ON BOUND STATES FOR SYSTEMS
OF WEAKLY COUPLED SCHRODINGER
EQUATIONS IN ONE SPACE DIMENSION

MICHAEL MELGAARD

ABSTRACT. We establish the Birman-Schwinger relation for a class
of Schrédinger operators —d?/dz? ® 1y + V on L?(R,H), where
H is an auxiliary Hilbert space and V is an operator-valued po-
tential. As an application we give an asymptotic formula for the
bound states which may arise for a weakly coupled Schrédinger op-
erator with a matrix potential (having one or more thresholds). In
addition, for a two-channel system with eigenvalues embedded in
the continuous spectrum we show that, under a small perturbation,
such eigenvalues turn into resonances.

1. INTRODUCTION

In a recent paper [22] (see also [21]) we studied spectral and scatter-
ing theory for the two-channel Schrodinger operator

- -~z 0 Vii V;
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H_H0+V_< 0 —%+1>+<V21 V22> (1.1)
on the Hilbert space L?(R) & L?(R). In the low-energy limit, where
the spectral parameter tends to the boundary point of the continuous
spectrum of H, viz. the point zero, we deduced asymptotic expansions
for the resolvent of H and, as an application, we obtained asymptotic
expansions for the scattering matrix associated with the pair (H, ﬁo)
as the energy parameter tends to zero. Besides being interesting from
the mathematical point of view, the study of spectral and scattering
theory for H, having thresholds at 0 and 1, also works as a useful ex-
ercise towards analogous investigations for various multichannel quan-
tum system with more than one threshold (see, e.g., [23]) because it
describes many actual physical phenomena to a good approximation.
If we replace Hy in (1.1) by Hy = —d?/d2?’®1cv and V by an N x N
matrix potential, we obtain the (usual) matrix Schrodinger operator
on L?(R,C") having a single threshold at 0. The latter, of course, has
attracted a lot of attention during the years. Among recent results
we mention low-energy asymptotics for the corresponding scattering

To appear in Journal of Mathematical Physics 43, no. 11 (2002).
The author is a Marie Curie Post-Doc Fellow, supported by the European Union
under grant no. HPMF-CT-2000-00973.
1



2 MICHAEL MELGAARD

matrix [2, 3], Levinson’s theorem [14], Lieb-Thirring inequalities [20, 4]
and quantum design [7].

A natural question, which seems not to have been addressed in the
literature, concerns how negative energy levels may arise in a system
of weakly coupled Schrodinger equations. In the scalar-valued setting,
weakly coupled bound states for Schrodinger operators have been in-
vestigated in various dimensions (see [19, Chapter VI] and [31, 15, 16]).

In this work we generalize the scalar-valued result obtained by Simon
in dimension one [31] to the analogous matrix-valued setting.

We begin in the more abstract framework of Schrédinger operators
with operator-valued potentials given formally by H = —d?/dz?®14+
V on L?(R,H), where H is an auxiliary Hilbert space and the potential
V' is a B(#)-valued, measurable function on R such that V(z) is sym-
metric for almost all z. In Section 3 we define the Hamiltonian H by
means of quadratic forms (Proposition 3.1) and in Section 4 we estab-
lish the celebrated Birman-Schwinger relation (Proposition 4.2), which
transforms the eigenvalue problem for H into an eigenvalue problem
for a compact operator; the so-called Birman-Schwinger operator.

Equipped with the Birman-Schwinger relation we study weakly cou-
pled bound states in Section 5. We restrict our attention to Schrodinger
operators with matrix-valued potentials. In Section 5.1 we consider
two-channel Hamiltonians with one and two thresholds, resp. First we
consider H(g) = —d?/dz*> ® 1z + gV (z), where V is a 2 x 2 matrix
potential. Theorem 5.2 reveals how non-positive eigenvalues of an aux-
iliary matrix S, defined in (5.2), give rise to negative eigenvalues E;;
of H(g) provided g is small enough. The eigenvalues E;; satisfy an
asymptotic perturbation formula in which we derive the first few coef-
ficients explicitly (see (5.3)). Second, we consider the above-mentioned
Hamiltonian (1.1), henceforth denoted H(g), having thresholds at 0
and 1. In Theorem 5.6 we show how a negative eigenvalue of an auxil-
jary matrix S, defined in (5.9), generates a negative eigenvalue of H(g).
However, if one compares the proofs of Theorems 5.2 and 5.6 (in par-
ticular, the expressions for the matrices T and 'i‘o), it seems that the
argument used in the proof of Theorem 5.2(ii), cannot be modified in
order to treat the situation where zero is an eigenvalue of S. Thus, it
remains an attractive open problem to show that the zero eigenvalue of
S (may) gives rise to a negative eigenvalue of H(g). In Section 5.2 we
state the generalization of Theorem 5.2 to the N-channel Hamiltonian
—d?/dz* ® 1ev + V(z), where V is an N x N matrix potential.

Having studied how negative eigenvalues arise for multichannel Hamil-
tonians under weak coupling, it is natural to address the problem of
perturbation of embedded eigenvalues for a multichannel Schrodinger
operator with a matrix-valued potential. In Section 6 we consider a
two-channel Hamiltonian having eigenvalues embedded in its continu-
ous spectrum. When perturbed by a “short range” potential, we show
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that such eigenvalues move into the complex plane and become reso-
nances. In particular, we verify Fermi’s golden rule (see, e.g., [27, 32]).

There is a vast literature on 2 x 2 operator-valued matrices, e.g. in
system theory (see e.g. [8]) and in semigroup theory (see e.g. [11]).
Most notably in this context is the substantial number of questions of
a general nature which have been answered on spectral theory recently,
see e.g. the survey [33]. However, the methods therein are not related
to ours although some of the questions addressed clearly are, e.g. the
appearance of resonances discussed by Mennicken and Motovilov [24].

