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Abstract The undetected error probability of a linear code used to
detect errors on a symmetric channel is a function of the
symbol error probability € of the channel and involves the
weight distribution of the code. The code is proper, if the
undetected error probability increases monotonously in e.
Proper codes are generally considered to perform well in
error detection. We show in this paper that the Maximum
Minimum Distance (MMD) codes are proper.
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I Introduction

Let GF(q) denote the Galois field with ¢ elements. An [n,k,d], code C is a
k-dimensional subspace of the n-dimensional vector space over GF'(g) with min-
imum Hamming distance d. The weight distribution {Ag, 41,...,A4,} of C con-
sists of the numbers A; of codewords of weight 7 in C, 0 < i < n. When C' is
used to detect errors on a g-nary symmetric channel with symbol error probability
g, the probability of undetected error P,.(C,¢) is given by

P,(C,e) = ZAi(qi—l)Z(l — 5)n—i, 0<e< E (1)
i=d

C is proper, if P,.(C, ) is monotonously increasing in € € [0, %] (see [6], [7], and
[9]). A proper code is generally considered to perform well in error detection. In
particular, such a code is good ([6], [7]), i.e., Pue(C, ) becomes largest at e = -1,

q
the worst case symbol error probability.
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A number of well-known classes of linear codes are known to be proper, such
as the perfect codes, the MDS codes, MacDonald’s codes, and some Near-MDS
codes. (See, e.g., [1], [2], [3], [6].)

In this correspondence we show that the MMD codes are proper. Our proof
takes advantage of the classification of the MMD codes up to formal equivalence
given in [5] and [10], and uses sufficient conditions for a linear code to be proper,
derived in [1]. For convenience, in Section II we give a short presentation of the
MMD codes and their classification, and a description of the sufficient conditions
mentioned above. The main result and its proof are presented in Section III.

II Preliminaries

An [n, k, d], code C satisfies the Singleton bound
d<n-—k+1.

The defect s(C) of C is defined as the difference between the Singleton bound
and the minimum distance d of C, i.e.,

s(C)=n—-k+1-d.

If the defect of C' is zero, then C' is a mazimum distance separable (MDS) code.
For all other codes the defect is positive. If s = s(C') and k£ > m + 1 for some
integer m > 1, then (see [10])

¢"(g—1)
When
_q"(g—1)

C is called a mazimum minimum distance (MMD) code. It turns out that for a
MMD code with positive defect, the corresponding number m in (2) is equal to
the defect of the dual code.

Two codes with the same weight distribution are said to be formally equivalent.
It follows from (1) that two formally equivalent codes have the same undetected
error probability.

In [5] and [10], the MMD codes have been classified up to formal equivalence.
Below we present this classification.



G1. Let C be an [n, k, d], code of dimension £ > 3 and defect s > 1. Then C'is
a MMD code if and only if C' is formally equivalent to one of the following codes:

1. The [t%, k,tg*"'], t-times repeated Simplex code, where t =1,2,... .

2. The [¢"* 1, k, (¢ — 1)¢* 2], generalized Reed-Muller code of first order. If
q =2, then k > 4.

3. The [12, 6, 6]3 extended Golay code.
4. The dual [11, 5, 6]3 Golay code.
5. The [¢* + 1,4, ¢*> — q], projective elliptic quadratic code with ¢ # 2.
6. The [(2° — 1)g + 2, 3, (2" — 1)g|, Denniston code with 1 # 2¢|q.
G2. Let C be a g-nary MMD code of dimension two and defect s. Then C' is

equivalent to the [(s + 1)(¢ +1),2,(s + 1)g]; (s + 1)-times repeated Simplex
code.

G3. Let C' be a MMD code of dimension k£ and defect s = 0. Then C'is equivalent
to the binary [k + 1, k, 2] MDS code.

The weight distribution of an [n, k, d|; MMD code with s +m > q;n:11 was deter-

mined in [10] as follows:

(")

(o

A= (") e (T e

Ay =

(qm—l), Ad"'l:Ad+2:"':An—k—|—m—|—1:0;

i= (3)
=) s+m =@ -1 n n—k+v
v+s—1 k—wv v—m )’
v=m+2,...,k.
Assume C has weight distribution { Ay, ..., A,}. Define
t oy
Ap=Y"Da, t=d,...,n (4)

i=d ")



where j(; denotes the i" factorial moment j(j — 1)...(j — ¢ + 1) of the positive
integer j. It was shown in [1], that the conditions

Ay >qA;_, (=d+1,...,n, (5)
are sufficient for C to be proper. In particular, if
d_qg-1
-> 6
T2t ©

then the inequalities (5) hold and C' is thus proper.

III The main result and its proof

Theorem The MMD codes are proper for error detection.

Proof. As mentioned in the previous section, it suffices to verify that the codes
in the classification G1-G3 of the MMD codes up to formal equivalence are
proper. For most of these codes this will be done by taking advantage of the
above sufficient conditions.

