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Abstract

A simple non-stationary model for multivariate returns is proposed. Unlike most of the
multivariate econometric models for financial returns, this model supposes the volatility
to be exogenous. The vector of returns is assumed to follow an AR(1) process whose in-
novations are independent and have a slowly changing unconditional covariance structure.
The methodological frame is that of non-parametric regression with non-random equidis-
tant design points, where the regression function is the evolving unconditional covariance.
Special attention is payed to the accurate description of the tails of the innovations. As an
application the model is fit to a multivariate data set of returns on three different financial
instruments: a foreign exchange rate, an index and an interest rate. The 1-day ahead

multivariate distributional forecast performance is evaluated.

Keywords and Phrases: stock returns, volatility, sample autocorrelation, long range
dependence, non-parametric regression, Nadaraya-Watson kernel estimator, distributional

forecast, heavy tails.



1. INTRODUCTION

Describing the evolution of prices by imposing a stationary model on the conditional
distribution of returns is probably the most significant recent development in the econo-
metric modeling of financial time series. This approach, that assumes the returns to be
strongly stationary, expresses the conventional wisdom that models for financial returns
should allow for nonlinear dynamics, seemingly demonstrated by the sample autocorrela-
tion and cross correlation functions (SACF/SCCF) of such time series. As an illustration,
consider the tri-variate sample of daily log-returns of the exchange rate Euro/Dollar (EU),
the FTSE index and the 10 year US T-bond from January 2, 1990 until September 12,
2001 (the same data set is used in the sequel to exemplify our modeling approach). The
SACF/SCCF of the returns (Figure 1.1) show extremely small auto- or cross-correlations
at lags greater then 4 between the EU, the FTSE or the 10 year T-bond returns. In con-
trast to this, the SACF/SCCF of absolute returns in Figure 1.2 show larger correlations in
the absolute values.

While the aspect of the displayed SACF/SCCF could be due to stationary non-linear
dynamics, a precise interpretation of Figures 1.1 and 1.2 is difficult for several reasons.
Since the type of dependency in the data is unknown, the significance of the auto- and
cross-correlations in these figures can not be assessed (for this reason no confidence intervals
for the correlations are given in the mentioned figures). Another difficulty is related to
distinguishing between stationary long memory, i.e. significant correlations at large lags,
and non-stationarity. An SACF/SCCF that displays positive correlations at large lags (like
that in Figure 1.2), could be a sign of non-stationarities in the second moment structure
of the time series as well as a proof of a stationary, non-linear long-range dependence; see
Mikosch and Starica [10].

For the multivariate case, rich classes of stationary models that generalize to more di-
mensions the successful univariate GARCH-type or stochastic volatility-type models and

try to mimic the second moment structure illustrated by Figures 1.1 and 1.2 have been
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Figure 1.1. SACF-SCCF of the data (EU returns, the first coordinate, FTSE returns,
the second coordinate, the 10 year T-bond returns, the third coordinate respectively). On
the diagonal the SACF of the 3 series. Off the diagonal the SCCF of pairs. Since the
dependency structure in the data is unknown, no confidence intervals for the correlations

are displayed.

proposed (see the comprehensive surveys by Bollerslev et. al. [2] and Pagan [14]). How-
ever, due to their complexity, most of these models are poorly understood both from a
probabilistic and a statistical point of view. In particular, they require the estimation of
a large number of parameters and do not describe accurately the extremal behavior of
the vector of returns (see Engle and Sheppard [6]). In this paper, we describe a simple
modeling approach, based on a different interpretation of the SACF/SCCF, that addresses
these shortcomings.

Our alternative to the fully parametric, stationary, conditional methodology is a semi-
parametric, non-stationary, unconditional modeling approach. The methodological frame is
that of non-parametric regression with non-random equidistant design points; see also Drees
and Starica [5]. More concretely, the vector of returns is assumed to follow an AR(1) pro-

cess with independent innovations whose unconditional covariance matrix changes slowly
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Figure 1.2. SACF-SCCF of the absolute values of the data (EU returns, the first coordi-
nate, FTSFE returns, the second coordinate, the 10 year T-bond returns, the third coordinate
respectively). On the diagonal the SACF of the 3 series. Off the diagonal the SCCF of
pairs. Since the dependency structure in the data is unknown, no confidence intervals for

the correlations are displayed.

through time and is observed at regularly spaced moments in time (in the case of this pa-
per, daily). The regression function is the changing unconditional covariance matrix and
is estimated by a local weighted average. The weights are chosen by evaluating a kernel
function at the design points. The vectors of standardized innovations have asymmetric
heavy tails and are modeled parametrically. The careful modeling of the extremal behavior
of the standardized innovations yields a model suited for precise VaR calculations and for
generation of stress-testing scenarios.

The rest of the paper is organized as follows. Section 2 introduces our non-stationary,
regression-type model. In Section 3, this model is estimated on a tri-variate sample of
returns consisting of the foreign exchange rate Euro/Dollar (EU), the FTSE 100 index,
and the 10 year US T-bond (the dimension of the multivariate vector of returns has been
intentionally kept low to facilitate an in-depths statistical analysis). Section 4 evaluates the

performance of our model in forecasting the distribution of multivariate returns. In Section
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5 we comment on the relationship between our modelling approach and the RiskMetrics’™

methodology while Section 6 concludes.

