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Abstract

Consider an investor in the Black-Scholes model during the period [0, 7],
where 7' > 0 and where the mean rate of return on the stock is assumed
to be strictly greater than the rate of return on the bond. The investor
strives to maximize the expected utility from terminal wealth. Suppose the
investor has the initial wealth x > 0 and let &, be the amount invested in
the stock at time zero. Set 7, = &, /xz. It will be proved that the function
xr — T, decreases if the investor possesses an increasing relative risk aversion
and that the function z — ¢, increases if the investor possesses a decreasing
absolute risk aversion.

Similar results are obtained by Arrow in a so called one period market
model with time consisting of two points [1].

1. Introduction

This paper studies connections between an investor’s wealth, portfolio, and
risk aversion in the Black-Scholes model. The investor is assumed to act so
that the expected utility from terminal wealth is maximal at each point of
time. Below two types of risk aversion will be studied, viz. increasing relative
risk aversion and decreasing absolute risk aversion. Before going into details
it is natural to give a few definitions.



The Black-Scholes capital market model has two assets, one risky asset
called a stock and another, secure asset called a bond, both given in the
period [0,7], where T" > 0. The stock price S(t) at time ¢ is given by the
equation

S(t) = S(O)e(u—%tww(t)

where (W (t))o<t<r is a normalized real-valued Wiener process and the mean
rate of return y and the volatility o are real and positive constants, respec-
tively. Furthermore, the bond price B(t) at time ¢ satisfies the equation

where the rate of interest r is a positive constant. Here the initial stock and
bond prices S(0) and B(0) are positive constants. The Black-Scholes model
is free from transaction costs.

In this paper a so called utility function U : ]0,00[ — R is supposed to
satisfy the following assumptions

Uec® (1.1)
U is strictly increasing (1.2)

and
U is strictly concave. (1.3)

Note that these assumptions imply that U'(z) > 0.

If U is a utility function, the Arrow-Pratt measures of relative risk aver-
sion and absolute risk aversion corresponding to the wealth z > 0 are given
by

Rea) = -
and o
RY (@) = 210

<

()
respectively (see Arrow [1] and Pratt [8]).

In continuous time portfolio theory it is common to assume that a utility
function U satisfies the additional condition

U'(+00) = 0. (1.4)



The inverse function U’~! then maps the open interval ]0,U’(0+)[ onto the
open interval ]0, +00[. Set

U~ (y), if 0 <y <U'(0+)
_ 70U _ )
Iy)=1 (y)_{ 0, if U'(0+) < y < +oo.

In continuous time portfolio theory, some important results also rely on the
assumption that
I(e®) < AePPl z e R (1.5)

for appropriate positive constants A and B (see e.g. Karatzas et alias [5],
[6], and Korn [7]). Below, for short, U(0+) is written U(0) and UF denotes
the class of all utility functions U satisfying (1.1) — (1.5).

Let us go back to the Black-Scholes model and insert the additional as-
sumption that the mean rate of return on the stock is strictly greater than the
rate of return on the bond, that is g > r. An investor has the initial wealth
x > 0 and will invest in the stock and the bond according to a self-financing
strategy with a non-negative wealth process (X (t))o<i<r so that the expected
utility £ [U(X(T))] from terminal wealth is maximal. Here U € UF is the

A

investor’s utility function. Let (X (¢))o<i<r be the optimal wealth process
and V(z) = E [U (X (T))] the so called value function (at time zero). Then

X([0,T[) € ]0,00[ with probability one and X (T') vanishes with positive
probability, if U'(0+) < 4oc. Let for any ¢ € [0,T[, 7(t) be the fraction of
wealth X (¢) invested in the stock time at time ¢ and let é,(t) = 7,(t) X (¢)
be the amount invested in the stock at time ¢.

Suppose 0 < xy < xp. If the function RY, increases, Theorem 5.1, a)
shows that 7, (t) > 74, (1), 0 <t < T . Here fry,(t) > 7y, (1), 0 <t < T, if
RY, is not constant. The proof is based on the Brunn-Minkowski inequality
in the functional form put forward by Andras Prékopa (see Prékopa’s book
[9]). Furthermore, by Theorem 5.1, b), if the function RY,, decreases, then
Qo (1) < gy (), 0 <t < T . These results are quite similar to those obtained
by Arrow under slightly different assumptions [1] . Arrow s investigations
are based on a so called one period market model, where time consists of two
points only.