2. PRELIMINARIES

1) Vector-valued functions. Let H be a separable Hilbert space with
scalar product and norm denoted by (-,-)% and || - ||%. Then a func-
tion 9 (z) from R to A is measurable if the scalar-valued functions
(¥(x), p)% are measurable, where ¢ denotes an arbitrary vector of H.
If () is such a measurable function, then |[[¢)(z)||% is also measur-
able (as a function with non-negative values). Thus LP(R, ) is de-
fined as the set of equivalence classes of measurable functions v (z)
from R to #, which satisfy that [, ||¢(z)||5,dz is finite if p < oo and
|||oc = ess sup ||¥(z)]|y < oo if p = co. The measure dz is the
Lebesgue measure. For any p the LP(R, #) space is a Banach space with
norm || - ||, = (fg |- |I5,dz)"/?. In the case p = 2, L*(R, H) is a complex
and separable Hilbert space with scalar product (¢, ¥)s = [ (#, ¥)ndzx

and corresponding norm |||z = (¢, 1/));/2. Forn e N, 1 <p < oo, the
Sobolev space WP (R, H) is defined as the space of those ¢ € LP(R, H),
for which all derivatives (weak sense) up to order n are in LP(R, H). If
p =2, W"?(R,H) is a separable Hilbert space denoted by H"(R, H)
with scalar product (¢, ¥)urmau) = [z 2oncol(d/dz)*d, (d/dz)*))y
and norm denoted by |||| g (r,2)-

2) Operators. Below H, Hi, Ho are separable Hilbert spaces. For a
linear operator T, the notations D(T), Ran (T), Ker (T), T*, T, o(T),
p(T) are standard, see for example [25]. By I we denote the iden-
tity operator. The resolvent of a self-adjoint operator 7" is denoted by
R(T,z) = (T — zI)"'. By B(H1,Hs) and S (H1,Hz2) we denote re-
spectively the sets of bounded and compact operators acting from #;
into Hy. With the usual operator norm B(Hi,#Hs) is a Banach space.
We set B(H) := B(H,H) and Soo(H) := Seo(H, H).

3) Trace classes of compact operators. If T € So,(H) then the non-
zero eigenvalues of |T'| = VT*T are called the singular numbers or s-
numbers of 7. Let {s;(T)} denote the (possibly finite) non-increasing
sequence of the singular numbers of T; every number counted according
to its multiplicity as an eigenvalue of |T|. For 0 < p < oo the von
Neumann-Schatten class S,(H1,Hs) is the set of T € Sy (H1, H2) for



4 MICHAEL MELGAARD

which the functional

ITWS, 3900y = D 85 (D)F
j
is finite. The functional || - ||s, (3, #,) i @ norm for p > 1 and the
normed space S,(#1, M) is a Banach space. For p < 1 the functional
is a quasinorm. For additional properties of the spaces S, of compact
operators we refer [5, Chapter 11]. The sets S;(H1, Ha) and So(H1, H2)
are called the trace class and Hilbert-Schmidt class, respectively.

4) Operator-valued functions. Let H; and H, be two separable
Hilbert spaces. From above, a function R 5 z — ¢(x) € H is mea-
surable if and only if all the functions R 5 =z — (Y(z),d)y € C
are measurable. As a result of Pettis Measurability Theorem (see,
e.g.,[10, Theorem II.1.2]) the following properties are equivalent for a
B(H1, Hs)-valued function R 3 z — T(z):

(i) Vo € Ha, V) € Hi, RSz — (¢, T(2)1))3, € C is measurable,

(ii) Vip € H1, R> & — T(x)y € Hs is measurable.

We say that a function R > z — T'(z) € B(H1,H2) is measurable if
it satisfies any one of the above properties (i)-(ii). In the affirmative
case, ||T'(x)||B(z,,m,) is also measurable because

1T (@) 8011,342) = sup (1 T(@)Yllaes /1911342 5
YeD1

where D; is a countable dense subset of ;. Moreover, we can define
LP(R, B(H1,Hz)) as the linear space of (equivalence classes of) measur-
able functions T' : R — B(H1, Hz) such that ||T(-)|| 5, ,m.) € LP(R).

For the functional calculus for self-adjoint operators we recall the
following result which can be found in, e.g., [6, Proposition V.1.2].
Proposition 2.1. If for each x € R, T(x) is a self-adjoint operator
on H and {Ep)(A); A Borel set of R} denotes its resolution of the
identity, the following three properties are equivalent:

(i) R> 2z — Epg)(A ) € B(H) is measurable for all Borel sets A,
(i) R>z — e_“T € B(’H) is measurable for all t € R,
(i5)) R > z — (T(z) — ¢)~' € B(H) is measurable for all ¢ € C\R.

5) Fourier transform. Suppose 1 € L'(R¢,H). Then we define its
Fourier transform (F)(¢) = $(&) = (2m) /2 Jg €™ 9 (x) dz which
is an element of L®(R,H). If ¢ € L'(R,H) N L%(R,H), then 1 €
L2(R,H) with ||#|lz2 = |||lz2. The Fourier transform can then be
extended by continuity to a unitary mapping of the Hilbert space
L*(R,H) into itself.

We have the following criterion.

Lemma 2.2. Let T be an operator on L?*(R,H) defined by

(T6)(x) = /R bz, €)0(E) d, (2.1)
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where t(z,€) € B(H) for each (x,§). Then T is a Hilbert-Schmidt
operator on L*(R,H) if and only if

/w /RE try[t(z, €)t(z, €)] dédz < oo,

In this case,

TV ueon = | [ toulte €)'t ) dei
3

Proof. The Hilbert space H is isomorphic to some L?(Y) space and
therefore it suffices to establish the statement for an operator 7' on
L*(R,L*(Y)) defined by (2.1) for some t(z,£) € B(L*(Y)). Since
L*(R, L?(Y)) is isomorphic to L?(R x Y'), the rephrased assertion fol-
lows immediately from [25, Theorem VI.23]. O

3. THE HAMILTONIAN H = Hy+V

As in the scalar-valued case the quadratic form

holth, 0] = / \(d/dz) )|, dx (3.1)

is closed in L?(R, H) on the domain H'(R, H). Thus, this form gener-
ates a self-adjoint operator Hy on L*(R, H). The free Hamiltonian H,
corresponds to the “Laplacian” —d?/dz? ® 14 on L*(R, H).

A potential V' is a B(#)-valued, measurable function on R. As-
sume that V(z) is symmetric for almost all z, i.e. V(z)* = V(z) for
almost all z. The operator V(z) € B(H) has a unique representation’
in the form V(z) = U(z)|V (z)|, where |V (z)| is the modulus of V (z)
defined by |V (z)| = (V(2)*V(z))"? = (V(2)V(x))*?. We have that
|V (z)| is a non-negative, selfadjoint operator belonging to B(#) and,
moreover, |||V (z)||lsmw) = ||V ()||sz)- The operator U(z) is a par-
tial isometry with initial domain Ran |V (z)|, final domain Ran V' (z)
and KerU(z) = Ker V(z). Observe that U(z)*U(z) = Pryjyy and
U(z)U(z)" = Prayv(yy, where Py denotes the orthogonal projection
onto a closed subspace M. The modulus |V (z)| possesses exactly one
non-negative, self-adjoint square-root |V (x)|'/2 € B(#). The square-
root |V (x)|'/? commutes with every bounded operator which commutes
with |V (z)|. We may define V (z)'/2 = U(z)|V (x)|'/? such that V(z) =
V(z)Y2|V(z)|*/2. Moreover, V(z)/? € B(H) with |V (2)"2||sz) =
[IV (2)||l5¢0)"/? and adjoint (V (z)'/?)* = |V (z)|"/?U(z)*. From Propo-
sition 2.1 it follows that [V, |[V|'/2 and V/2 are B(#)-valued measur-
able functions on R.