Assume first that C is an [n, k, d], MMD code with weight distribution as in (3).
By putting £ =d+j, 0<j <n—d, we obtain for the coefficients A} defined
in (4) that

Ag
Al = Ty (7)
(%)
7
A;H:mfld, 1<j<n—-k+m+1-d; (8)
"(a)
A;:ZAizqk—l- (9)
d

We first consider the codes in G1.

1. Let C be an [tqqk_—_ll, k,tg* '], code, t = 1,2,.... Then
d_¢"(¢=1 _¢"'(g=1) _q-1

k q

n g —1 q

so that (6) holds. Thus C is proper.

2. Assume now that C' is an [¢"', k, (¢ — 1)¢¥ %], code. As above,

d_(¢-1)¢"?* q¢-1

n qkfl - q

I
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i.e., (6) holds and C is thus proper. (For the case of ¢ = 2, see also [8].)

3. Consider next the [12,6, 6] ternary extended Golay code. In this case, s = 1
and from (2), m = 1. Thus the code is a Near-MDS code (see [4]). The error
detecting capability of Near-MDS codes was studied in [2] and [3]. In particular,
it was shown there that if a Near-MDS code [n, k, d], is such that

s ()00

then (5) holds and the code is thus proper. Since an [12, 6, 6|3 code has

Ay g = Ag = 264 = 4(122>

and
(n)(1_1> _ (12)22 (12)10-9-8-7_
k q 6/3 2)3-4-5-6
it is proper.
4. The dual [11, 5, 6]3 Golay code is proper, according to [7], p. 106.

5. Now, let C be a code with parameters [¢> + 1,4, ¢* — g],. This time s = g — 2
and from (2), m = 1. The weight distribution of C' is thus determined by (3) and
hence

G oy nre=Dm-2 (@D
A= @y = o =T g e
Agir = Agip = ... = Ay 5 =0;

n\ < n—1\ 4 L(g=2)(g=1) (n\/n-1
1D 3 G O e N O I

(10)



For j=1,2,...,n—2—4d, (7) and (8) give

A" -
R R Y P
Abria J J Jmaz n—2—d

o on-2  ¢#-1
T n—-2—-d g¢g-—1

=qg+1>q.

Thus (5) holds for { =d+j=d+1,...,n—2. Furthermore, (4) with { =n —1
gives in this case

n—1 n—1)pm_
A= ( @ Ag+ ( 1) Ap1
N(d) N(n—1)

(11)

From the above and (8) with j = n — 2 — d we obtain

—d 1 -9
A1 — A, 5= “ Ag+ —An —qu/ld
" e
n—d n—d)(n—d—-1 1
- ( —q( ) )>Ad+—An1

o d(l - qn_idzl)Ad + %An—l

—d 1 1
= n (1 —q- %)Ad+ _An—l = _An—l > 05
n q n n

i.e., (5) holds for £ = n — 1. Furthermore, (9) and (11) give

n—d

1
A;—qA;_1:q4—1—q< Ad—i-EAn_l).



Here, by (10),
n—d

1
Ad + _Anfl
n

) 2 n

A(nd- - 0a-2) + @ -0 - -0 -0+ (") -

n
1 2 2
=q(q—1)(q+1—§(q —1)g+ (g —1))

2 2 1 2/ .2
+(q—1)(q +a+1-q(¢+1)+ 50 —1))

2 1 2( 2 3 2 3 2 1 2( 2
=@-D(¢+e-50 (@ - D+ g+ +q+1-¢" —¢ +50°(q —1)>
=(@@-1)(+g+1)=¢ -1
and hence

A —qA,  =q¢" —1—q(¢°=1)=q—1>0.
Thus (5) also holds for £ = n. Hence C' is proper.

6. Let C be an [(2' — 1)g + 2%, 3, (2" — 1)g], code. We then have s = 2! — 2 and
from (2), m = 1. Since s > 1, then ¢ > 2 and the weight distribution of C' is thus
determined in (3). We hence obtain

_ () _n(n—1)
= (z)(q—l)—m(q—l)
n(2 — n 12
= (22,5(2})_@1; 1)(q —1) = 5@ - 1); 12
Agp1 = Agpo= ... = A1 =0.

Ifj=1,...,n—1—4d, (7) and (8) give

Al :d+j>d+n—1—d:(2”—1)(Q+1):q+1>q
A ] n—1-d 2t — 1 '




Thus (5) holds for  =d+j =d+1,... ,n—1. From (9), (8) with j =n—1—4d,
and (12) we get

n—d

Ar—qAr 1 =¢ —1—¢ -

2t n
3 2
== - 1 - T - 1

=¢®-1-¢+qg=q—-1>0.

Ag

Thus (5) holds also for £ =n and C'is therefore proper.
We consider now an [(s + 1)(¢ + 1), 2, (s + 1)g], code from G2. Since

d (s+1)g q g—1

= >
n (s+1)(g+1) q+1 q

Y

(6) holds and the code is proper.

Finally, a code with parameters [k + 1,%,2], as in G3 is a MDS code and is
therefore proper, as shown in, e.g., [1] and [6].
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