If the function RV, increases, Theorem 3.1, b) shows that the value func-
tion V € UF and the function RY,, increases. Moreover, if RY,  decreases,

then, by Theorem 4.1, b), V € UF and R}, decreases in the strict sense.
The investigations below are based on the fundamental and elegant mar-

tingale approach to optimal portfolio theory ([5], [6]). This approach is



based on a variety of auxiliary functions and inserting some additional lines
will make the paper easy of access to readers with no previous knowledge
of optimal portfolio theory. Another reason for completeness is the need of
slightly different conditions on the utility function U than what seems to be
standard. For example, if the function RY,, is increasing, the function I need
not be convex, which is a common assumption in literature.

2. A review of the martingale approach to maximal expected utility
from terminal wealth in the Black-Scholes model

In this section some important parts of the martingale approach to optimal
portfolio theory in the Black-Scholes capital market model will be recalled.
There is no consumption at all in the development below, which simplifies
the presentation very much. Throughout the section it is assumed that u # r
and U e UF.

Let

be the market price of risk and introduce the P-martingale
Z(t) = e 200 0 <t < T

By the Cameron-Martin theorem, the process
Wet)=W(t)+0t, 0<t<T

is a normalized Wiener process relative to the so called martingale measure
() defined by the equation

dQ = Z(T)dP.

Note that
dS(t) = S(t)(udt + odW (1))
= S(t)(rdt + cdW°(t))

so that the process (S(t)e™™)o<i<r is a Q-martingale.



Let {F;}y<,cr denote the P-augmentation of the natural filtration gen-
erated by (Wztj)OStST- Set

H(t)=Z(t)e™, 0<t<T

and recall from option pricing that a contingent claim which pays the amount
Y € L*(Q, Fr, Q) to its owner at maturity T has the value

E[H(T)Y]=E?[e7TY]
at time 0.

A portfolio process is a real-valued process a(t), 0 < t < T, which is
progressively measurable with respect to the filtration {F;},.,. and satisfies

T
/ o?(t)dt < oo.
0

Here the amount «(t) is invested in the stock at time ¢ and the corresponding
wealth X (t) = X“(t) is supposed to satisfy the equation

dX(t) = a(t)f—f)) +(X() - a(t»‘f—?
= X (t)dt + oa(t)dW (1)

or, stated otherwise,
t
X (e = X(0) + / oa(s)e " dW(s).
0

It is assumed that the process (X (t))o<:;<r is given in a version possessing
continuous sample functions with probability one. The process (X (t)e ") o<i<r
is a local @-martingale. Let x > 0 be given and write a € A(zx) if the
corresponding wealth process satisfies X(0) = z and X(¢) > 0 for each
t € [0,T]. Note that in this case the process (X (t)e™"")o<t<r is a non-negative
(Q-supermartingale and

E[H(T)X(T)] = E® [ X(T)] < x.

Moreover, if
to = min(7,inf {t € [0,T]; X(t) =0})



then X (t) =0, tp <t < T with probability one (for details, see [5]). Below
it will be seen that the so called optimal wealth process is strictly positive in
the interval [0, T'[ with probability one.

Recall from the definition of the class UF that the function I(y) satisfies
(1.5) and introduce

X(y)=XY(y)=E[HT)I(yH(T))|=e""E° [I(yH(T))], y > 0.

The function X is strictly decreasing with X' (0+) = +oo and X (+o0) = 0.
Moreover, by the Morera Theorem, X is real analytic since

[.°] - r—ﬁ 2
X(en) — e*'rT/ I(ei)‘)e*()\-i_n 2(02T2 )T) d\
—o0 210> T

, MmeR

(for more details, see John’s book [3]). The inverse function z = X~(y),
y > 0, is denoted by y = Y(z), z > 0.

