein manifold, then the double complexes £ = Df , (X, A ‘E) and

Lok (X, E) = &ux(X, AtE) both have vanishing cohomology in the

smooth
k- dlrectlon except at k = 0 where the cohomology is O(X, A~‘E).
Lemma 3.1. Assume that L is a double complex with vanishing co-
homology in the k-direction except at k = 0 where the cohomology is
Ay. Then Ay is itself a complex and its cohomology at ¢ = r is isomor-
phic (via the natural the mapping) to the cohomology at r of the total
compler L™ = ®pyp—mLEF.

From the lemma we get the isomorphisms

(3.1) H_(O(X,ANE)) ~ H™(Lsmootn (X, E)) ~ H™(L(X, E))

induced by the natural inclusion mappings. Thus, if ¢ € L™(X, E) and
V¢ = 0, then Vju = ¢ has a smooth solution if and only if it has a
current solution. If in addition ¢ is holomorphic, i.e., in O(X, A "E),
then Vju = ¢ has a holomorphic solution if and only if it has a smooth
(or current) solution Vju = ¢.

Since Hy(O(X,A*E)) =0 for £ < 0 and £ > m —p, see Corollary 1.5,
we get that
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Proposition 3.2. The cohomology of (1.2) wvanishes if r > 0 and
r < —(m—p).

4. COMPARISON TO COLEFF-HERRERA-PASSARE RESIDUES

We shall now discuss solutions to VU = 1 — R defined by principal
value currents and Coleff-Herrera residue currents (or more generally
Coleff-Herrera-Passare currents). For simplicity we essentially restrict
to the case of a complete intersection. Since the questions are local we
also assume we are in an open set in C".

For a general holomorphic mapping f = (fi,..., fin) we define the
current

1 ~ 1 ~1
_ 5 AAG—
(1) i e NN

as the value at A =0 of
\f1e o fe20| fera PP A oo A D frn] A
fieo fm

The existence of the necessary analytic continuation is proved as before
by a resolution of singularities; see also the proof of Theorem 4.1 below
where the case with a complete intersection is implicitly proved. For
the equivalence of this definition and definitions as limits of integrals
over appropriate cycles, see [12] and the references given there, and
[5]. From our definition of these currents it is quite easy to prove the
fundamental computational rules from [11].

To begin with, the current (4.1) is clearly commuting in the indices
j < k and alternating in the indices j > k 4+ 1. Moreover, it is easily
seen that the formal Leibniz’ formula for 0 holds. However, the current
is to be considered as a whole unit, this is the reason for the brackets,
so in general it is not true that one can multiply formally with f; and
cancel out the denominator.
Ezample 1. Let fy(z) = 2% and fi(2) = 2120. Then, for instance, we
have that

1 2122‘2122|2>‘5‘21|4)‘
Z1%9 [—8 i| = 5
Z1%9 Zl 212229 A=0
_ 9 |z2|2’\8_\21|6’\

3 22 A=0

1
_2.
1

O
However, in the complete intersection case this phenomenon never

occurs; it is indeed possible to cancel any denominator by multiplica-
tion.

2 _
= -0
3 z

Theorem 4.1. Assume that [ is a complete intersection. Then

1 1 _ 1 1 1 _ 1
Ul ey Al 'Aaf_m} [fa 705 Aaf_m]
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and

fm 6L A - =0.

NG
Jrofr frm Jm
The theorem follows from [11] once the equivalence with the Coleff-
Herrera-Passare currents is established. For future reference it is any-
way convenient for us to supply a direct proof.

Proof. We will use a resolution II as in the proof of Theorem 1.1. We

. . Qg
first notice that if p; =7, - ﬂ“ , then

. dT] ’

A - dT; dii
8| ;| = Olujpi|™ = Nujpi| (e, = + ... + @ + ).
Tj1 " T, u;
The right hand side of the first equality acting on the test form ¢ =
dzi A ... Adzy, A ¢"™F of bidegree (n,n —m + k) is as before a finite
sum of terms like

