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Abstract

This paper gives a probabilistic interpretation of a class of finite
difference schemes often referred to as the §-method. In particular,
the present paper shows that for some parameter values the #-method
can been seen as a binomial tree with a random time.
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1 Introduction

It is well-known that the explicit finite difference method for the heat equa-
tion is equivalent to a trinomial tree, see e.g. Heston and Zhou [2]. This
paper studies the 8-method, which is a class of finite difference methods in-
cluding, for instance, the Crank-Nicolson method, and shows that for some
parameter values the #-method also has a probabilistic interpretation. To
be more precise, the -method can for certain parameter values be seen as
a binomial tree with a random time.

2 The 6-Method and Its Probabilistic Counterpart

To begin with, consider the initial value problem for the heat equation,

(1)

Bu — 1% iy (0,T] x R,
=f onR,

where f : R — R is a given continuous and bounded function (abbr. f € C})
and T is a positive constant. There are many various approaches to solve
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the initial value problem for the heat equation and this section will discuss
a finite difference method known as the 6-method.

Let h and X be positive numbers and set & = Ah%. Think of » and &
as small increments of the variables z and ¢. Moreover, suppose v,(z) =
u(nk,z), € R, n € N. The idea behind the #-method is to approximate
the function v, by 9,, where 7, is the solution of the difference equation

ﬁn+1(zl)€—ﬁn(z) _ %@ Ahf)gg-l(l‘) +(1-6) Ahzg(m)) z€R neN -

vy = f rzeR
Here 0 <0 <1 and
Ajg(z) = g(z + h) — 29(z) + g(= — h),

for any g € C}.
Now, introduce for each n € N, a finite difference operator Vé””” :Cp —
Cy, defined for n = 1 by the operator equation

1
VI 1= MOVt 11— 0)A] (3)
and for n > 2 by
y ) = (VI(A,h))n'

From equation (2) it is readily seen that the solution of the #-method may
be written as

() = (VM ) (2).

When 6 = 0 the operator VO is called explicit. Each equation of
an explicit operator gives the unknown o,,41(z) directly in terms (finitely
many) of the known quantities o,,(z + jh). If € is not 0, one must solve a
set of linear equations to obtain #,41(z), and the operator V) is called
implicit. The important special case § = 1/2 is often referred to as the
Crank-Nicolson method.

The #-method is not stable for all values of A > 0 and 0 < 6 < 1. Stability
means that the collection of operators {Vn(’\’h), 0 < h<hg, 0<nIh?< T},
where hy > 0 and A are fixed, is uniformly bounded with respect to the
(operator) norm in Cj, i.e. there is a constant K such that

VAPlg, < K

uniformly for all 0 < A < hgy and all n such that 0 < nAh? < T. Here
|fllc, = sup,|f(x)|. Stability is a necessary and sufficient condition for



uniform convergence in connection with the §-method. However, it can be
shown that the 6-method is stable if, and only if,

1
< )
—1-—-20
no restriction, if1/2<6<1.

A if0<0<1/2

For a further discussion about the -method and other finite difference meth-
ods, see Atkinsson et al. [1] or Rictmeyer et al. [3].

In certain cases it is possible to give a probabilistic interpretation of
the #-method. To see this, assume that ( is a lattice random variable with
span 1, i.e. P(( € Z) = 1, expectation zero, and bounded second moment.
Furthermore, suppose (1, ..., (, are independent stochastic copies of { and
set

(UM (@) = Blf e +hY_¢)], neN.

(¢h)

The operator Uy, will henceforth be referred to as a lattice method or
a lattice tree. In particular, if ¢ is a Rademacher random variable, i.e.
P(e = —1) = P(e = 1) = 1/2, then UE™ will be called a binomial tree.
The aim in this section is to prove that for some values of € and A there is

a lattice random variable ¢ with Var({) = A such that
Uit f = VA f (4)

for all f € Cy, h > 0 and each n € N, (abbr. U¢) = V().
To prove the statement in equation (4), note that it is sufficient to assume

that n = 1 since UM = (Ul(g’h))”. Moreover, if § = 0 and A < 1 then it is
obvious that equation (4) follows by simply letting ¢ be defined by

P(=0=1—X and P(=-1)=P(=1)==.