2. A SIMPLE NON-STATIONARY MODEL FOR MULTIVARIATE RETURNS

Denote by r; the m x 1-dimensional vector of returns at time ¢. Our discussion focuses

on the following class of models with constant mean ,

(2.1) (re — p) — @(re1 — p) = Wy

where ® is a diagonal matrix of auto-regressive parameters and (u;) is the sequence of
innovations.

GARCH-type models assume that (u;) is a stationary, dependent, white noise sequence
with a certain conditional second moment structure. More specifically, the m x m con-
ditional variance-covariance matrix H; := F(wu, | r,_;,T;_5,...) is assumed to follow a
stationary stochastic process defined in terms of past r’s and past H’s. Often, it is assumed
that P(u; € - | ryq,r49,...) = P(N(0,H;) € - ). In short, the common assumptions of
the GARCH-type models imply that (r;) is a strongly stationary sequence. In particular,
the unconditional covariance does not change in time.

We assume (u;) to be a non-stationary sequence of independent random vectors. The
distribution of u; is characterized by a changing covariance structure that is a manifestation
of complex market conditions, hence driven by exogenous factors. Since no clear candidates
for explanatory exogenous variables are at hand, we choose to model this covariance as a
deterministic, smooth function of time. This approach leads to the following regression-

type model:
u; = S(t) g, t=1,2,...,n, where
S(t) is an invertible matrix and a smooth, deterministic function of time,

(2.2) (g,) is an iid sequence of random vectors with mutually independent coordinates,

such that E'g, =0, Var g, = I,.
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The elements of the sequence (g,) are called the standardized innovations. From (2.1) and

(2.2), it follows that

E(wu, | t1,11_s,...) = E(uu,) = S%(t), and

P(utE -|rt,1,rt,2,...):P(ut€ )

Let us emphasize that by modeling the covariance matrix as a deterministic sequence we
do not claim that random effects do not play any role in the second moment dynamics.
This modeling approach only reflects the belief that the distribution of the vector of future
returns incorporates a changing pool of information which is partly expressed in the recent
past of the time series and the fact that we are not aware of exogenous variables capable
of reliably explaining the dynamics of the volatility.

The preliminary step when fitting this regression-type model to a multivariate time series

of returns is obtaining the estimated innovations
ﬁt:=(rt—f‘)—<i>(rt_1—1_'), t=1,...,n

with 7 == n~'> )" | riy, @ = 1,...,m, being the natural estimator for the mean y and
& the m x m diagonal matrix whose non-zero entries are the auto-regression coefficients
estimated coordinate-wise. Neglecting the estimation error in this first step, the estimated
innovations 1; are supposed to be independent with covariance matrix S?(¢), a smooth
function of ¢. The function S?(¢) can be estimated by standard non-parametric regression
methods for non-random, equidistant design points ¢ using the series ﬁtﬁ;, t=1,...,n. In
this paper we use the evaluation weighted (Nadaraya-Watson) estimator of S?(¢) given by

~ —1 n K t— N\ A _i,\/ .
(2.3) S2(t) := n Zzlzl nh( z)ut' utﬂ’
not i Kt — 1)

where Kj(-) = h 'K (-/h) and K a kernel. In the analysis of the multivariate return time

t=1,2,...,n,

series in Section 3, a Gaussian kernel is used. We note that, according to our experience,
an exponential kernel or the LOESS procedure produce very close results. This is in

accordance with the established fact that for the equidistant design set-up, the shape of
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the kernel function makes little difference; see the monographes by Miiller [12] and Hérdle

[7].
The final step is modeling the distribution of the estimated standardized innovations

defined as

(2.4) ,=ST' W w,  t=1,2,...,n

|

with S(¢), the square root of the estimate of S2(¢) in (2.3). One possibility is to use
the empirical cumulative distribution function (cdf) of £ as a model for the standardized
innovations as done in Barone-Adesi et al. [1]. However, since the estimated standardized
innovations are usually heavy tailed (see Section 3.3 for evidence supporting this claim),
the use of the empirical cdf will underestimate the probability of extreme standardized
innovations and, hence, the risk of extreme returns, with potentially serious consequences
for risk managing.

Since we assume the estimated standardized innovations to have independent coordi-
nates, it is sufficient to specify the distributions of &;, 7 = 1,...,m. A flexible and par-
simonious family of distributions that allow for asymmetry between the distributions of
positive and negative standardized innovations and, in addition, for arbitrary tail indices
can be defined starting from the Pearson type VII distribution with shape parameter m

and scale parameter c; see Drees and Starica [5]. The density of this distribution is

cF(mQE(lw/L)Z)wl/Q (1+ (%)2)_m, z > 0.

Note that f is the density of a t-distributed random variable with v = 2m — 1 degrees

(2.5) flz;m,c) =

of freedom multiplied by the scale parameter cv~'/2. This family was also used to model
the distribution of financial returns in an univariate stochastic volatility framework by
Nagahara and Kitagawa [13].

According to our experience, this distribution (concentrated on the positive axis) fits
well the positive standardized innovations and the absolute value of the negative ones.
Because usually there are about as many positive standardized innovations as there are

negative ones, it may be assumed that the cdf of the standardized innovations has median
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0. Hence, denoting the densities of the negative and positive standardized innovations
by f_(-;m_,c_) and f,(-;my,cy), respectively, the density of the distribution of the
coordinates of the standardized innovations is

(2.6) [ (@mo e my,cq) = %(f(x;mac)l(—oo,O)(x) + f+($;m+,0+)1[0,oo)($))-

We refer to the distribution with density (2.6) (that covers the whole real axis) as the
asymmetric Pearson type VII and denote its cdf by FVZ!.