/ V2 - | 20 g1 1 [P A - A Ot [P A 0 A g
H2 - - [m

where o = IT*(dz; A ... A dz,). Expanding each factor 9|u;u;
get a number of terms to compute by means of Lemma 2.1. Let s°
be a factor in say uxyi;. We claim that the integral with the factor
Mugg1pri1|2 ds/s can give a contribution when A = 0 only if s is not
a factor in any other y; (and not = ug;1). Indeed, assume that also
s occurs in p;. The form dfiro A ... dfm A ¢" ™% has degree n — 1
(in dZ) and hence it vanishes on on { fr+1 = f; = 0} since this set has
codimension 2 (since f;, fy+1 is a complete intersection). Therefore,
IT*(dfrio A ...dfm A ¢" ™) vanishes where s = 0, so as before, cf.,
the proof of Theorem 1.1 it follows that each of its terms contains
either ds or 5. Both cases lead to something that vanishes at A = 0.
If s* is a factor in pu; we can therefore insert |s¢/** in the nominator of
the expression above without affecting the value at A = 0, according
to Lemma 2.1. (The value at A = 0 is independent of how many
factors |s|* we put in the nominator as long as there is no factor s in
the denominator.) Thus we can actually multiply the nominator with
|up1|?, and this proves the first statement of the theorem.

For the second statement we have to show that

/ v g - PO w1 i1 P A A Ot [P A e A G
M1 bm—1 P

vanishes at A = 0, due to the lack of a factor pu,, in the denominator.
Again, suppose that s is a factor in y,, and consider the possible con-
tribution from a term with the factor A|u,,u.,|**ds/5. If s is a factor
also in some other p;, then the integral vanishes for A = 0 for the same
reason as before. If no other p; contains s, then the integral of the term
vanishes for A = 0 since then there is no s in the denominator. O

I

|2)\
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We can now define a new current satisfying a similar V s-equation as
the Cauchy-Fantappie-Leray type current U from Theorem 1.1. Indeed,
consider the current
BT E T

fil2mi fo fi (27i)
1-1 =1 €1 A €9 A €3
e P
I3 fa f1 (2mi)3

If f is a complete intersection, then a simple computation, using The-
orem 4.1, yields that

(42) V=

ViV =1-R}

where . . A A
_ — e e
A ANO—| A m

0— _

Jm fi (2mi)™
We are now ready to prove Theorem 1.7; as already announced we
actually prove

R, =

Proposition 4.2. Suppose that f is a complete intersection, let V' be
the current defined by (4.2), and let U be the extension of the Bochner-
Martinells form provided by Theorem 1.6. Then there is a current UAV
such that Vy(UANV)=V —U.

Proof. Let us define

o — |fm"'f1|2)‘€_1 [fm - foPOLAP e Aes

fi 2m Jaf1 (2mi)?
. |fm---fk+1\”5|fk\2*/\.../\5|f1\”Ael/\.../\ekﬂ
fes1-- f1 (2mi)k+1
m+\fm\”(?\fm,l\”/\...Aé\fﬂ” e n-Nem
fmo i (2ma)™

A simple computation yields that
Olfm P A ... AOf1|P
Vf’l)/\: ‘fl"'fm‘2)\_ |fm| |f1|

fm--fi
where R denote terms like

- fi e fo201 £ A B feoa | AL A D] fr] 2
fe-- f1 ’

‘2,\

/\61/\.../\€m+R

i.e., terms in which we have 9| f;|** although f; does not occur in the
denominator. Let u be the Bochner-Martinelli form. By a desingu-
larization as before one shows that |f|**u A v» A ¢ has an analytic
continuation as a current to A > —e and we define the current U AV
as the value at A = 0. Notice that

(4.3) Vi(IfPuno?) = [fP0 = [P fon - - fi[Pu
—AfP AuAv + |fPunR.
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We thus have to prove that the first two terms at the right hand side
become V and U when A = 0 and that the remaining terms vanish.

For the first term we have to verify that each integral like

/ ik [ = Fend OS2 AL A B A
Jev1- i

is unaffected at A = 0 if we delete the factor |f|?*|fm -+ feso|®* from
the nominator. In a local chart in the desingularization, cf., the proof
of Theorem 1.6, let y; be the factor that divides all the other py, so
that IT*|f|> = v|p;[®. If j < k, then the integral (of the pullback)
vanishes as we saw in the first part of the proof of Theorem 4.1 (with
or without the factor |v;u;|**). Therefore we may assume that j > k.
On the other hand, for each v > k£ we saw in the same proof that we
can insert or delete the factor |u,u,|** (in particular v|mu;|**) in the
nominator without affecting the value at A = 0.