Below it is useful to know that the function X determines I uniquely. To
prove this claim suppose Uy € UF and X Vo = X. Set J = I — IV so that

E[H(T)J(e"H(T))] =0, alln € R.
But then the convolution
2
J(eaﬁ”) xe~ T =0

and Fourier transformation shows that J = 0, that is I = I.
The main objective in this paper is the optimization problem

Jax B [U(X*(T))]

where

AV(z) = {a € A(z); E[U~(X*(D))] < o0}
and U~ = max(—U, 0). Note that the inequality
U(I(y)) > U(z) +y(I(y) —z), y >0 (2.1)
yields
U~(I(Y(x)H(T)) <|UQ) | +Y(x)H(T)(I(Y(x)H(T)) + 1)



and, accordingly from this,
E[U-(I(Y(@)H(T)))] <| UQ) | +Y(@)(@+e™") < oo,
Given z > 0, let
X(t) =X, (t) =e"EC[I(Y(x)H(T)) | F], 0<t<T (2.2)

where it is assumed that the process (X (t))o<i<r is given in a version pos-
sessing continuous sample functions with probability one. Note that for each
fixed t € [0,T[, X(t) > 0 with probability one since the random variable
I(Y(x)H(T)) is positive with positive probability. If U'(0+) < +oo, clearly
X(T) = 0 with positive probability. By martingale representation the process
(X (t))o<t<t is the wealth process of a unique portfolio process &, € AY(z)
and, in fact, &, is an optimal solution to the maximization problem above.
Indeed, if @ € AY(z) and (X (¢))o<i<r is the corresponding wealth process,

by (2.1)
U(I(Y(@)H(T))) =2 U(X(T)) + V() (H(T)I(Y(z)H(T)) — H(T)X(T))
and it follows that
EUI(Y(z)H(T))] = E[UX(T))].

Since U is strictly concave &, is the unique optimal solution to the above
maximization problem.
Throughout this section it will be assumed that

X'(y) <0, ally >0 (2.3)

so that, in particular, the function ) is real analytic. Then

a,(0) - =15 (2.4
and setting
a(0) = 20
(0)
it follows that
y(0) = —2 7 2



In literature the formula (2.4) is often proved under the additional as-
sumption that the function z = I(y) is convex (which is not necessarily the
case for a utility function U with increasing relative risk aversion). A short
direct proof of (2.4) reads as follows. Set

X(t) = f(t, H(1))-

To be more explicit, if 7 =T —¢ > 0 and h > 0,

F(t,h) = e EQ [1(y(g;)he—<r+%>r—e<wm—w<t»)

[ g Gttt d)
= [ 1Y @)e e b
Now
dX(t) = fi(t, Ht))dH(t) + (...)dt
— OH()f(t H)AWO() + ()t
since dH(t) = —H(t)(rdt + 0W (t)).
Thus

and, in particular,
~ m—=r,
az(o) = 2 fh,(Oa 1)

o

Since
f(0,h) =X(Y(x)h), h>0

the equation (2.3) yields

fn(0,1) =

and the relation (2.4) follows at once.
The value function V' (z) is defined by the equation

V()= E[UX(D))]

that is
V(z) = E[UI(Y(z)H(T)))].



The inequality (2.1) combined with the inequality
U(l(y)) <UM)+U'(1)(I(y) = 1), y>0

yields
[U(y) [<31UQ) [+2y+U'(1)I(y), y >0

and it follows that V is real analytic (by Morera’s Theorem for example).

In the next step it will be proved that V' = Y (which is well known at
least if I is convex). To this end, let zy > 0 be fixed and replace (z,y) by
(I(Y(z)H(T)), Y(xo)H(T)) in the inequality (2.1) to obtain

U(I(Y(z0)H(T)))
> UI(YV(z)H(T))) + V(o) H(T)(L(Y(x0)H(T)) — I(Y(2)H(T))).
By integrating this inequality with respect to P,
Vi(zg) > V(x) + Y(xo)(z0 — )-

Thus V is concave and V'(zg) = Y(xp). From this it is readily seen that
V e UF. Moreover,

pw—r V'(x) p—r 1

72(0) = - o2 zV"(z) o2 RV, () (2:5)
and

. __,u—TV'(:E):,u—r 1

%) =" Vi)~ o R (2:6)

3. Increasing relative risk aversion

Let
e = (g0, €1)
be a vector such that p,e; > 0 and €y +¢; = 1. By abuse of language, ¢ will

be referred to as a probability vector. If z;, 7 = 0,1, are vectors in the same
vector space, let . = ggxg + £121.
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Lemma 3.1. Suppose the utility function U satisfies (1.1) — (1.4). The
following assertions are equivalent:

a) the function RY, is increasing

b) U'(x) is a log-concave function of Inzx

c) I(y) is a log-concave function of Iny.