To summarize, for a given coordinate, f"!! is determined by 4 parameters m_, c_,
my, and ¢y, with (m_,c_) and (my,cy) being estimated separately by fitting a one-
sided Pearson type VII distribution to the absolute values of the negative and positive
standardized innovations, respectively, e.g. by maximum likelihood. These parameters,

together with the covariance estimates S(t), the average return r, and the diagonal matrix

®, fully specify the distribution of the time series of returns in the model (2.1), (2.2).

3. MODELING MULTIVARIATE RETURNS. AN EXAMPLE.

In this section, we apply the methods described in the previous section to the 2927
observations (from January 2, 1990 until September 12, 2001) of the time series of daily
returns of three qualitatively different financial instruments: one foreign exchange rate, the
Euro/Dollar (EU), an index, the FTSE 100 and an interest rate, the 10 year US T-bond.
The EU and the US T-bond series are available on the site of the US Federal Reserve
Board: http://www.federalreserve.gov/releases/. To facilitate a graphical display of the
empirical analysis, we conduct our study in a trivariate setup. Note that similar modeling
results have been achieved with higher dimensional vectors of returns.

In a preliminary step, the sample mean was removed and the series were pre-filtered

coordinate-wise with an AR(1) filter.

3.1. The evolution of the unconditional covariance structure. The graphs in Figure
3.1 display two estimates of the time-varying standard deviations (sd’s) of the three time
series. Those in Figure 3.2 show two estimates of the time-dependent correlation between

the three pairs of univariate time series (in the top graph, EU and FTSE, in the middle
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Figure 3.1. Local estimates (S2, h = 35, solid line, S%, h = 25, dotted line) of the
(annualized) standard deviation (sd) of the data: EU, (Top), FTSE (Middle) and the 10-
year T-bond (Bottom). The annualized sd is obtained by multiplying the daily sd by a factor

of V/250.

FTSE and T-bill, in the lower one, EU and T-bill). In all the pictures, the solid line is the
estimate obtained using S2, defined in (2.3) with band-width 4 = 35 while the dotted line
is obtained using the estimate

A Nt e, Kn(t — i) 0,1, _,
(3.1) Sf(t) = Z_Olﬁzﬁt h( ) t' t—i
n Zogz‘gt Kh(t - Z)

with band-width & = 25. Note that S2(¢) uses only the information available at day ¢.

This estimator will be used to produce the forecasting results presented in Section 4.
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Local estimates (S%, h = 35, solid line, S2, h = 25, dotted line) of the

correlations between the data: EU and FTSE, (Top), FTSE and 10-year T-bond (Middle)
and 10-year T-bond and EU (Bottom,).

Remark 3.3. A possible explanation for the the wiggly appearance of the dotted lines

in Figures 3.1, 3.2 could be the boundary effect that affects the estimator S%(t) Due to

the low ratio of signal to noise in the problem at hand, it is not clear that taming this

boundary effect would improve the outcome of the forecasting procedure (see Section 4 for

a qualitative evaluation). Since the best of such adjustments tend to be rather complicated,

evaluating the trade-off between the gains in forecasting accuracy and the increase in the

complexity will be considered elsewhere.

The graphs in Figure 3.1 and 3.2 show rather large variations in the estimated standard

deviations as well as in the estimated correlation structure of the series. In particular,



12

the estimated correlation between the EU and the T-bond switched from negative values
in the interval (-0.3, -0,2) in the beginning of the 90’s, to positive ones around 0.2 in the
beginning of the second half of the decade. The largest fluctuations in the estimated sd
are displayed by the FTSE with increases from values around 10% in the middle of the
decade to a peak of roughly 25% towards the end of the 90’s.

3.2. The dependency structure of the standardized innovations. In this section
we analyze the dependency structure of the estimated standardized innovations £, defined
in (2.4).

A battery of three tests is used to achieve this goal. We begin by verifying that the
marginal distributions of the coordinates of the estimated standardized innovations é&;,
1 = 1,2,3, do not change through time. Towards this goal, for a given coordinate i, we
split the sample (£;;) in three subsamples of equal length, (55}2), (égi)), (él(gt)) respectively.
Then, we perform a pairwise comparison of the three resulting empirical cdf’s using a
2-sample Kolmogorov-Smirnov test, producing three p-values.
1) 2@

For the pair (¢;7,€;”), the working assumptions are that &

(1)

i

’s and 552)’5 are mutually
independent (see the independence tests (3.3) in the sequel for evidence supporting this
assumption) and that all the observations in the sample (égl)) come from the same contin-
(2)

uous population ﬂ(l), while all the observations in the sample (&;

;) come from the same

continuous population Fz-@). The null hypothesis is
(3.2) Hy : Fi(l) and Fz-(z) are identical.

Table 3.4 reports the nine p-values (3 for each coordinate) for the estimated standardized
innovations (£,) (left) together with the nine values corresponding to their absolute values
(I&,)) (right).

Table 3.4 supports the hypothesis of stationarity of the coordinates of the sequence of
estimated standardized innovations (£,).