Ao

It is quite easy to see that the second term (at the right hand side
of) (4.3) is U when A = 0; in fact, any integral like (2.1) is unaffected
if a factor |ugug|®* is inserted. The third term vanishes for the same
reason as M in Proposition 2.2 vanishes in the complete intersection
case.

The remaining terms give rise, after desingularization, to integrals
of the kind that was discussed in the second part of the proof of Theo-
rem 4.1, and so they vanish at A = 0. Thus the proof is complete. [J

5. DEFINITION AS PRINCIPAL VALUE INTEGRALS

We prefer the definition above with meromorphic continuation. How-
ever in this section we point out that one can just as well define the
currents as one-parameter principal value integrals. The approach does
not differ essentially from. e.g., [13] so we just sketch the arguments.
However, we derive the asymptotic behaviour of |f|**u and 9|f|** A u
directly from the desingularization instead of utilize a Bernstein-Sato
functional relation. The result is

Theorem 5.1. With the notation from Theorem 1.1 we have that

(5.1) lim u/\wz/U/\q/J
e—0 |f|2>€

and

(5.2) lim uNY = / R A,
e—0 |f‘2:6

where the second limit is taken over all reqular values for | f|?.



14 MATS ANDERSSON

Proof. We claim that the second statement follows from the first one.
In fact, by Stokes’ theorem,

(5.3) /|102:€u/\¢:—/|f2>6(8u/\¢—u/\8¢):

_/w ((6;u—1)Ad—undg).

since (0 —0)u = 1in X \ Y. Assuming that (5.1) holds, the right hand
side of (5.3) tends to

—/((5fU—1)/\¢—U/\5¢) :—/(VfU—l)A¢:/RfA¢,
by (1.6), and thus (5.2) holds.

To prove (5.1), let
I(e) = / uA .
f2>e

Since |u| < |f|7?™*! it follows that |I(e)| < e 2™+, For Re\ > 2m
therefore its Mellin transform

M) = [ i = [172uns

is defined. From the proof of Theorem 1.1 and Lemma 6.1 it follows
that M(« + i) is rapidly decreasing in £, locally uniformly in «. It
is now a standard result that 7(x) admits an asymptotic expansion for
small p. In fact, by the inversion formula,
1 M(X)dA
1= 5 [ MO
T Jorig AW
for large o > 0, and since the integrand is rapidly decreasing and has its
leftmost pole at the origin with residue M (0), we can apply Cauchy’s
theorem and obtain
1 M(N)dA
I(p) = M(0) + — I = M(0) + O(u/?).
W)= MO+ g [ O = M)+ 0
Iterating one gets the asymtotic expansion

I(p) = M(0) + > Y u(log )t + O(u?).

k<Ca;<A

6. PrROOF OF LEMMA 2.1

In this section we provide a proof of Lemma 2.1 and we also have
the following addition that was used in the previous section.

Lemma 6.1. In addition to the statements in Lemma 2.1 we also have
that both the functions of \ are rapidly decreasing when A = a+1i( and
|B| = o0, locally uniformly in .
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Proof of Lemmas 2.1 and 6.1. If Re A > p we have that
ds N ds
/ syt D / 15207 (1) ds A s =

1
— m / d‘8‘2()\7p+1) A (’U/\w) N gpildg =
1 2(A—p+1) 0 by —p—1 3=
m ‘S‘ /\a—(’U ’lﬁ)dS/\S ds = ...
p—l

2(A—1) A Aidiz
A—p+1)(A— p+2 A+4,/|| apﬁ Y)ds A sds

22 /\ d A ds
A—p+1)(A— p+2 ‘A F DA /‘5‘ Y)ds A ds.

Since the integral in the last term exists for Re A > 1 we have found
the analytic continuation to Re A > —1 since there are no poles there.
To find the value at A = 0 we let A — 0 in the next to last integral,
and we then get

1 ort  dsAds
:t(p — 1)) osp1 %) s

which does not depend on v.