We want to establish the following result.

IThe representation is not unique if the potential vanishes on a set of positive
measure
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Proposition 3.1.
(1) If V € L*(R, B(H)) then the real-valued quadratic form

ol d] = [ V@) (o) [V @) P da
R
1s Hy form-bounded with relative bound zero.
(ii) If V € L'(R,So(H)) then v is Hy form-compact.
It follows from Proposition 3.1(i) and the KLMN theorem [26, The-

orem X.17] that the form sum

h[?/), w] = ho[@b, w] + U[wa q/)]

is closed and semi-bounded from below on H!(R¢, H) and thus gener-
ates a self-adjoint operator H = Hy + V on L*(R,H). From Propo-
sition 3.1(ii) and Weyl’s essential spectrum theorem it follows that
Uess(H) = Uess(HO) = [Oa OO)

Proof of Proposition 3.1. The “kernel” of the resolvent of Hj is given
by (see, e.g., [28, Theorem 9.5.2])

e~ VEllz—y|
Qz —y;V|E|) = ENCE E <0. (3.2)

(i) To show that the form v is infinitesimally Hy form-bounded, it
suffices to show that the form

wlg] = (|V['/*(Hy — E)™?¢,V'/?(Hy — E)™'2¢) 12w )
is bounded on L?(R,?) and that its norm

fol e ing  LVIV2CH = B) 20V (Hy — B) 1)
pEL2(R,H) ||¢||2

tends to zero as E — —oo. By the definition of ||w]||, and since U in
V12 = U|V|'/? is a partial isometry, we have that

lw|| < [[|V['*(Ho — E)~ (3.3)

1/2
[
Therefore, it is enough to show that the right-hand side of the latter
tends to zero as £ — —oo.
We consider first V € L*(R, B(#)). For such V' we have that
H|V|1/2 H E —1/2

=|[[V['"*(Hy - B) '|V|'/? (3-4)

HB L?) HB(L2)

Let a = \/|E| and ¢ € L*(R,H). Then Holder’s inequality yields that

IVI*72(Ho + o)~ V2] () |,

1 1/2
< 50 V@ 1Vl oy 19l 20
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The latter implies that

B 2
[IVI2(Ho + o) VY26 g
1
< [ 227 V@l 1V 1 101

1
< @“VH%I(R,B(%))||¢||%2(R,H)-

In conjunction with (3.4), the latter shows that the right-hand side
of (3.3) tends to zero as E — —oo, which establishes assertion (i)
for Ve L*®(R,H). A standard approximation argument yields the
assertion for general V.

(7). Tt suffices to show that the form

wlg] = (|V|'/*(Hy — E) '*¢,V'/*(Hy — E) '*¢)

defines a compact operator in L?(R,H). Under the assumption in (i)
we already know that w generates a bounded, self-adjoint operator W
in L*(R,H). Let us show that I is a Hilbert-Schmidt operator. From

trp (W W) =tr (VV2(Hy — E) Y (VY3)*|V|V2(Hy — E)"Y(|V|'/3)"),

we see that it is enough to show that W, = |V|'2(H, — E)~}(|V[}/?)*
and Wy = VY2(Hy — E)~'(V'/2)* are Hilbert-Schmidt operators on
LA(R,H). Tt is enough to show it for Wy; the proof for W; is similar.
The operator W, has integral ”kernel”

Kw,(z —y; ) = V(2)'?(2a) e ¥(V(9)'?)", a=V-E>0.

Using the criterion in Lemma 2.2 and the assumption in (ii), we esti-
mate as follows:

/R/RtrH[Km(x—y;a)*KWz( —ya ]dﬂfdy—//( o—alz— y|>

xtry[(V(y )1/2)**(‘/( )2V (@) 2V (y)"2)] ddy

L)

xtry [V (y) 2V (2)| V20 (2) U (2) |V ()| V2(V (y)"/)] dady

://Cﬂw>%ﬂwwwwwmy
< iz [ V@ lssan @ [ V6l

This shows that W, is a Hilbert-Schmidt operator in L?(R, H). O

We note that V € L'(R, B(#)) implies that |V| € L'(R, B(H)) and,
in view of Proposition 3.1(i), |V/| is infinitesimally H, form-bounded.
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Consequently, the following mappings are bounded:

V, V] : HRH) = H'(RH) (3.5)
VY2 vi2 . HYR H) — L*(R,H) (3.6)
VY2 VIZ s 2R H) — H YR, H). (3.7)

The qualitative behaviour of any possible negative eigenvalues of
Hy + gV as g — 0 is described by the following simple result.

Proposition 3.2. If V € LY(R, B(H)) then any negative eigenvalues
of Hy + gV approach zero as g tends to zero.

Proof. Following [31] it suffices to show that there are positive constants
go and C such that Hy + gV > —Cg for all g > g > 0.

Let F denote the Fourier transform of vector-valued functions in
L*(R,H) (see Part 5 in Section 2). We observe that, as for scalar-

valued functions, a function ¢ whose Fourier transform is integrable is
bounded and continuous with the usual estimate

o)l < <= [ 170 e 38)

For an arbitrary v > 0, Holder’s inequality yields that

(f ||f¢(»:)||ﬂd§)2

2 2 —1d 2 2 f 2 d )
s(/R(g ) g) (/R(& IS (E) 2 de
= §||<—z's + ) F |2z = §||<H3/2 + 7Bl 50

27
< S I 0l an + 9l - (3.9)
Let d = max{1/v,1}. Then (3.8) and (3.9) imply that
l6@) Il < d {10l ta 0+ 1911F2m0 ] (3:20)

for any ¢ € D(HS/Q) = HY(R,H). The Sobolev type inequality (3.10)
implies that

hold] > IHY o — 0 / 1V (@) s 62|13, de
> (1 gd)Hy 1220 — 9011161222

where di = d||V[[71g g When we take C = di, go = d;' and
0 < g < go, we arrive at hy[¢] > —Clg as desired. O
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4. THE BIRMAN-SCHWINGER RELATION

The Birman-Schwinger relation has been established rigorously for
various classes of operators in the scalar-valued setting (see, e.g., [30,
31, 17]. Tt asserts that F is a negative eigenvalue of H = —d?/dz* +V
if and only if —1 is an eigenvalue of the operator V'/?(—d?/dz? —
E)~'|V|*2. Formally this is obvious since ¢ = V/24¢) is a solution to
V2 (—d?[dz? — E) V|V = —¢.