In the sequel we use the covariance/autocovariance structure of the estimated standard-

ized innovations (£,) and their absolute values (|;|) (see Figures 3.5 and 3.6) to test the
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Figure 3.5. SACF/SCCF of the estimated standardized innovations (€,). The covariance

structure was estimated using S?.

hypothesis

(3.3)

H, : £, are iid vectors with independent coordinates.

The confidence intervals in Figures 3.5 and 3.6 correspond to the null hypothesis (3.3).

These figures show that accounting for the changing covariance produces standardized
innovations that are practically uncorrelated, removing the long memory look of the SACF
of absolute returns in Figure 1.2. They support the choice of modeling the standardized

innovations as a sequence of iid vectors with independent coordinates.

land 2 1and 3 2 and 3 land 2 1and 3 2 and 3
g 0.93 0.23 0.05 |€1] 0.89 0.39 0.21
ga1 0.10 0.46 0.59 =2 0.20 0.43 0.75
€3] 0.23 0.63 0.65 €3] 0.09 0.48 0.64

Table 3.4. The p-values corresponding to the 2-sample Kolmogorov-Smirnov tests on sub-
samples of estimated standardized innovations (€,) (left) and their absolute values (|£,])

(right). The column labels code the pairs of subsamples.
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Figure 3.6. SACF/SCCF of the absolute values of the estimated standardized innovations

(I€;|). The covariance structure was estimated using S*.

The visual test of the hypothesis (3.3) is complemented by a Ljung-Box test for the first

25 lags. Table 3.7 gives the p-values for the estimated standardized innovations (£,) (the

left half) and their absolute values (the right half). The value reported at the intersection

of the ¢-th line with the j-th column is the p-value of the Ljung-Box statistic obtained by

summing the first 25 values of the SCCF between the coordinate ¢ and past lags of the

coordinate j. Besides the pair (1,3), all other p-values do not reject the hypothesis (3.3)

at usual statistical significance levels.

1 2 3 1 2 3
1 0.15 0.17 0.03 0.20 0.89 0.12
2 0.81 0.25 0.11 0.62 0.21 0.16
3 0.70 0.88 0.15 0.25 0.50 0.22

Table 3.7. The p-values for the Ljung-Boz test at lag 25 of the estimated standardized

innovations () (left) and their absolute values (|€,|) (right). The row and column numbers

represent the coordinates.
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Finally, the hypothesis that the coordinates of the estimated standardized innovations,
€1, €9, €3 are pair-wise independent is tested using Kendall’s 7 distribution-free statistic.
Kendall’s 7 takes values between -1 and 1 (independent variables have 7=0) and pro-
vides an alternative measure of dependence between two variables to the usual correlation.
While the easy-to-compute correlation is the natural scalar measure of linear dependence,
Kendall’s 7 is a valuable measure of dependency also in the case of non-normality and
non-linearity. In large samples, as the sample size n goes to oo,

-1
% 4 N(0,1).
Therefore Kendall’s 7 can be used as a test statistic for testing the null hypothesis of
independent variables. (For more details on Kendall’s 7 we refer to Kendall and Stuart
8]

The test is applied to all pairs of coordinates (&;, €;) (¢, = 1,2,3, ¢ < j) and all pairs
of their absolute values. For a given pair (7,7), the assumption is that the n bivariate
observations (€;4, €;4), t = 1,...,n, are mutually independent (see the independence tests

(3.3) for evidence supporting this assumption) and come from the same continuous bivariate

population. The null hypothesis is
(3.4) H,: the random variables ¢; and é; are independent.

The resulting p-values are given in Table 3.8. For all pairs the hypothesis of independence

(3.4) is not rejected at usual statistical levels of significance..

1) 1) @3 | 12 1) @3
Kendall ‘ 0.34 0.60 0.89 ‘ 0.98 0.99 0.71
Table 3.8. The p-values for the Kendall’s T distribution-free test of independence applied

to the estimated standardized innovations sequence (€,) (left) and to the absolute values

(&) (right). The pairs on the top are pairs of coordinates.

At this point, we conclude that, based on the battery of test described above, the

hypothesis that the estimated standardized innovations (£;) is a stationary sequence of iid
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vectors with independent coordinates can not be rejected. Besides providing a goodness
of fit check for our model, this fact allows for a careful statistical analysis of the series of

estimated standardized innovations.

Remark 3.9. Our approach assumes the standardized innovations to be iid and the co-
ordinates of the standardized innovations independent. According to our experience with
other multivariate data sets, significant autocorrelations at lags greater then 0 or significant
cross-correlations are occasionally encountered in the SACF /SCCF of the standardized in-
novations. However, they are usually barely outside the confidence bands. An accurate
modeling of these correlations would imply a significant increase in the complexity of the
model. The trade-off between the gains in modeling accuracy and the increase in the

complexity is subject of further research.

3.3. The multivariate distribution of the standardized innovations. In this sec-
tion we concentrate on modeling the marginal distribution of the estimated standardized
innovations (¢,). We begin by presenting some evidence that supports our claim that the
marginal distributions of the three coordinate series (;), ¢ = 1,2, 3, are heavy tailed. Fig-
ure 3.10 displays the standard normal plots of three coordinate series of the estimated
standardized innovations (£,). The graphs seem to show departures from normality for at
least two of the three coordinates (the first and the third) with the right tail apparently

heavier than the left one.