For the second statement, first notice that it is, by an integration by
parts, equal to the first integral, but with v replaced by dv¢/0s. Hence
it is analytic for Re A > —1 as well, and the value at A = 0 is then

1 o o~ dsAds or—t
T = ()| ,
(p—1)!'J) 050sP s OsP 0
which vanishes if ¥ = 5¢.

To reveal the general meromorphic continuation and the decay in

the Im direction it is enough to consider

ds Nds
22, A
[ sPre=

where ¢ is smooth with compact support. By the non-holomorphic
change of variables, o = \/vs, we get

o
and with polar coordinates (and 2\ = «)

/ rx(r)dr,
0

where x(r) is smooth. By repeated integrations by parts we then get
that

ex(h) [ r N D,
0
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where cy(\) = O(J]A|7") away from the poles. This proves the lemma.
U

7. SOME REMARKS AND EXAMPLES

We begin with some further remarks on the case with a complete
intersection.
Remark 2. We have thus seen that R’ is intrinsically defined when f
is a complete intersection and locally coincides with the Coleff-Herrera
current. It is well-known that the Coleff-Herrera current is equal to
its own standard extension, see [5], and it thus follows that the the
same holds for our current R’, in particular for the Bochner-Martinelli
current.

The following proposition is quite easy to verify and we omit the
proof.

Proposition 7.1. Suppose that f is a complete intersection and either
f is regular, orm =n (so thatY is a discrete set). If there is a (det E-
valued) (0, m)-current R such that V;V =1— R is solvable with some
V € L7YX,E), and furthermore hR = 0 for all holomorphic h that
vanishes on'Y . Then R is (locally) equal to the Coleff-Herrera current.

It seems to be unknown whether this holds for an arbitrary complete
intersection. U
FEzample 2 (A simple example of a non-complete intersection). Let
fi = z1 and fo = 2129. Then Y = {2, = 0} so f is not a complete
intersection. If we adopt the trivial metric then

_ o I _
s(z) = %2161 + Z129€2 = ﬁ21(€1 + Zoe3),

S0
_i_i_s/\és_i e1 + Zyes 1 diaANesAe
RO 2mia (I [2) (2702 221+ [2f?)?
Since |f|? = |21]*(1 4 |22]?) it follows, cf., Section 4, that the extension
U is obtained by extending 1/z; and 1/2? to the currents [1/z;] and
[1/77], respectively. It follows that

Rf:i—lil] €1+22€2+ 1 a[%] ng/\eQ/\el.

271 14|22 (2m)? Lz3 (14 |22]?)?

Thus a holomorpic function ¢ annihilates R if and only if ¢9[1/2?] = 0,
i.e., ¢(0,29) = 0¢/0z1(0, z5) = 0, whereas ¢ belongs to the ideal if and
only if just ¢(0, z9) = 0. O
Ezample 3 (A less trivial example). Let now f; = 2? and fy = 2120 in a

neighborhood U of 0, again with the trivial metric. Then Y = {z; 2; =
0} and

u

21

1 1 z1e1 + z29€e9 1 1 ngil — Zldiz
U= _—— -
2z |2]? (27mi)? 22 | 2]

/\62/\61,
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where |z|? = |21|2+]22|?. To find the extension U given by Theorem 1.6
and R/, we consider the proper mapping II: Y — U, where U is the
blow up at 0 of U. We can cover U by the two coordinate neighborhoods
O ={r; (mm,n)=2€U} and Qy = {0; (01,0102) = z € U}.
To compute @ = IT*u in €21, notice that
s=1II"s = 7_'127_'2(7_'261 + 62)/27T’i,
so that
g A0S 1 1 Teert+en 1 1 d7a Nea A e

YT TR T it 14 Rk @R (Lt [mP)?

The extension U across Y is simply

~ 1 [ 1 :|’7_'2€1+€2 1 [ 1 ]d’TQ/\EQ/\Gl

" omiln T4 TnP T @iy Bl 0wy

and therefore
RH*f:L[ 1 ] Teite 1 7[ 1 } A7 N ey Ae
L+ n* (2ri)? lgrtl s (14 |nf?)?

TaT1
in ;. By Leibniz’ formula

; 2
2mt LT

é[i] = [ 1225%} + Cdry

7278 T.

so that actually
1 —[ 1 j| Toe1 + €9 1 [1
2

— 9
1+ |m2  (2mi)?