Here we provide a simple proof of the Birman-Schwinger relation in
our concrete operator-valued setting. For this purpose we introduce the
Birman-Schwinger operator Kg(V) = VY/2(H, — E)"}|V|'/2, E < 0,
where Hj is the nonnegative, self-adjoint operator associated with the
quadratic form hg in (3.1). Setting o? = —F, its integral "kernel” is
given by

Ko(z,y) = V(2)2(20) te *= YV (y)]?,  a>0.
We have the following result.

Lemma 4.1. If V € L'(R,Sy(H)) then the Birman-Schwinger opera-
tor Kg(V), E <0, is a Hilbert-Schmidt operator on L*(R, H); in par-
ticular Kg(V') is a compact operator. Moreover, ||Kg(V)||sw2m®mn) —
0 as E — —o0.

Proof. We argue as for the operator W5 in the proof of Proposition 3.1(ii).
We omit the details. O

Having introduced the compact Birman-Schwinger operator we may
formulate the Birman-Schwinger relation.

Proposition 4.2. Let V € L'(R,S2(H)). Then E < 0 is an eigenvalue
of H= Hy+V (defined by a quadratic form) having multiplicity s if
and only if —1 is an eigenvalue of Kg(V') having geometric multiplicity
.

To establish Proposition 4.2 we need the following two results.
Lemma 4.3. IfV € L' (R, B(H)) then for E < 0 the operators |V|'/?x
(Hy — E)~Y2 and VY2(Hy — E)~Y% are bounded on L*(R,H).

Proof. Since V' is Hy form-bounded, it follows immediately from (3.6)
and (3.7) in conjunction with the fact that the operator (Hy— E)~%/2 is
a bounded map from the domain L*(R,H) to the range H'(R,H). O

Lemma 4.4. Let S and T be bounded operators on the Hilbert space
K. Then o(ST)\{0} = o(T'S)\{0}. Moreover, A # 0 is an eigenvalue
of ST having geometric multiplicity m iof and only if X is an eigenvalue
of T'S having geometric multiplicity m.

Proof. This is a simplified version of Theorem 2(i) in [9]. O

Proof of Proposition 4.2. Let hg be the form of Hy, let v be the form
of V and let h = hy + v be their form sum. According to Lemma 4.3
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the operators |V|'/2(Hy— E)~"/? and V'/?(H, — E)~'/? are bounded on
L*(R,?#) and, consequently, the operator I +[|V |'/2(Hy— E)~'/2]*V1/2
(Hy — E)™'/2 is bounded on L?(R, ). Moreover, the operator A=t =
(Hp — E)Y? has domain H*(R, ) and range L*(R, ). Thus, we may
introduce an auxiliary sesquilinear form a defined on the form domain
H'(R,H) x H'(R,H) by

alg, v] = ([I + ([V['/?A)'V'/2A] A'¢, A7My) . (4.1)
We re-write a and find that
alg, ¢] = (A7 g, A7) + (([V'PA))VIPAAT G, A7) . (4.2)

- o -

-~

arb] as[.]
Clearly,

and, since |V|['/2A is bounded on L*(R, H),

as[p, ] = (VI/PAAT'G,[[V|'2ATT AT
= (V2¢,|V|'2AA™ ) = v]p, ). (4.4)
Hence, (4.2)-(4.4) shows that the forms a and h — E are identical.
Suppose that £ < 0 is an eigenvalue of H = Hy+ V, i.e. there exists
an eigenfunction ¢ € D(H), ¢ # 0, such that (H — E)y = 0. This is

equivalent to (h — E)[t, ¢] = 0 for all $ € H*(R,H). Since the forms
h and a are identical, we may introduce u = A !¢ and deduce that

0=al,¢] = ([I+(V['?A)V2A] A7y, A7), Vo € H'(R ),

= ([I+(|V|"2A)'V'/2A] A", u), Vo € L*(R,H),
because u runs through L?(R,H) as ¢ runs through H'(R,H). Conse-
quently, (I + [|[V['/2A]*V'/24) v = 0, where v = A~'¢) = (Hy— E)"/?¢),
so —1 € o,([|[V|V/2A]*V1/2A). By reversing the arguments leading to
the latter conclusion, we infer that

E € 0,(Hy+ V) if and only if —1 € o,([|[V|'2A]*V/24)  (4.5)

Since (Hy — E)'/2 is injective from the domain L2(R, ) to the range
H'(R,H), the arguments above also show that the multiplicities of the
eigenvalues £ and —1 must be equal. In view of Lemma 4.4 and the
definition of A, (4.5) implies that

E € 0,(Hy + V) if and only if
~1 €0, (V2(Ho — B) Y2[|V|V2(Ho — E)?")  (4.6)
and the multiplicities of £ and —1 are equal. But [|V|'/?(Hy—E)~'/?]* =

(Hy — E)~'2|V|'/?) and therefore, in view of the definition of Kz(V),
(4.6) yields that E € 0,(Hg+ V) if and only if —1 € 0,(Kg(V)). O
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If ¢ is fixed and A(«) is an eigenvalue of K,(V) then the Birman-
Schwinger relation asserts that any solution oy > 0 of

gA(ag) = 1 (4.7)

is associated to the eigenvalue E(g) = —a; of H(g). The latter equa-
tion plays a crucial role in Section 5.
Define the operators L, and M, by their “kernels”:

Lawy) = 5 V@V ()7, (4.9
Maay) = V@l V)2 (19)

Moreover, we introduce the operator M, with ”kernel”

My(e,) = 5V () Pl — ol [V ()] 72 (1.10)

Imitating [31] we obtain the following result.

Lemma 4.5. If [p(1 + [z*) [V(2)lls,3) dz < o0 then the following
assertions are valid:

(i) The operator My is Hilbert-Schmidt on L*(R, H).

(i1) As a ] 0, the operator M, converges to My in the Hilbert-Schmidt
norm on L*(R,H).

(iii) The Birman-Schwinger operator gK,(V') has eigenvalue —1 if and
only if the same is true for g(1 4+ gM,)~'L,.

Proof.
(i) It follows from the estimate

//tTH[Mo(x,y)*Mo(x,y)] dxdy
R JR
1
< 5//(\x|2 + 1y V@) lls, 3 11V @) lls ) dzdy < 0.

(ii) We want to show that

/ / e [(Ma — Mo)(z,y)*(Ma — Mo)(z, )] dady — 0 (4.11)
as a | 0. Now,

b [(Me = Mo) 2, 0)° (Mo = M), )
e = 1)+ Sla gl V@ V),

and since |5 (e=**¥ — 1) + |z — y|| — O as a | 0, we have the point-
wise convergence

try [(Mo — Mo)(z,y)"(My — My)(z,y)] — 0 as a ] 0. (4.12)
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Moreover,
2

! e [V @)V (W)]]

_(efalcv*yl —1)

Mo (z,) Ma(2,9)] = |5

2

try [|[V (@) [V (y)[] = tra[Mo(z,y)" Mo(z, y)]. (4.13)

<|sle—y
_x_
<|gle—y

It follows from (i) and (4.12)-(4.13) in conjunction with Lebesgue’s
dominated convergence theorem that (4.11) holds.