Normal Probabilty Plot Normal Probabilty Plot Normal Probabilty Plot
T T T T T T T T T T T T

S

o

Figure 3.10. Normal probability plots of the three series of coordinates the of estimated

standardized innovations (£,).
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The impression given by Figure 3.10 is confirmed by the p-values of the Kolmogorov-
Smirnov (K-S) and Andersen-Darling (A-D) tests (for details on these tests see [16]) applied
to the coordinate series (¢;), i = 1,2, 3 reported in the left half of Table 3.11. The working
assumptions for each coordinate i are that &;’s are mutually independent (see the inde-
pendence test (3.3) for evidence supporting this assumption) and that all the observations
in the sample (£;) come from the same continuous population F; (the results of test of

stationarity hypothesis (3.2) legitimates this assumption). The null hypothesis is
(3.5) H,: F,is the standard normal distribution.

(See also the tests of the hypothesis (3.6) Var(é) = L,.)

The K-S and A-D tests are chosen for their complementary nature. It is well known
that the Kolmogorov-Smirnov test is sensitive to departures from the hypothesized law
affecting the middle of the distribution while the Andersen-Darling test has been proved
to be effective in identifying departures that affect the tails. The normality assumption is
rejected at the 5% level by the A-D test for all three coordinates, while the K-S rejects it
for the first and third coordinate.

H,: Normal A-D K-S Hy: Pearson VII | A-D K-S
€1 0.007  0.038 €1 0.21  0.20
€9 0.037  0.108 €9 0.17  0.48
€3 0 0.003 €3 0.10  0.25

Table 3.11. The p-values for the Andersen-Darling and Kolmogorov-Smirnov tests of nor-
mality (left) and of asymmetric VII Pearson (right) applied to the 8 coordinate series of

the estimated standardized innovations (€,).

Figure 3.10 and the values on the left side of Table 3.11 show that the estimated stan-
dardized innovations have tails that are heavier than normal tails.
We continue with the parametric modeling of the marginals of the estimated standard-

ized innovations (£,) as asymmetric Pearson type VII heavy tailed distributions. Table
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3.12 contains the estimated parameters obtained by fitting an asymmetric Pearson VII

distribution (2.6) to the three coordinates of the estimated standardized innovations (&,).

m_ c— my Cy Left tail Right tail
£115.94 (1.48) 2.92 (0.47) | 3.88 (0.60) 2.24 (0.25) | 10.87 6.75
£919.24 (3.71) 3.87 (0.91) | 9.84 (4.22) 4.14 (1.03) | 17.48 18.67
€3 ]6.62 (1.86) 3.16 (0.55) | 4.30 (0.75) 2.40 (0.29) | 12.23 7.59

Table 3.12. The parameters of the asymmetric Pearson distribution corresponding to the

3 series of estimated standardized innovations £, (the standard deviations are provided in

parentheses). The tail indices are given by v = 2m — 1.

The estimated parameters in Table 3.12 confirm the results of the previous tail analysis:
the first and the third coordinates have heavier tails then the second, with the right tail
being heavier then the left one. To test the hypothesis

(3.6) Hy: Var(g,) = In,

two estimates of the variances of the coordinates of the estimated standardized innova-
tions (£,) together with the corresponding standard deviations are produced. The working
assumption is that (£,) is an iid sequence of random vectors (see the independence tests
(3.3) for evidence supporting this assumption). The first estimate is the sample variance
with the standard deviation given by \/TW, i = 1,2,3, where m} is the sample fourth
moment of (¢;). The second estimate is the variance of the estimated asymmetric Pearson
type VII given by (2.6). Since the variance of any coordinate is a function of the parameters
reported in Table 3.12, the standard deviation for this variance estimate is obtained from
the covariance matrix of the MLE estimates using the delta method. The three pairs of
point estimates together with the standard deviations are reported on the left half of Table
3.13. The right half of the same table reports the sample covariance together with the
corresponding standard deviation. According to the values in Table 3.13 the hypothesis
that Var(g,) = I, is not rejected at the 5% significance level.
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Empirical Pearson VII Covariance

g1 0.971(0.043)  1.007 (0.10) | £, &, 0.0080 (0.020)
€y | 0.957 (0.037)  0.997 (0.17) | £, &3 0.0026 (0.020)
€3 | 0.944 (0.041)  1.002 (0.10) | £, &3 0.0004 (0.019)

Table 3.13. The estimated variances of the coordinates of the estimated standardized in-

novations (£,). The first column reports the sample variance while the second one is the
variance of the estimated asymmetric Pearson type VII. The last column reports the sample

covariance. The standard deviations are reported in parentheses.

To verify the goodness of fit of the asymmetric Pearson type VII distribution, the prob-
ability plot of the coordinates of the estimated standardized innovations (£,) using the
estimated asymmetric Pearson VII distributions are displayed in Figure 3.14. A good fit of
the asymmetric Pearson VII distributions should translate in linear graphs close to the first
diagonal. For the coordinate i, the assumptions are that €;’s are mutually independent (see
the test of the hypothesis (3.3) for evidence supporting it) and that all the observations in
the sample (£;) come from the same continuous population F; (the test of (3.2) supports

this assumption). The null hypothesis is

(3.7) Hy: F;is the asymmetric Pearson VII distribution with parameters given in

Table 3.11.

Pearson Vil Probabiity Plot Pearson VIl Probabiity Plot Pearson Vil Probabiity Plot
T T T T T T T T T T

:;
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Figure 3.14. The asymmetric Pearson VII probability plots of the three coordinate series

of the estimated standardized innovations (é;;), 1 =1,2,3.
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The straight plots in Figure 3.14 are a confirmation of the good fit of the asymmetric
Pearson VII distribution.