Ty T

1] d’f’z/\@z/\@l
— D

Tyt (1+ |m[?)?

T 1 1-1 1:-1

olom) = 527+ 1797
it follows that RE;f has support on {7; 7175 = 0}, whereas Rg;f has
support only on {7; 7, = 0}. In the same way one can check that R/
in €, is supported on {o; o; = 0}. Since R/ = TI,R™/ cf., Remark 1,
it follows that R{’l has support on {z; = 0} as expected, whereas R£’2
has support at the origin.

To compute Ry, let ¢ = ®dz; A dzy be a test form in . Then

[ Rhano [ 5o

Over €2 the last integral is

1 1-1 T
7/ [—8—} A M A (I)(TlTQ, Tl)d(TlTQ) A dTl =

S @emi2 g AT (1 RP)?
1 1-1 d7_'2 Ney N\ eq
= —3—]/\—/\@ ,71)d7 A d7s.
(27i)? /T [7’22 T3 (14 |m2|?)? (ri73; ma)dr A dr
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Since (o1,09) = (1172,1/72) and Rg ;f has support only where 7, = 0
(equivalently o7 = 0) we can compute the integral over the whole U
by extending the integration to 7, € P'. For any test form 1 (s)ds we
have that

1

2me J

1%
=502 %

and therefore (supressing es A e; and letting 7, = o) we get

5[ ! ] A(s)ds

g3

11 1 0'2@11(0)4-20'@12(0)4-@22(0)
1 € G A do =
2 o 0[02] 1+ |o2)? onae
11 ®,(0) 1
= [ U 45 Ado = ~B.,(0).
29mi ), (3 [oppe o = 3 2n(0)

Thus we conclude that
1
RQ,Q.@(z)dzl A dZQ = Z(I)zlzl (0)62 A €1.

One can compute R;; in a similar way. O
Ezample 4 (The regular case). If D is a holomorphic connection on E*
and (Df)™ # 0 on Y, then Y is a regular manifold and u is locally
integrable so it defines a current U across Y, and

(7.1) V{U=1-R/,
where R/ is the (det E-valued) current with support on Y such that
(7.2) RIADA™=YIAEAer A Aely Aem.

Here [Y] is the (m,m)-current of integration on Y. In fact, if f =
>_ fj€; in a local holomorphic frame, then the condition means that
Ofi N...NOfm # 0 on Y, and choosing f; as part of a holomorphic
local coordinate system, (7.2) is readily verified.

Suppose that v is any solution to Vv = 1 outside Y such that
ver—1 = O(|f|~@D). If V is the natural extension of v as a locally
integrable current in X, then V satisfies (7.1). In fact, U AV is locally
integrable and it is readily checked that V(U AV) =V — U, so that
0=V;V -V,U. O
Example 5. In the case when X is a subset of C" that contains the
origin and f; = z; it is natural to take E = T7,. Then §, is con-
traction on differential forms in C* with the holomorphic vector field
2711y 2;(0/0z;) and if u is a reasonable solution to V,u = 1in X \ {0},
it has a current extension U across 0, and

V,U=1-[0]

in the current sense. As mentioned above, this holds if u is smooth
outside the origin and u, = O(|z|"?*V). Notice that now u, is a
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(4, ¢ —1)-form in the usual sense. For instance, the Bochner-Martinelli
form (current)

U 0|z|? _ Z 1' 0|22 A (00) 7)1
V.0|z|? (2mi)¢ | z|2¢
will do. Another choice, cf., Section 4, is V' defined by
dz dz -
Vip= 2 .1 s Vit = .k+1 A OV j—1.
Tz 2T 241

O
Ezample 6 (Jacobi formulas). If « is a meromorphic (1, 0)-form on a
compact Riemann surface X then the sum of its residues is zero; this
is just because the sum is equal to

/ Ja
X

which vanishes by Stokes’ theorem. In C we have the following variant:
If p and ¢ are polynomials in z, then the sum of the residues of gdz/p
in C is equal to minus the residue at infinity. In particular, the sum is
zero if degq < degp — 2, since then ¢dz/p is holomorphic at infinity.
In this example we shall consider some generalizations of these two
statements.