(iii) It follows from (4.13) that ||Mg||r2@n) < [[Mallas < |[Mollas.
Hence, || M, | 52 3)) is bounded independently of o € (0, ] for some
o > 0. Therefore, for g small enough, |gM,|sr2kn) < 1 and,
consequently, (1 + gM,) ! exists and is bounded for these g and a. In
particular, we may write 1+ gK,(V) = (1+gM,)[1+ g(1+gMy) " Ly]
from which the assertion follows. O

5. WEAKLY COUPLED BOUND STATES

Throughout this section operators (resp. vectors) are denoted by
boldface capital (resp. small) letters to emphasize their matrix (resp.
vector) structure.

5.1. Two-channel Hamiltonians with matrix-valued potentials.
We consider the case where the potential is a 2 X 2 matrix-valued
potential V(z) with measurable functions V;; on R as entries. The
Euclidean inner product and norm in C? are denoted by (-,-)cz and
| - ||z, respectively.

Assumption 5.1. o
(a) V(z) is symmetric, i.e. Vj; = Vj;.
(b)
[+ =D IV@le) do < .

(c) The functions Vj; are real-valued.

5.1.1. Two-channel Hamiltonian with a single threshold. First we con-

sider the Hamiltonian H(g) = Hy + ¢gV(z) in L?(R, C?), defined in

Proposition 3.1 by means of forms. Formally, we may write the Hamil-
tonian as

-0 Vi Vi

H —H V = dz? 11 12 5.1

w=m+v=(" )i 3E) 6

in L*(R,C?) = L*(R) & L?(R). Under Assumption 5.1 we know that

its essential spectrum equals the half-axis starting at the (threshold)

point zero.
Define the matrices S and T by

S :/RV(:U) dz, Tp= —%/R/RV(QJ)M:—y\V(y) dyde.  (5.2)
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We establish the following result.

Theorem 5.2. Let 'V obey Assumption 5.1(a)-(b) and let H(g) =
Hy + gV(z) be the self-adjoint Hamiltonian on L*(R,C?) defined in
Proposition 3.1 by means of forms.

(i) Assume that the matriz S, defined in (5.2), has n (< 2) negative
ergenvalues, denoted by s;, with multiplicities »;. Then, for a small
enough g, the two-channel Hamiltonian H(g) has precisely Y . | s
negative eigenvalues (taking into account multiplicity) E;; satisfying
the formulas

2

g g
(_Eij(g))1/2 = =S + E(Vij;TOVij>(C2 + 0(¢°), (5.3)

1=1,...,n, 7=1,...,,

where Ty is defined in (5.2) and v;; are the eigenvectors corresponding
to the eigenvalue s; of S.

(i1) Suppose that V obey Assumption 5.1(c) and that the matriz S has
n non-positive eigenvalues, denoted by s;, with multiplicities ;. If the
etgenvectors vo;, j = 1,..., 3¢, associated with the eigenvalue zero of S
satisfy (vo;, Tovoj)cz # 0 then the conclusion of part (i) remains valid.

Proof. According to the Birman-Schwinger relation formulated in Propo-
sition 4.2, E(g) < 0 is an eigenvalue of H(g) if and only if —1 is an

eigenvalue of gK,(V) with o> = —E(g). Furthermore, in view of

Lemma 4.5(iii), the operator gK,(V) has eigenvalue —1 if and only

if the same is true for g(1 + gM,) 'L,. Now let us denote the (un-

known) eigenvalues and eigenfunctions of (1 + ¢gM,) 'L, by ux(g, @)

and Wy (z; g, a), respectively, viz.

(1+ gMa) Lo ®i(z; 9, @) = pi(g, @) @i(z; 9, ). (5.4)

Let u; € C? be a constant vector. We insert

1 _
U(w;9,0) = 5~(1+ gMa) NV ()Y uy,

20
into (5.4) and obtain
Ryuy, = pu(g, o)uy, (5.5)
where R, is the matrix
1
R, = oo [ V@14 9M) V) de
R

Define S as in (5.2) and, moreover, define
T(@) = [ V)MV ) do
R
Then we have that

. 1 g 2
R, = 2aS 2aT(a) + 0O(g%)
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for small g.

(i) By assumption the matrix S has n negative eigenvalues, denoted by
sg- For simplicity we assume that the eigenvalues s; are simple. The
corresponding eigenvectors are denoted by vi. We apply the regular
perturbation theory to the eigenvalue problem (5.5) and we find that

1

(9. @) = 55k = o= (Vi T(a)vi)a + O(g?).

Define the matrix Ty as in (5.2) and

=1 [ [ V@l =uv) deay

Then we have that T(a) = Ty +aT;+0O(a?). In this way we find that
the eigenvalues associated with the eigenvalue problem (5.5) are

1

g
:u'k(ga a) = %Sk - %<Vk, ToVk><c2 + 0(92)-

Together with the comments following the proof of Proposition 4.2, the
latter implies that the solution to (4.7) is
g. . g 2
Qg = —58]9 + E(Vk, T0Vk>(c2 + O(g ) (56)

Clearly, (5.6) implies that each negative eigenvalue s, of S gives rise to
precisely one negative eigenvalue Ey(g) of H(g) obeying the asymptotic
formula

2

(~Ee(9))"? = =5+ % (vio Tovi)er +O(g”).

(ii) We investigate the situation where zero is an eigenvalue of S (as
above we restrict ourselves to the case where zero is simple). Let Svy =
0 for some vy # 0. Taylor’s formula yields

<v0, / / Vo) y‘V(y) dxdyv0>(c2
2a(v0,S Vol — —<v0,//V e — yIV(y )dxdyv0>c2
+oz<v0,//V O(lz — y)V ()da:dyv0>c2.

Since Svy = 0 by assumption, the first term equals zero. As a | 0, we
obtain that

—alz—y|
(vo, Tovo)e2 = lim <v0,//V(.r)e V(y) d:cdyv0>
(CZ

—alz—y|
:]imz / / Vie(2)Vij () (vo)i (Vo) dzdy.  (5.7)
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Let F denote the one-dimensional Fourier transform and let (FV)(¢)
denote the matrix with elements (FV);;(§) = (FVi;)(€) satistying
FVi; = FVj; because V is symmetric and V;; are real-valued. Using
the latter in conjunction with the Fourier transform of (1/2a)e !,
which equals 1/(£2 + o?), we find that

rhs. of (5.7) = hmz / s PV O V) @ (vo)ilvo); de

al0 4

_ / & (Vo (FVY (OFV) vy de

— én(m(s)v()né d > 0, (5.8)

By assumption, (vg, Tovo)cz # 0 and therefore (5.8) implies that there
is also a negative eigenvalue of H(g) associated with the eigenvalue
zero of S. g

Remark 5.3. The reasoning in the proof of Theorem 5.2(ii) requires
that the entries Vj; in the potential V are real-valued. A substan-
tial improvement would be to establish the result for complex-valued
entries.