Proof. Since p
pri U'(e*) = —Rye(€°)
a) and b) are equivalent.
To prove that b) = c), first choose yo,y1 € ]0,U’(0+)[ arbitrarily and

then &y, &, € R such that

yo = U'(e*) and y; = U'(e1).
Then, if ¢ = (o, 1) is a probability vector,

U'(e%) > (U' (%)= (U (e%)).

Hence
et < I(y'yit)

or
I (yo) 1™ (y1) < I(ye"yt")- (3-1)
If I(yo) or I(y;) vanishes, the inequality (3.1) is obviously true. This proves

c).
The implication ¢) = b) is proved in a similar way. This completes the
proof of Lemma, 3.1.

Before proceeding it is instructive to give an example, which will be used
later on.

U

e, 15 constant. Then

Example 3.1. Suppose the relative risk aversion R,
either

Ulx)=alnz+b
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or

Uz) = 227 +b
Y

where @ > 0, b € R, and 0 # v < 1. In the first case

I(y) = g and X(y)=§

for a suitable constant ¢ > 0, and, in the second case

1

I(y) = y—; and X (y) = dy+-T

av-T
for a suitable positive constant d > 0. Thus, in both cases, In I(y) is an affine
function of Iny.
Observe that, for any o > 0,
RaU — RU

rel rel

and
1°U(y) = 1V (2).

Accordingly from these equations, for any 6, x > 0, there exists a Uy € UF
with constant relative risk aversion such that

X (y) = oy~ ",

Lemma 3.2. Suppose p > 1, U € UF, and that the function RY, is increas-
ing. Then the function x = X(y) is a log-concave function of Iny and the
inverse function y = Y(x) is a log-concave function of Inz. In particular,
(2.3) holds.

If RY, is increasing and non-constant, then the function v = X(y) is a
strictly log-concave function of Iny and the inverse function y = Y(z) is a

strictly log-concave function of Inz.

The proof of Lemma 3.2 depends on Prékopa’s inequality.  Suppose
¢ = (g9,€1) is a probability vector and f,g,h : R® — [0, co| Borel functions
such that

h(ze) > [(20)g" (21)
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for all z; € R™, i = 0, 1. Then, Prékopa’s inequality states that

L, bz > ([ f@)dn)o( [ ga)da)”

R”

([9]). A proof of this inequality based on the It6 lemma is given in my
paper [2] (thereby supporting H. P. McKean’s claim that "People in financial
mathematics make their living (in part) by It6 s lemma” [4]).

In what follows, P denotes Wiener measure on the Banach space €2 of
all real-valued continuous functions defined on [0,7] and W is the identity
map on . If € = (g9, 1) is a probability vector and f, g, h: Q2 — [0,00[, are
cylindrical Borel functions such that

h(we) > [ (wo)g™ (w1)
for all w; € €, 7 = 0,1, Prékopa’s inequality gives

E[h] = (E[f)*(E[g])™

Proof of lemma 3.2. Let € = (g¢,£;) be a probability vector, let yo,y; be
positive numbers, and suppose wy,w; € (2. Now writing

H(T) = H(T,w)

it follows that
H(T,w.) = (H(T,wo))** (H(T,w1))™.

Since, by Lemma 3.1, the function I(y) is a log-concave function of Iny,
I(y"y1* H (T, we)) = 1((yoH (T, wo))* (y1 H(T, w1))™)

> I (yo H (T, wo) ) I (y1 H (T, 1))

and, accordingly from this,
H(T,we) I (yg°yi H(T) we))

> (H(T, wo) I (yoH (T, w0)))™ (H(T, w) I (y: H(T, w1)))™-
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Thus, by Prékopa’s inequality,

X(Yly') = X (yo) X (y1)-

Proceeding in a similar way as in the proof of Lemma 3.1 it follows that the
function y = Y(x) is a log-concave function of In z.