Assume that X is a compact complex manifold and let f be a holo-
morphic section to the n-bundle E* — X and let U and R; be defined
as before with respect to some hermitean metric on E. If h is a det E*-
valued holomorphic (n, 0)-form, then A A wa is a 0-exact scalar form,

and hence
/ hARL, =0.
X

Notice that we do not have to require that f be a complete inter-
section. This will be used in the proof of the following theorem due to
Yger and Vidras, [14]; our contribution is that we can put it(s proof)
into a geometric frame.

Theorem 7.2. Let Py,..., P, be polynomials in C* and assume that
there are numbers §;, 0 < 6; < deg(P;), such that

1P (Q))?
7.3 >
(73 2T 2
for large ¢ in C*. Then if Q is a polynomial with deg@ < Y 6; —n it
follows that
/ Qde A ... NdC, AR = 0.
Cr

Since the common zero set in C" is then compact it must be a finite
set of points, and thus P is a complete intersection.

The simplest case of this statement is when all §; = deg P;. Then
the condition (7.3) is equivalent to that the principal terms of the
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polynomials have no common zeros outside 0 in C", and this in turn
is equivalent to that the homogenizations p; of P; have no common
zeros at the hyperplane at infinity. Let L = O(—1) be the line bundle
over P" whose sections are represented by 1-homogeneous polynomials.
Then p = (p1,...,P,) is a holomorphic section to E* = L ® - - - ® L%,
with no zeros on the hyperplane at infinity. Notice that det E* = L°,
where § = 6; +---+---6,. If ¢ is the ) 6;-homogenization of ) times
d¢i A ...ANd(,, then the condition deg ) < 6 —n — 1 ensures that ¢ is a
global det E*-valued holomorphic (n, 0)-form on P”, since the canonical
bundle det T7(P") is isomorphic to L=, Thus

/ q/\Rp:/ gN\ RP =0.

For the general case, one can make a preliminary reduction to the
case when all §; are integers, see [14]. Then the assumption on @ is
that deg@ < d —n — 1. Choose a number M > 0 such that

0j + M —degP; >0
for all j, and consider the section p as a section to
E* — L(51—|—M R--® L(5n+M_
ie., pj(z) = Pj(z’/zo)zngrM if { = 2. If E* is equipped with the natural

metric, then
§;+M o
pl? = Z'P o L
p |Z|251+M .

The condition (7.3) then is equlvalent to

2 i _p2M
for [2] close to the hyperplane zy = h(z) = 0 in P". Now det E* =
LM g6 if g is the corresponding (0,n)-form with values in det E*,
then ¢ = h™™ g where g is a holomorphic (n, 0)-form, and hence gA RP =
0 close to this hyperplane according to Theorem 1.2. Thus the theorem
follows.

In the same way we can prove the following abstract version:

Theorem 7.3. Let X be a compact manifold and let fo be a holomor-
phic section to the line bundle L — X andletY = {fy, = 0}. Moreover,
suppose that f1, ..., fn are holomorphic functions in X \'Y (obs L triv-

ial here) such that fjfgj are global sections to L%, and assume that we
have integers 6; < d; such that

Molfifol* > ¢
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close to Y. If then q is a holomorphic (n,0)-form in X \'Y such that
qfd is holomorphic in X, where d = dy + - - - + d,, then

/ gANR/ =0,
X\Y

where f is the section fi + -+ f, to L" @ --- @ L.
U
Ezample 7 (Generalized logarithmic residues). Let D = D' + 0 be the
holomorphic connection on E* induced by our hermitean metric. Then
(Df)™ is a smooth det E*-valued (n,0)-form and if f is a complete
intersection, then
(D)™ /m! AR = [Y7],

if we identify 7 = e} Aey A ... A€} Ae, with 1. Here [Y/] denotes the
current of integration on the regular part of Y such that each branch
is counted with multiplicity. To see this just notice that in a local
holomorphic frame Df = D fie5 = > df; A ej + O(f), where O(f)

denotes terms with some factor f;. Since O(f)R/ = 0 we get

1 -1 =1

—0— ANdfiy N...0— Ndf, NT,
iy, IO N
and it is wellknown that the right hand side is equal to [Y/] A 7, see
for instance [9]. It is also known that there is a current A of bidegree
(m,m — 1) such that dA = 0A = [Y/] — ¢,,(D), where ¢,,(D) is the
Chern form of top degree (a proof will be given below).