Ezample 5.4 (Square-well potentials). Let x[o,1j denote the character-
istic function associated with the interval [0,1]. Choose the following
entries of V:

Vi) = —5xpu(@), Valz) = —3xp1(2),
Vig(z) = Vai(z) = =3axp,y(z), a> 0.

Then the matrix S equals

-5 —3a
S = (—Sa —3)

and it has two real eigenvalues given by —4 + /1 + 9a?. Thus the fol-
lowing cases are possible: 1) If ¢ > \/5/73 there is exactly one negative
eigenvalue of S, namely —4 — v/1+9a2. 2) If a < m there are two
negative eigenvalues of S, namely —4++/1 + 9a?. 3) If a = \/% there
are two nonpositive eigenvalues of S, namely —4 — v/1 + 9a? and 0.

5.1.2. Two-channel Hamiltonian with two thresholds. As an example
of a Hamiltonian with more than one threshold, we consider the one in
(1.1), having thresholds at 0 and 1. Henceforth its free Hamiltonian is
denoted by H,. The essential spectrum of H, is the union of the half-
axes starting at the thresholds, i.e. 0es5(Hg) = [0,00). The resolvent
of Hy is given by

=~ 2N—1 __ (—d2/d$2 + 052)71 0
(Ho +0a%)™ = ( 0 (—=d?/dz* +®> + 1)1 ) a >0,
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where the entries have the integral kernels

ie—alm—y\ and #e—m\z—yl'

2a 2va? +1
It is easy to show that the assertions of Proposition 3.1 are valid if one
replaces Hy by H,. In this way we obtain a self-adjoint realization of
the formal Hamiltonian Hy + ¢V in L2 (R, C?). Moreover, the Birman-
Schwinger relation in Proposition 4.2 holds for H(g) = Hy + ¢gV.

Define the operators L, and M, by their “kernels”

= ]- 1 1 0
_ /2 1/2
Lolen) = 5 V@ (5 o) VG
_ Lokl —1] o
M, (z,y) = V(gﬁ)l/2 (2 0 e~ Val+ijz—y| \V(y)\lﬂ-
2V a2 +1
Moreover, we introduce the operator M, by its kernel

~ —Lz - 0
Moa) = Vi (7T L v
2

By making a few obvious changes to the proof of Lemma 4.5 we obtain
the following result.

Lemma 5.5. Assume that [u(1 + [z]?) [V (2|52 dv < 00. If Kq,

Ly, M, and My in Lemma 4.5 are replaced by K, L,, M, and 1\7[0
then the assertions (i)-(iii) of Lemma 4.5 are still valid.

Define the matrices

5 _ (fRVHO(x)dx fRVuO(a:) dfc)’ (5.9)

Ty = /R/RG) 8) V(z) (‘é‘%_m e_|g_y|>V(y)dmdy. (5.10)

For the Hamiltonian ﬁ(g) we are able to derive an analogue of part
(i) in Theorem 5.2.

Theorem 5.6. Let V obey Assumption 5.1(a)-(c) and let H(g) =
H, + gV (z) be the self-adjoint Hamiltonian on L2(R,C2) defined in
Proposition 3.1 by means of forms.

Assume that the matriz S, defined in (5.9), has a negative eigenvalue
§ (such an eigenvalue is simple if it exists). Then, for a small enough
coupling constant g, the eigenvalue § of S gives rise to exactly one neg-
ative eigenvalue E of the two-channel Hamiltonian ﬁ(g) The negative
eigenvalue E satisfies the formula

(B@)"? = ~Li+ L@ EWe + 06, (1)

where Ty is defined in (5.10) and ¥ is the eigenvector corresponding to
the eigenvalue § of S.
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Proof. Imitating the proof of Theorem 5.2 we arrive at the eigenvalue
problem

ﬁ'guk: = Mk(g, a)uka (512)

where f{g is the matrix

R, = o [ (b 0) V010 +08) V)

Define the matrix S as in (5.9) and, moreover, define

T = [ (g o) VORIV ) de

Then we may write

~ 1

R, S — i’i‘(oz) + 0(g%

2a 2c

for small g. From here on everything depends on the possible eigenval-
ues of S. Let

a:/RVH(a:) dzx.

The following cases may occur: 1. If @ # 0 then there are two subcases.
L.1. If @ > 0 then S has the eigenvalue zero and the positive eigenvalue
a, each of multiplicity one. 1.2. If ¢ < 0 then S has the eigenvalue
zero and the negative eigenvalue a, each having multiplicity one. II. If
a = 0 then S has the eigenvalue zero with multiplicity one.

Repeating the reasoning in the first part of the proof of Theorem 5.2
we show that a negative eigenvalue of S (from 1.2 it has multiplicity
one) generates exactly one negative eigenvalue of I:I(g) provided g is
small enough. U

Remark 5.7. The matrix S always has the eigenvalue zero. It remains
an open problem to settle whether or not the latter gives rise to a
negative eigenvalue of H(g) for a sufficiently small g.

5.2. N-channel Hamiltonian with matrix-valued potentials. In
this section we consider the case where the potential is a N x N matrix-
valued potential V(z) with measurable functions V;; on R as entries.

Assumption 5.8. o
(a) V() is symmetric, i.e. Vj; = V;;.

(b)
[+ 1) W @laen, da < o

(c) The functions V;; are real-valued.
Define the matrices S and T by

S :/RV(x) dz, Ty = —%/R/wa)m—yw(y) dydr.  (5.13)
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We have the following result.

Theorem 5.9. Let 'V obey Assumption 5.8(a)-(b) and let H(g) =
H, + gV (z) be the self-adjoint Hamiltonian on L?(R,C?) defined in
Proposition 3.1 by means of forms.

(i) Assume that the matriz S, defined in (5.13), has n negative eigenval-
ues, denoted by s;, with multiplicities s¢;. Then, for a small enough g,
the N-channel Hamiltonian H(g) has precisely Y ;.| »; negative eigen-
values (taking into account multiplicity) E;; satisfying the formulas

2

g g
(_Eij(g))1/2 = _§3i+ 5( ii» Tovij)en + 0(g%), (5.14)

1=1,...,n, 7=1,...,,

where Ty is defined in (5.13) and v, are the eigenvectors corresponding
to the eigenvalue s; of S.