To prove that (2.3) holds first note that X'(y) < 0 for all y > 0. By the
first part of Lemma 3.2 as already proved, the function

decreases. Thus if X'(ys) = 0, it follows that X’(y) = 0 for all 0 < y < yo,
which is absurd since the function X is strictly decreasing.

To prove the very last part of Lemma 3.1, first note that the function
In X(e"), n € R, is affine on an appropriate non-empty open subinterval of
R if and only if the function InY(ef), & € R, is affine on an appropriate
non-empty open subinterval of R.

Now suppose there exist a,b € R and a non-empty open subinterval J of
R such that

InX(e") =—an+b, n € J.

Here a > 0 since X is strictly decreasing and, moreover
X (e")=e’e ™ n e J.

By using the real analyticity of X it follows that
X(y)=e’y™?, all y > 0.

Recall from Section 2 that X determines I uniquely. Therefore, in view of
Example 3.1, the function RY, must be constant, which, by assumption, is
not the case. The function In X' (e"), n € R, is therefore not affine on any
non-empty open subinterval of R. This completes the proof of Lemma 3.1.

Theorem 3.1. Suppose U € UF and that the function RZ, increases. Fur-
thermore, assume L > 7.
a) The quantity




14

U

e 15 ot constant, 7,(0) is

18 a decreasing function of initial wealth x. If R
a strictly decreasing function of x.
b) The function RY,, increases. Moreover, if R, is not constant, RY,, is

strictly increasing.

Proof. By Lemma 3.2, the strictly positive function

zY'(z)
Y(z)
is increasing. Moreover, this function is strictly increasing if the function RY,

is not constant. This proves Part a) in Theorem 3.1. Part b) now follows at
once from (2.5), which concludes the proof of Theorem 3.1.

4. Decreasing absolute risk aversion

In connection with the problems faced in this paper, decreasing absolute risk
aversion is slightly simpler to handle than increasing relative risk aversion.
For example, in contrast to the previous section, the results in this section
do not lean on any special inequalities.

Lemma 4.1. Suppose the utility function U satisfies (1.1) — (1.4). The
following assertions are equivalent:

a) the function RY, is decreasing

b) U'(z) is a log-convex function of x

c) I(y) is a conver function of Iny.

If the function RY,, is decreasing, Lemma 4.1 implies that the function T

1S convex.
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Proof of Lemma 4.1. Since

d
L inU'(2) = R, )
a) and b) are equivalent.
To prove that b) = ¢), let 1y, 7, < InU’(0+) and choose zq,z; > 0 such
that
e" = U'(xg) and em = U'(z1).

Then, if ¢ = (g9, 1) is a probability vector,
U'(ze) < (U'(0))(U' (1))

Hence
gol(e"0) + e, I(e™) > I(e").

Thus the non-negative continuous function I(e7), n € R, is convex in the
interval |—oo,In U'(0+)[ and, since I(e™?'(®1)) = 0, it must be convex every-
where, which proves c).

The implication ¢) = b) is proved in a similar way. This completes the
proof of Lemma 4.1.

If the function RY,, is constant U(z) = a—be™* for appropriate constants
a € R and b,c > 0. Moreover, I(y) = %ln+% and X(y) equals the Black-
Scholes price at time 0 of a simple European option which pays the amount
LIn* ” I}’(CT) to its owner at maturity 7. The function X (y) is possible to com-
pute explicitly in terms of the distribution function of a N(0, 1)-distributed
random variable and X (y) turns out to be a strictly convex function of In y.

In fact the following is true.

Lemma 4.2. Suppose p > 1, U € UF, and that the function RY, decreases.
Then the function © = X(y) is a strictly convex function of Iny and the
function y = Y(x) is a strictly log-convez function of x. In particular, (2.3)

holds.

Proof of lemma 4.2. Let ¢ = (€g,1) be a probability vector and let yo, y1
be positive numbers. Since, by Lemma 4.1, the function I(y) is a convex
function of Iny,

I(ye"yi H(T)) = I((yoH(T))* (y1 H(T))*)
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<eol(yoH(T)) + el (y1 H(T)).
By taking ()-expectations it follows that

X (YY) < e0X (o) + 14X (y1)

and, hence, the function z = X'(y) is a convex function of Iny. From this
it is simple to deduce that the function y = Y(z) is a log-convex function
of z. The function X(y) is an affine function of Iny on an appropriate open
non-empty subinterval of R if and only if the function In Y(z) is an affine
function of £ on an appropriate non-empty open subset of R. On the other
hand, if a,b € R, and X (y) = alny + b for all y belonging to an open non-
empty subset of R, the same relation holds for all ¥ > 0 since X is real
analytic. This contradicts the positivity of X and the first part in Lemma
4.2 is proved.