The hypothesis (3.7) is formally tested using the Kolmogorov-Smirnov and Andersen-
Darling tests. The p-values of these tests are reported on the right in Table 3.11. The
hypothesis is not rejected at usual levels of significance.

The plots in Figure 3.14 and the results in Table 3.11 demonstrate that the parametric
family described by (2.6) is indeed an appropriate model for the estimated standardized
innovations (&,) .

This concludes the evaluation of the goodness of fit of the model (2.1), (2.2). The
statistical analysis has shown that it provides an overall good description of the multivari-
ate data set considered. We now direct our attention towards evaluating the forecasting

performance of our model.

4. FORECASTING MULTIVARIATE RETURNS

In this section we discuss aspects related to forecasting multivariate returns using the
regression-type model (2.1), (2.2). We begin by specifying the 1-day ahead forecasting
methodology. Then we check the quality of our multivariate distributional forecasts. We
end the section with a comparison (in the univariate framework) between the forecasting
behavior of the industry standard Riskmetrics™™ and that of our methodology on randomly

generated portfolios containing the three instruments EU, the FTSE, and the US T-bond.

4.1. The 1-day ahead forecasting methodology. Denote by r;, the sample mean and
by ®,, the diagonal matrix whose non-zero entries are the coefficients of the component-wise

AR(1) regressions, both estimated on the sample up to day t. Let

flt = (rt_ft) —@t(rt_l _ft—l)a t= ]_,...,77,
be the innovations estimated using only past information.
Given S2(-), an estimate of the unconditional covariance matrix S2(-) based only on past

information, denote by ﬁ’i‘;H , 1 = 1,2,3, the asymmetric Pearson type VII distributions
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(2.6) with parameters estimated on the coordinates of the series (S7*(1) @y, ST4(2) @a,. . .,
STH(t) w)-

Based on the model (2.1), (2.2), the distributional forecast at time ¢ for r;,; is then
given by

=+ bulr )+l where ul, = Si(¢
ry, =T+ ®(r, —T,) +uy,,, where wuy,, =Si(t) ¢,

(4.1) ¢, are independent m-dimensional random vectors,

€+ are mutually independent with distributions Fi‘;” ,(1=1,2,3).

For our forecasting exercise we use

§2(t) _ n! Zogigt Kh(t - i)ﬁ;fiﬁtfi
' n-t Zogigt Kn(t —1) ’

the one-sided kernel estimate of the unconditional covariance matrix S? defined in (3.1).

See also Remark 3.3.

4.2. Multivariate density forecast evaluation. Evaluating the multivariate distribu-
tional forecast (see Diebold et al. [4]) is particularly simple in the case of the model (2.1),
(2.2) due to the assumption of independence of the sequence (u;). Verifying that the dis-
tribution of r/ +1 defined by (4.1) coincides with that of r;,; is equivalent to checking that

the m-dimensional vectors (z;)
(4.2) zi = F " (vig), i=1,2,3, where wv;= Si(¢) ay,

are iid, with independent, uniformly (0,1) distributed coordinates.

For evaluating the forecasting performance the sample is split in two: the first 1000
observations are used to produce the initial parameter estimates while the remaining 1926
observations are used to check the goodness of fit of the distribution forecast. The band
width used in (3.1) is A = 25. The mean, the vector of the AR(1) coefficients and the
parameters of the distribution (2.6) are re-estimated every 100 days on a window that

starts with the beginning of the sample.
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Figure 4.1. SACF of the sequence (z; — Z).
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Figure 4.2. SACF of the absolute values of the sequence (z; — Z).

A battery of tests similar to the one in Section 3 is employed to verify the hypothesis
of iid-ness of the sequence (z;) and those of uniformity and mutual independence of the
coordinate sequences (2;;), ¢ = 1,2,3. The precise working assumptions are those of
the corresponding tests in Section 3. Figures 4.1 and 4.2 display the SACF/SCCF of the

sequence (z; —z) and that of its absolute values (z is the sample mean). Overall, they seem
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to support the hypothesis of iid vectors with independent coordinates for the sequence (z;),
although small violations of the confidence intervals are observed in the absolute values at
the first lag of pairs (1,3) and (2,3).

The visual test of the SACF/SCCF is complemented by the Ljung-Box test for the first
25 lags (the p-values are reported in Table 4.3). The value at the intersection of the row
¢ with column j corresponds to the p-value of the Ljung-Box statistic associated with the
SACF/SCCF of the coordinate ¢ and past lags of the coordinate j. The p-values confirm

the validity of the assumption of iid vectors with independent coordinates for the sequence
(Zt)-

1 2 3 1 2 3
11 053 0.20 0.38 0.50 0.34 0.62
21 096 0.20 0.09 0.71 0.51 0.32

3 0.80 0.75 0.67 0.52 0.47 0.49
Table 4.3. The p-values for the Ljung-Box test at lag 25 of the sequence (z,—z) (left) and

the absolute values (|z,—%|)(right). The row and column numbers represent the coordinates.

The hypothesis of pair-wise, mutual independence of the coordinates of the vector z
is tested using the already familiar distribution-free test of Kendall’s 7. The p values
corresponding to the pairs of coordinates are given in Table 4.4. For all pairs the hypothesis

of independent coordinates is not rejected at usual levels of statistical significance.