(i1) Suppose that V obey Assumption 5.8(c) and that the matriz S has
n non-positive eigenvalues, denoted by s;, with multiplicities ;. If the
etgenvectors vo;, J = 1,..., 24, associated with the eigenvalue zero of
S satisfy (voj, Tovoj)ey # 0 then the conclusion of part (i) remains
valid.

Proof. The proof is a straightforward generalization of the proof of
Theorem 5.2. (|

Remark 5.10. One of the referees pointed out that Theorem 5.9 was
proven in Seba [29]. Therein, however, Theorem 3 is incorrect because
the quantity [, (1/p%)(ag, F(V)%(p)a), dp (in Seba’s notation) is not
necessarily different from zero. Moreover, the Birman-Schwinger rela-
tion (in the matrix-valued setting) is stated without proof.

6. PERTURBATION OF EMBEDDED EIGENVALUES

For the sake of completeness we consider perturbation of two-channel
diagonal Hamiltonians with one-dimensional Schrodinger operators as
component Hamiltonians, having eigenvalues embedded in its continu-
ous spectrum.

6.1. Two-channel Hamiltonians. Consider the formal expression
Hyy 0 V11($) V12(33)
H(g)=H(0 V= 6.1
w=n0+v=("" 2 )+ (118 1) e
in # = L*(R) ® L?(R), where

@2 d?
Hy = 73 + Wii(x) and Hoy = 0 + 1+ Wa(z). (6.2)

We impose the following assumptions on the potentials W;;, 7 =1, 2.
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Assumption 6.1. Suppose that the real-valued, measurable functions
Wi;ji, 7 = 1,2, satisty:
(a) Wj; # 0.
(b) The bound
Wjj()| < C 1+ |z)~° (6.3)

holds for some C, 6 > 0 and all x.
(©) J Wys(a) do < 0.
(d) W;; extends to a function analytic in the sector

Aoy ={2€C : |argz| < ap }
for some g > 0. Moreover, the bound (6.3) holds in this sector.

Under Assumption 6.1(a)-(c) the operator Hy; = —% + Wi (z) is
self-adjoint in L?(R) and o(Hy1) = 04q(H11) U 0ess(Hi1) = 04(Hyp) U
[0, 00) with a non-empty discrete spectrum gy < pg < --- < py < 0,
which is simple and finite [31]. The corresponding normalized eigen-
functions ¢, , n = 1,2,..., N, are exponentially decaying. The ana-
lyticity requirement in Assumption 6.1(d) is convenient to adopt for
analyzing the resonance behaviour. Similarly, the operator Hoy =
@’ 1 1 + Was(z) is self-adjoint in L2(R) and o(Has) = 0q(Has) U

T dz?

Oess(Haa) = 04(Hae) U [1,00) with a non-empty discrete spectrum
< vy < --- < vy <1 which is simple and finite. The correspond-
ing normalized eigenfunctions x,, , m = 1,2,..., M, are exponentially
decaying.

Consider the unperturbed Hamiltonian H(0) = diag (Hi1, Hap). As-
sumption 6.1 ensures that

UC(H(O)) = Uess(H(O)) = Uess(Hll) U O-ess(HZZ)
= [0,00)U[1,00) = [0, 00).

Thus, the continuous spectrum of H(0) is the union of the two half-
lines starting at 0 and 1. This motivates the definition of the threshold
set T = {0,1}. Furthermore, 0,(H(0)) = 0,(H11) U 0,(H22). Among
this (finite) set of eigenvalues, a (finite) subset is isolated or situated
at the threshold 0, while the rest satisfying the condition 0 < v, < 1
is embedded in the continuous spectrum of H(0). For the sake of
simplicity we make the following assumption.

Assumption 6.2. Suppose that none of the embedded eigenvalues v,
of H(0) coincide with the threshold 0.

We impose the following conditions on the components of the per-
turbation V.

Assumption 6.3. Suppose that the real-valued, measurable functions
Vij» 1,7 = 1,2, satisfy:
(a) The bound

Vij(@)] < C (1 + |2)77° (6.4)
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holds for some C, 6 > 0 and all x.

(b) Vj; extends to a function analytic in the sector A,, (see Assump-
tion 6.1(d)) for some ag > 0. Moreover, the bound (6.4) holds in this
sector.

6.2. Complex dilation. We use a complex deformation. For 6 real
define Sy on L?(R) by the unitary operator

(Sevp) = " (e’z), ¢ € L*(R). (6.5)

Sp is a one-parameter unitary group on L?(R). It is easy to see that
Sp leave D(—d?/dz?) = H?*(R) invariant and that
_op @

d?
Hyp:= S()Hnsg_l _20d > +Wn o(x) = —e ) + Wn(@ ),

Let Ay ={0 : |Imf| < min{ap,7/4} (cf. Assumption 6.1(d)). Under
Assumption 6.1, Hy; g obviously has a continuation to a type (A) family
of m-sectorial operators analytic in the sense of Kato [13] for § € Ay.
Likewise,

d
d 2+1+W229( ) —e d 2+1+W22(6 33)

has a continuation to a type (A) analytic family of operators on A,.

From standard Aguilar-Combes theory [1] we determine the spectra of
Hi19 and Haog:

o(Hug) ={pm, pa, -, pn} U {e™X = A € [0,00) },
O-(H22,0) = {Vl, Vo, ..., Z/M} U {6729)\ +1: A € [0, OO) }
Having extended Sy in (6.5) analytically to 4, we may define
Se 0\ ([
Sy = v .
= (T 5) (1) ven

Due to its diagonal structure, the Hamiltonian

H,(0) := S,H(0)S," = <Hn,0 0 )

Hopp = SpHor S, ' =—e

0  Hyy

has a continuation to a type (A) analytic family of operators in the
sector Agy. Furthermore,

o(Hy(0)) = o(Hup)Uo(Hap)
= {1, por - un} U, ve, v}
U{e X :xe0,00)}U{e®X+1:A€0,00)}.
In particular, the eigenvalues embedded in o(H(0)) are discrete eigen-
values of Hy(0) for § nonreal.
Henceforth E; denotes any of the embedded eigenvalues v, of H(0).
Let Ry(f;¢) denote the resolvent of Hy(0). Since Ej is an isolated

eigenvalue of Hy(0), we may choose a contour I' around Ejy such that
" belongs to the resolvent set of Hy(0) and Ej is the only eigenvalue
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of Hy(0) contained inside of I'. Moreover, let Py denote the eigenpro-
jection associated with the eigenvalue Ey and put

1 R (0 ()
S .= — 0 d . .
Then Py = _Sgo) and Ro(6;¢) := Sgl) is the reduced resolvent of Hy(0)
at the point (. Define

— -1 _ ) ’ 3 L. — .. 0
Vy=SyVS, = <V21e Voo 0) with Vi;¢(z) = Vij(e’x).