(DfY™/m! A R =

In general we have

Lemma 7.4. If f is any holomorphic section, then for each k the
current

(7.5) Ri N (Df)
has measure coefficients.

Proof. Using the notation from the proof of Theorem 1.1 we have after
the desingularization terms like

= a QNS

/5(|M1|2AUA) N P (du A ' + i Dp')"
1

Since the last factor is puéy; 4+ dui A pt=1y, and g is a monomial, it is

easy to see that the integrand is integrable when A = 0. O

We shall now show that an appropriate combination of the currents
(7.5) gives a closed (m,m)-current [Y/], which coincides with the pre-
vious one in the complete intersection case, and an (m,m — 1)-current
A such that again

(7.6) dA = 0A = [Y!] — (D).
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To this end we need somewhat more complex geometry and give [9]
as general reference, but see also [3]. The curvature tensor © = D? is a
Hom (E*)-valued (1,1)-form, and it can be identified with the section

O to A(E* & E & T*(X)) which locally is defined by

Z@jk ANej N e,*;,

if ©;y is the matrix (of (1, 1)-forms) for © in the frame €. In particular
6;0 = 2mi©f. Since f is holomorphic, dDf = D?>f = ©f. The
connection D has a canonical extension to the bundle A(E* @ E @
T+(X)), and 30 = DO = 0. We also have to introduce the operator

Dy=06;—-D
If follows that
1~ i~
(7.7) Vi(Df - %@) =0and Dy (Df — %e) =0.
Thus,
_i~ m | — _ pf _i~ m 1
V{UAN(DSf 27r@) /m!=(1—-R)AN(Df 27r@) /ml,

and if we extract the term with full degree in both e; and e}, we find
that

6" fmi - Z A DIV /3 A (56" /(m — )

is a 0-exact (m, m)-current (with values in det E*®det F). Let us define
[Y/] such that the term on the right is [Y/] A7. Thus [Y/] is a (m, m)-
current on Y with measure coefficients, according the the lemma above,
and there is a (m, m—1)-current A such that 0A = ¢,,(D)—[Y/]. When
f is a complete intersection Rf, ; = 0 for all j but 7 =m so we get back
the usual current.

To show that they actually are d-cohomologous we need an extra
argument. In general, Dj% is not zero; however it is a tensor, and in
fact, if £ is a smooth section to F, then

(79 Dy = 6:(Df - 5-6),

if 0¢ denotes contraction with 27i€. (One can think of ’D]% as the cur-
vature associated to the “connection” D;.) Let now

s Z s A (Dys)t!

w=— =
Dys 4 L[

outside the singularity Y.
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Proposition 7.5. The forms |f|**w and d|f|** Aw have analytic con-
tinuations as currents to A= 0. If W and RS are the values at A\ = 0,
then W is a current extension of w across Y, R is supported on'Y,
and

(7.9) D;W A (Df - %é)m/m! =(1-RHAN(Df - %é)m/m!.

Proof. Outside Y we have

S S 7 ~
Dw=1-—> _AD?s=1- —>_ A§,(Df — —
v D2 " 1° D52 (Df = 5.9)

by (7.8). Since
5,(Df = 5-0)(Df = 5-0)"/m! = §,(Df = 1-6)"™""/(m+ 1)1 = 0

for degree reasons, (7.5) holds outside Y. The analytic continuations
are obtained precisely as in the proof of Theorem 1.1, and then (7.9)
follows. O

Remark 3. From the usual desingularization it is easily seen that 9| f[**A
w vanishes at A = 0 so that actually R/ = 0|f** Aw|,_,. O

If we again extract the terms of full degree in e; and e} from (7.9), and
notice that the connection D acts as the usual exterior differential d on
such a term (i.e., on a section to the trivial line bundle det E* ® det E),
we get currents B and C such that dB = ¢,,(D) — C. However, A is
the component of B of bidegree (m, m — 1) and [Y/] is the component
of C of bidegree (m,m), and a simple consideration of bidegrees yields
(7.6).

In the case when f is regular, these formulas, with the same A and
B, were found in [3] with a quite different proof.

d
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