To prove (2.3) first note that X'(y) < 0 for all y > 0. By the first part of
Lemma 4.2 as already proved, the function

n— e’X'(e")

is strictly increasing. This proves (2.3) and completes the proof of Lemma
4.2.

Lemmas 4.1 and 4.2 and the relation (2.6) now give

Theorem 4.1. Suppose U € UF and that the function RY,, decreases. Fur-
thermore, assume p > r.
a) The quantity
0, (0) = -£ 2 : y/(m)
o? Y'(x)
1$ a strictly increasing function of initial wealth x.
b) The function RY,. is strictly decreasing.

abs

5. Monotonicity properties of the optimal portfolio processes
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As above let &, be the optimal portfolio process and define the corresponding
relative portfolio process by
G (1)

a(t) = X0 0<t<T.

In this section monotonicity properties of the processes (7;(t))o<i<r and
(G (t))o<t<r as functions of initial wealth 2 will be investigated under similar
conditions on the utility function as in Sections 3 and 4.

To begin with, write X(y) = X (T,y) and Y(y) = Y(T,y). Using this
notation, for any ¢ € [0,77],

X(t) = e TIE I(Y(T,2)H(T)) | 7

= e "TOE[Z(T)I(V(T,2)H(T)) | F]
1

= e_T(T_t)Tt)E [Z(TI(Y(T,z)H(T)) | F]
by the "Bayes rule”. Hence
X0 =B | G 10T 00 ) | 7| = XL YT ). 6

dX(t) = X)(T —t,Y(T,z)H(t))Y(T, z)dH (t) + (...)dt
= —0HO)V(T,2)X,(T — t,Y(T, ) H())dW(t) + (...)dt
and, accordingly from this,

G(t) = —gﬂ(t)y(:r, DT — t, (T, 2)H (1))

Here if either RY, increases or RY,. decreases, Lemmas 3.2 and 4.2 yield

X, (T —t,Y(T,x)H(t)) <0 and it follows that

p—r H()Y(T, x)
o Vo(T —t, X(T —t, Y(T,z)H(t)))

a/m (t) = -

Now using (5.1), H()V(T,z) = V(T —t, X (t)) and thus

Cp—r YT -1, X(1)
o YT - t,X(1))

by (1) =
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and

p—r YT —t,X()
o XOVUT -, X (1))

If the relative risk aversion is constant, then either

ﬁm (t) = -

Ulx)=alnz+b

or
Ulx) = “a” +b
Y
where a > 0, b € R, and 0 # v < 1. In the first case Y(T,z) = az~' and
in the second case Y(T,x) = ¢(T)x?~" for a suitable positive constant c(T).
Thus in both cases the quantity

3 Y(T,x)
z2Y'(T, x)

is independent of (7', z). Therefore, if the relative risk aversion is constant,
7(t) is independent of time ¢ and initial wealth z.

Theorem 5.1. Suppose U € UF and p > r and let 0 < xy < 1.

a) If the function RY, is increasing and not constant, then 7, (t) > 74, (t)
for all 0 <t <T with probability one.

b) If the function RY, is decreasing, then du,(t) < G, (t) for all 0 <t <

T with probability one.

Proof. The equation (2.2) implies that X, (t) < X, (¢) for each ¢. Theorem
5.1, a) now follows from Lemma 3.2 and (5.3). In a similar way, Theorem 5.1,
b) follows from Lemma 4.2 and (5.2). This concludes the proof of Theorem
5.1.

Theorem 5.1 applies to a so called HARA utility function

Ux) = 1_77(1?7 +9)”



if the parameters satisfy the conditions 0 # v < 1 and 3,4 > 0. In fact,

Bx
B
ﬁ—i—é

RV, (z) =

rel

is a non-constant and increasing function of x and

RY.(z) =

abs

is a decreasing function of x.
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