Then we have the following result.

Lemma 6.4. Let Assumption 6.1 and Assumption 6.3 hold. Let T be
the contour described above and let Sgp) be defined in (6.6).
(i) If Im 0 € (0, ) then there exists a constant Cy > 0 such that

I?gFX”gvaRo(Q;OH < Cylgl. (6.7)

If ¢ is replaced by (o = min{uy,v1} — 1 then the constant in (6.7) is
independent of 6 and the estimate holds for all |Im 0| < «.
(i1) For p > 0 there exists a constant Cy > 0 such that

] 9|

lgVeS{ |l < oo [@ist (B TP

Proof. The contour I' is by assumption contained in the resolvent of
H,(0). Since Rg(#;-) is bounded and continuous and I' is compact,
there exists a constant Cj such that maxcer [|Ro(6; ¢)|| < Cp.

Thus, max¢er ||[VoRo(0;¢)|| < CyCy, where Cy denotes a bound
on the norm of Vy, Wthh is independent of # by Assumption 6.3(b).
This shows the first claim. Moreover, (j is to the left of the numerical
range ©(Hy(0)) of Hy(0) at the unit distance. Hence ||Rg(8; ()|l =
1/[dist(Co, ©(Hg(0)))] = 1. Therefore the constant Cy in the above
estimate may be replaced by 1. This verifies (i). The assertion (ii)
follows immediately. O

Hence, provided g is small enough, it follows from Lemma 6.4(i) that
gVy is Hy(0)-compact. The latter, in conjunction with [27, Lemma 1,
page 16], implies that the perturbed operators Hy(g) = Hy(0)+gVy are
a type (A) analytic family of operators for § € Ay and suitable small g.
Since Fj is an isolated, simple eigenvalue of Hy(0), the analyticity of
Hy(g) allows us to apply regular perturbation theory. The next section
is devoted to this task.
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6.3. Perturbation series and Fermi’s golden rule. Following Kato
[13, Sections I1.2 and VII.1] and using Lemma 6.4 we infer that Hy(g)
has an eigenvalue near Fy given by a convergent power series in g. The
convergent, series is given by

E(g)=Eo+ Y E;(g), (6.8)
j=1
where '
i(9) = Z —tr Hg 09 (6.9)
pripi=i1 i=1

In view of Lemma 6.4(ii) we see that E;(g) = O(¢?).
Let us compute the lowest-order terms of the series (6.8). Since
Rank Py = 1, Py can be represented as

P (o (e)) ()

with x? := Spxm, where X,, is the eigenfunction associated with
the eigenvalue Ey of Hiy. Indeed, Hyppy = X0 = SgHzgSa_ngxm =
EoSoxm = Eox?, and, consequently,

Ho(0) (Xofn> N (Hgﬁ HSM) (X%n) — <X%n) '

We compute Ei(g):

Ei(g) = tr(gVePg) =g < (Xofn) Vo (X%n) >7—¢
— g < (X(D 'V (X(jn) >% = 9(Xm, Va2Xm)12(®)- (6.10)

We see that the first-order term is real and does not contribute to the
resonance width. Next, we consider Ey(g). According to (6.9),

Ey(g) = —g*tr (Po VR (6; By — i0)VyPy).

Due to the standard constancy-in-6 argument (see e.g. [27, pages 55-
56]), we may take the limit Im§ — 0 and in this way we arrive at

BEs(g) = —g°tr (PoVR,o(0; By — i0)VPy)

- () v (),

2, (6.11)
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where the notation [(H;; — Fy +40)~!] refers to the reduced resolvent
of Hy;, 7 =1,2.

3>
We restrict our focus to the imaginary part of Ey(g), which deter-

mines the resonance width to leading order. For this purpose we intro-
duce

~

Rk = ((—d2/d$2 + Wkk(ac) - EO + tk; - ZO)_I) y k= 1, 2,
where t; = 0 and t; = 1 are the thresholds. Clearly,
2
Im B(9) = =g > _ (VieXm (Im Ri)VioXm) r2w)-~ (6.12)
k=1
Now, for F > 0, the resolvent equation yields that

m (—d?/da* + Wi (z) — E — 710)‘1 =

= t3(E +i0)*Im (—d*/d2® — E — i0)"'t,(E +i0), (6.13)
where
-1

t(C) = [I-l- |Wkk\1/2(—5§ - C)_I\WkﬂmSgn (Wkk)]

The quantities tx(E + i0) are well-defined in view of Assumption 6.1.
Furthermore, again for £ > 0,

m (—d?/dz? — E — i0)~ Z e, (6.14)

where 7% : H! — C is the trace operator which acts on the first
Sobolev space H'(R) as follows (see, e.g., [18, Section IV.1]),

v2d = d(oVE), o ==+, E>0.

Here, as usual, (Z denotes the Fourier transform of ¢. Using (6.13) and
(6.14) we can rewrite the expression (6.12) in the following way,

2
Im E5(g) = —¢° Y _(VioXm, (Im Ry) Vioxm) 12
k=1
2

-~ —gZZ VioXms tr(Eo — t + i0)"

xIm (—d2/dx — Eo + t —10) "4, (Eo — t +10)ViaXm)



24 MICHAEL MELGAARD

2
=—g" Y (tr(Eo — tx + 10)VizXm, Im (—d*/da® — Ey + t — i0) ™"
k=1

_g Z Z 2\/E0j ")/EO tk (E() - tk + ZO)Vk2Xma 7%‘07%

k=1 o==%
th(Eo — tk =+ ZO)V;C2Xm>C

_ 2 n o . 2
-9 Z Z ﬁ|’YEo_tktk(Eo —t +10)Vioxm|”-  (6.15)

k=1 o=%
In this way we have established the following result.

Theorem 6.5. Let Assumption 6.1 and Assumption 6.3 hold. Let v,
be a simple eigenvalue of the operator Hoy defined in (6.2) giving rise to
the eigenvalue Eq = vy, embedded in the continuous spectrum of H(0).
Let Ey satisfy Assumption 6.2. For a small enough coupling constant
g, the eigenvalue Ey of H(0) turns into a resonance, i.e. Ey & o(H(g)).
The coordinates of its corresponding pole is given by (6.9)-(6.11). In
particular, Fermi’s golden rule takes the explicit form (6.15).

Remark 6.6. If Assumption 6.2 is not fulfilled, i.e. we have an eigenvalue
of Hsy at the threshold point 0 of the continuous spectrum of H(0),
complex dilation breaks down. An insight into this problem was es-
tablished in [12]. For abstract Hamiltonians H(g) having the structure
found in (6.1), it was shown that under small off-diagonal perturbations
this eigenvalue never moves into the continuous spectrum.
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