Next we will consider the case 0 < § < 1. An approximation argument
gives that it is only necessary to show that equation (4) holds for all f € C,
such that f is integrable with respect to the Lesbegue measure. Now, it
follows as in Richtmeyer et al. [3] p. 17, that the Fourier transform of the

function z — (Vl()"h)f)(x) is given by
/ WD (@)e de = p(hE)f(€), E€R,
where f is the Fourier transform of f and

1= X1-0)(1—cosf)
(0 = 14+ 60X(1—cos&)




Indeed, this follows at once from equation (3) and the fact that f(z + h)

possesses the Fourier transform f(¢) exp(ih¢). The function ¢ above is often

referred to as the symbol or the characteristic polynomial of the -method.
Next, observe that the Fourier transform of z +— (Ul(c’h) f)(z) equals

[ WP p@e as = Bl o), €€

— 0

Hence, equation (4) follows if £ — ¢(£) is a characteristic function of a
lattice random variable with span 1 and variance A. To examine under what
conditions this is true, note that ¢ may be written as

1-X(1-0)(1—cosf)
(1+6)N)(1—kcosé) ’

P(¢) =

where k = A8/(1 + A0). Moreover, if @ > 0 then a Taylor expansion yields

1—/\(1—9 1—cos§

$(&) = T Zlﬁ] cos’ €
) (5)
= ij cos? &
j=0
where
P, if j =0,
Pj .
q(]- _p)(l - q)]ila lfj Z ]-a
with
=1 d _ 1
P=271 1 M 1710w

If A and 6 is chosen such that p > 0, then p; > 0 for all j. Moreover, since
#(0) = 1 we have > 3°p; = 1. Recall that { — cos¢ is the characteristic
function of a Rademacher random variable e. Consequently, if p > 0 then'

B(6) = Ble'>im1]

where {€;}72, is a series of independent stochastic copies of € and v is a
random variable that is independent of {£;}72, with P(v = j) = p; for each
j > 0. In particular, ¢ is the characterlstlc function of a lattice random
variable with span 1. In addition, since ¢'(0) = 0 and ¢”(0) = —\ the

random variable }7%_, €; has expectation zero and variance .

1 o _
We assume 35, =0



Theorem 1. Suppose 0 < 6 < 1. There exists a random variable v, inde-
pendent of {€;}32,, such that the random variable

(=> g (6)
j=1

satisfies
U(Ca) — V()‘v')

if, and only if, A > 0 is chosen such that

1

<
ATy

if 0 <1,
no restriction, if 0 =1.

Proof. We have already proven that the conditions on A are sufficient but it
remains one extra argument to prove that the conditions also are necessary.
To be more precise, we need to show that the only choice of parameters d;,
j €N, satisfying

$(€) = djcos’ ¢, forallé €R,

J=0

are dj = pj, j € N. By substituting z = cos ¢ this follows directly from the
theory of analytic functions. O

Finally in this section necessary conditions will be given such that Ué) =
V&) for some lattice random variable ¢. Note that Theorem 1 only yields
sufficient conditions.

It is evident that if &8 = 0, then A < 1 is equivalent to the existence
of lattice random variable ¢ such that U() = V&), Now, suppose that
0 < 6 < 1. A Fourier expansion of ¢ yields

HO) = Lot 13 ey coske

= 27rCO T Cr, COS
k=1

where

2w
%= | P(§) cos k¢ d¢. (7)

Recall that ¢(0) = 1, and thus, the function ¢ is a characteristic function of
a lattice random variable ( if, and only if, ¢, > 0 for all £ and, in that case,
¢ is symmetric with P(¢ = k) = ¢ /27, k > 0.



First we prove that ¢, > 0 for all Kk > 1 and each A > 0, 0 < 8 < 1.
Namely, equation (5) yields

o0 T )
cr = Z Pj / cos’ £ cos k€ dE.
§=0

2
0
In addition,
cos’ € = B[ Yizo k]
J
= dy j coslg,
=0
where dy ; = P(Zizo e = 0) and d; j = 2P( i:o er = 1) for I > 1. Thus,
orthogonality implies

)
Ccp = szjdk,j, k> 1.
=k

Recall that p; > 0 for all 7 > 1 and hence, it is enough to find conditions
such that ¢y > 0.
By substituting z = tan£/2 in equation (7) follows

_2/°°1+(1—2)\(1—0)):1:2 2dz
=) T IrA+200) 22 1442

which after some elementary calculus yields

2w 1
00_7(9_1+ V 1+29/\)'

To sum up, we have shown

Theorem 2. Suppose 0 < 0 < 1. There exists a lattice random variable
such that

U(Cv) — V()‘a')

if, and only if, X > 0 is chosen such that

1 2-0
< ' 1
>\_1_02(1_9), if0<0 <1,
no restriction, if 0 =1.



It is obvious that the collection {Uy(f’h), 0 < h<hgy0<nh?< T} is
stable, to be more precise, for any ¢ and any hy > 0 we have

UM, <1

uniformly for all 0 < h < hg and all n such that 0 < nAh? < T'. Thus, the 6-
method provide us with an example showing that the class of all stable finite
difference methods is strictly larger than the class of all lattice methods. In
addition, it shows that the class of all lattice methods with symmetrical
lattice random variables is strictly larger than the class of all binomial trees
with independent random times.
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