12 w3 @3 | 02 13 @
Kendall ‘ 0.31 0.55 0.95 ‘ 0.97 0.99 0.98
Table 4.4. The p values for Kendall’s T distribution-free test of independence applied to

the sequence (z, — z) (left) and to that of absolute values (|z, — z|) (right).

Figure 4.5 displays the uniform probability plots for the three coordinates z;, 1 = 1, 2, 3.
The straight plots in this figure together with the p-values of the Andersen-Darling and
Kolmogorov-Smirnov tests of uniformity given in Table 4.6 support the conclusion that the

marginal distributions of the three sequences (z;:), i = 1,2, 3 are uniform (0,1).



24

0 01 02 03 04 05 06 07 08 09 1 [ 01 02 03 04 05 06 07 08 09 1 0 o1 02 03 04 05 06 07 08 09
Data Data Data

Figure 4.5. The uniform probability plot of the three series of coordinates z;, 1 = 1,2, 3,
t=1,...,1926 .

1 2 3 | | 2 3
A-D‘0.14 019  0.77 ‘KS‘ 010 024 058

Table 4.6. p-values for the Andersen-Darling and Kolmogorov-Smirnov tests of uniformity

applied to the coordinates of the sequence (z).

4.3. Univariate density forecast evaluation. We conclude this section with a distri-
butional forecast comparison in a univariate framework. The comparison is done between
the industry standard Riskmetrics™™ and the approach described in Section 4.1. Both
methodologies are used to produce daily distributional forecasts for the returns of ran-
domly generated portfolios containing the (by now familiar) three financial instruments.
More specifically, for a given day ¢, the two approaches are first used to produce two
multivariate (conditional) distributional forecasts for the next day vector of returns. For

Riskmetrics” ™, the distributional forecast is
RM d 2
(4.3) HEE (U

where

d—1

d-1
(4.4) SE= Y AT, /) N
1=0

1=0
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is the exponential moving average estimate of the conditional covariance matrix ¥2. The
parameters are A = 0.94 and d = 74 as stipulated in the Riskmetrics”™ documents [15].
For the regression-type model (2.1),(2.2), the ¢t + 1 forecast r{jﬁEG is given by (4.1).

The return at time ¢+ 1 of a given portfolio w with weights w = (w1, ws, w3), is denoted

(w

by rt(fl) The distribution of 7, +f forecasted by the Riskmetrics™™ methodology, which we

denote by FFY s the distribution of wr)t" (a normal with mean 0 and variance w2w").

The distribution forecasted by the regression-type model (2.1), (2.2), denoted by F#4¢, is

that of Wr{jﬁEG.

As explained in Diebold et al. [3], evaluating the correct distributional forecast Fy ,
at the realized portfolio returns rt(ﬁ yields an iid sequence (Fyiq (r,g:ff )) of uniform (0,1)
random variables. Hence the quality of a distributional forecast GGy, can then be assessed

by testing the hypothesis

(4.5)  Hy: (Gt+1(7“t(ﬁ)) is an iid sequence with uniform (0,1) marginal distribution.

In the sequel we test hypothesis (4.5) for Gi11 = FfY and Gy = Fff5¢. More con-

cretely the sequences (F{EM (7)) and (F{EZC(r{*))) are tested for variance 1/12 (the vari-
ance of a uniform (0,1)), using a test based on the Central Limit Theorem, for uniform (0,1)
marginal distribution, employing the Kolmogorov-Smirnov and Andersen-Darling test and
for independence, using the Ljung-Box statistic at lag 10. We used the following simulation
set-up.

Three thousand portfolios were randomly generated. The weights of each portfolio w
were sampled from a uniform (0,1) distribution then normalized such that they added up to
1. As in Section 4.2, the sample is split into two parts: the first 1000 observations serve to
produce the initial parameter estimates for the regression-type model while the remaining
1926 observations are used to compute the sequences (FEY (ri1))) and (FEZG(r()) for
each portfolio w. (We kept the weights of the portfolios constant during the testing period.)
For every sequence we produced the p-values corresponding to the four mentioned statistics.

The results of these simulations are summarized in Figure 4.7 where the percentage of p-

values smaller than 5% is reported. For a given test, the first bar concerns Riskmetrics’ ™
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Figure 4.7. The percentage of the p-values for the K-S (1), A-D (2), the L-B at lag 10 (3)
and the variance test (4) that are smaller than 5% . For a given test, the first bar concerns
the Riskmetrics' ™ methodology while the second one refers to the forecasting methodology

described in subsection 4.1.

while the second one refers to the forecasting methodology described in Section 4.1. It
is interesting to notice that for almost 90% of the portfolios, Riskmetrics” fails (at the
5% level) the variance test. This should be compared to the 94% acceptance rate for
our methodology. Moreover, 25% of the sequences (F[} (rgﬁ)) fail at least one of the
uniformity tests (either K-S or A-D) compared to only 5% of the (FEZ%(r{Y))) sequences.
Finally, Riskmetrics”™ fails at least one of the four tests in 94% of the cases compared to

only 9% for our methodology.

5. THE RELATIONSHIP TO RISKMETRICS®

In the last few years the RiskMetrics’™ methodology developed by J.P.Morgan has
become a kind of un-official industry standard for forecasting volatilities and assessing the
risk of financial investments. In this section we discuss similarities and differences between
this methodology and our approach. To this end, we focus on the standard RiskMetrics

SReprinted from Drees and Stirici [5]. Although the discussion concentrates on the univariate case,

its relevance remains unaltered. The univariate returns are denoted by X. We appologize for the small

change of notation.
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approach which ignores the mean of the returns and assumes normal innovations, although
we also briefly discuss more refined models.

In the RiskMetrics manual [15] it is suggested to forecast the volatility by an exponential
filter of the squared returns:

(5.1) WY L.

’ > imt A
where for a one-day-ahead forecast the values A\ = 0.94 and m = 74 are recommended.
In the next step, the standardized returns X;/Ggra, are treated as (approximately) in-
dependent normal random variables when the Value at Risk and related quantities are
calculated.

Unfortunately, the probabilistic model that forms the basis of this statistical procedure
is, according to our reading of the RiskMetrics manual, faulty. In the conclusion of the
fourth chapter, “Statistical and probability foundations”, section 4.6 titled “RiskMetrics
model of financial returns: A modified random walk”, the model receives the following
description: “The variance of each return, azt and the correlation between returns, p;+,
(the indez i and the presence of p are for the description of the multivariate case, n.n) are
a function of time. The property that the distribution of returns is normal given a time
dependent mean and correlation matrix assumes that returns follow a conditional normal
distribution-conditional on time.”

In formulae, as specified on page 73 of [15], a conditional, multiplicative model with

4 = 0 and normal independent innovations is assumed, i.e.
(52) Xt = Oy €4, €~ N(O, ].)

The vague description of o; as “a function of time” is made precise eight chapters later,

i.e. in Section B.2.1 of the Appendix B as
(5.3) ol =Xop_ + (1 —NX7 .

This specification is, up to a constant term, that of a IGARCH process (explaining why
in the literature the RiskMetrics model is often thought of as being an IGARCH model).
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However, seemingly small in appearance, this difference is very big in substance. Results
by Kesten [9] and Nelson [11] imply that a time series evolving according to the dynamics
(5.2) and (5.3) will tend to 0 almost surely!

From our point of view, the claimed close relationship between the RiskMetrics method-
ology and GARCH-type models (prompted by the deceiving formal analogy between the
GARCH(1,1) specification

(54) 0t2 = Q) —+ a/lXt271 —+ ﬁlUtQ—li

and (5.3) and emphasized by the comparisons in Section 5.2.3 of [15]) is misleading. In-
stead, the RiskMetrics approach can be motivated by our non-stationary regression model
(2.2).

Indeed, if one assumes a zero mean (i.e. X; = R;), then the forecast (5.1) is just a kernel
estimator of the type (3.1) with an exponential kernel K.,,(x) = a”1_1)(z), @ = A™ and
h = m. Our experience shows that replacing the normal kernel with the exponential leads
to results very similar to the ones reported in Section 4. This finding is in line with the
well-known fact that the choice of the bandwidth h affects the performance of a kernel
regression estimator much more strongly than the choice of the kernel. In fact, in the
Sections 2 and 4 we have deliberately chosen the normal kernel instead of the exponential
filter (more common in time series analysis) to demonstrate that the choice of the kernel
does not matter much.

While the volatility forecasts by the RiskMetrics methodology are similar to ours, the
assumption of normal innovations is too restrictive to yield accurate forecasts of the dis-
tribution of future returns. This has also been observed in [15]. In Appendix B of the
RiskMetrics document normal mixture models or GED models for the innovations are pro-
posed. However, these alternative models lack two features that turned out to be essential
for a successful fit of many real data sets: they do not allow for asymmetry of the dis-
tribution of innovations and they assume densities with exponentially decaying tails, thus

excluding heavy tails. Simulations as well as the results in Section 4 show that the reason
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for the inferiority of distributional forecasts based on RiskMetrics (like for the GARCH-
type models discussed in the previous sections) is mainly due to this inflexibility of the
model for the innovations.

To summarize this discussion, our non-stationary approach of modelling the financial
returns as independent observations with a changing unconditional variance provides the
needed theoretical background for the RiskMetrics methodology. At the same time, our
more flexible modelling of innovations significantly improves the fit and the forecasting

performance.

6. CONCLUSION

In this paper a simple multivariate model for returns on financial instruments is proposed.
The modeling methodology is innovative, replacing the stationary, fully parametric, con-
ditional approach of GARCH- or stochastic volatility-type models with a non-stationary,
semi-parametric, unconditional modeling.

Unlike most of the multivariate econometric models for financial returns, our model
supposes the volatility to be exogenous. The vector of returns is assumed to follow an
AR(1) process whose independent innovations have a changing unconditional covariance
structure. The methodological frame is that of non-parametric regression with non-random
equidistant design points where the regression function is the evolving unconditional co-
variance. The regression function is estimated by a local weighted average with the weights
chosen by evaluating a kernel function at the design points. The vectors of standardized
innovations have asymmetric heavy tailed and are modeled parametrically.

The model was estimated on a tri-variate sample of returns consisting of the foreign
exchange rate Euro/Dollar (EU), the FTSE 100 index, and the 10 year US T-bond. The
model fits the data well and provides good multivariate distributional forecasts.

Since the unconditional covariance structure is estimated non-parametrically, we believe
that our approach is particularly suited for analyzing large portfolios of assets. We also

believe that the careful parametric modeling of the extremal behavior of the standardized
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innovations makes it amenable for precise VaR calculations. Evaluating its behavior in

these settings is, however, subject of further research.
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