CHANGES OF STRUCTURE IN FINANCIAL TIME SERIES AND THE
GARCH MODEL

THOMAS MIKOSCH AND CATALIN STARICA

ABSTRACT. In this paper we propose a goodness of fit test that checks the resemblance of the
spectral density of a GARCH process to that of the log-returns. The asymptotic behavior
of the test statistics are given by a functional central limit theorem for the integrated
periodogram of the data. A simulation study investigates the small sample behavior, the
size and the power of our test. We apply our results to the S&P500 returns and detect
changes in the structure of the data related to shifts of the unconditional variance. We show
how a long range dependence type behavior in the sample ACF of absolute returns might
be induced by these changes.

1. INTRODUCTION

In this paper we introduce a goodness of fit test for the GARCH process. In its simplest
form this model is given by

{Xt =0y Zy,

2 _ 2 2
o =ao+ fiojy +arXi g,

(1.1)

tez,

where (Z;):cz is a sequence of iid random variables with EZ; = 0, EZ? = 1. The parameters
oy and B; are non-negative and «y is necessarily positive.

Our test decides if the data at hand is a white noise whose squares have a covariance
structure which is in agreement with the second order structure of the hypothesized squared
GARCH process. The test is related to the classical Grenander-Rosenblatt or Bartlett good-
ness of fit tests for the spectral distribution of a time series; see for example Priestley [37].
Such tests are analogues to the Kolmogorov-Smirnov test for the distribution of a sample.
Other testing procedures exist in the literature. Among them we mention the approach that
uses the sequential empirical process for the residuals of an ARCH process; see Horvath et
al. [26]. Besides being restricted to the ARCH case, these asymptotic tests present another
drawback. The limit distribution of the test statistic depends in general on the distribution
of the noise Z; and the parameters of the model. An advantage of the test proposed in
this paper is that the limit distribution of the test statistic is distribution free and, as in the
Kolmogorov-Smirnov test, is a function of the Brownian bridge. Moreover, we prove that the
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limit distribution of our test statistics are insensitive to the replacement of the parameters
by their estimators under the null hypothesis.

Although attractive as a model, there is copious empirical evidence in the econometrics
literature, coming especially from the analysis of long series of log-returns, that argues against
the GARCH(1, 1) model. For example, although the squares of a GARCH(1, 1) process follow
the dynamics of an ARMA process (in particular the ACF goes to zero exponentially fast),
the sample ACFs of the absolute values and their squares tend to stabilize around a positive
value for larger lags (the so-called long range dependence in absolute returns or in volatility).
For longer samples the estimated parameters «; and (5; sum up to values close to 1 (Engle
and Bollerslev [19], Mikosch and Starica [34]). This fact, known as the integrated GARCH
finding, implies infinite variance (see Bollerslev [8]) for the returns, a conclusion in strong
disagreement with the accepted results of semi-parametric tail analysis that find at least a
finite third moment (Embrechts et al. [17]).

The second contribution of the paper is the analysis based on our goodness of fit procedure
of a long portion of the S&P500 log-return series (January 1953 to December 1990) which
could provide an answer to these critics. For the data under investigation we detect struc-
tural changes related to movements of the unconditional variance and show how a long range
dependence type behavior in the sample ACF of absolute returns might be induced by these
shifts. Our procedure identifies most of the recessions of this period as being structurally
different. The major structural change is detected between 1973 and 1975 and seems to corre-
spond to the oil crises. Our analysis seems to indicate that one simple GARCH(1, 1) process
(which models the first ten years of the data quite well) cannot describe the complicated
dynamics of longer, possibly non-stationary log-return time series.

Our paper is organized as follows. In Section 2 we formulate our main theoretical result,
a functional central limit theorem for the integrated periodogram of the GARCH process.
Then we indicate how this result can be used to build an asymptotic goodness of fit test for
the spectral distribution of the GARCH process. We also discuss the behavior of the test
statistics under the alternative hypothesis of a different GARCH process. The proofs are
rather technical and therefore postponed to Appendix Al. In Section 3 we investigate by
means of simulations the small sample properties, the size and the power of our test statistic
while in Section 4 we apply our method to the study of a long portion of the S&P log-return
series. Some concluding remarks are given in Section 5.

2. LIMIT THEORY FOR THE TWO-PARAMETER INTEGRATED PERIODOGRAM

In fields as diverse as time series analysis and extreme value theory it is generally assumed
that the observations or a suitable transformation of them constitute a stationary sequence
of random variables. In the context of this section, stationarity is always understood as
strict stationarity. One of the aims of this paper is to provide a procedure for testing how
good the fit of a stationary GARCH(p, ¢) model to data is. This section provides the limit
theory for a certain two-parameter process which is the basis for the statistical procedure
we propose in Section 2.2. This theory is slightly more general than needed for the purposes
of this paper. However, the theory for the corresponding one-parameter process (which will
be used intensively in the rest of the paper) is essentially the same as for the case of two
parameters. The latter case can be used for change point detection in the spectral domain
while the former one yields goodness of fit tests. As already mentioned, in the context of this
paper, we are mainly interested in test statistics for the goodness of fit of GARCH processes.
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The statistical procedure will allow us to single out the parts of the data which are not well
described by the hypothesized model.

To be precise, we assume that the data come from a stationary generalized autoregressive
conditionally heteroscedastic process of order (p, ¢), for short GARCH(p, q):

p q
(21) Xt = 0y Zta O't2 = + Z aZXtQ—z + Z Bjaf_i s t e Z,

i=1 j=1

where (Z;) is an iid symmetric sequence with £Z? = 1, non-negative parameters ; and B;,
and the stochastic volatility o, is independent of Z; for every fixed ¢. We also assume that Z;
has a Lebesgue density on the real line. This ensures that (X;) is a-mixing with geometric
rate; see Boussama [11]. In what follows, we write o for a generic random variable with the
distribution of o1, X for a generic random variable with the distribution of Xj, etc.

This kind of model is most popular in the econometrics literature for modeling the log-
returns of stock indices, share prices, exchange rates, etc., and has found its way into the
practice of forecasting financial time series. See for example Engle [18] for a collection of
papers on ARCH. We assume that, for a particular choice of parameters «; and [;, the
sequence ((Xy, o)) is stationary. Assumptions for stationarity of a GARCH process can be
found in Bougerol and Picard [10] for the general GARCH(p, ¢) case and in Nelson [35] for
the GARCH(1, 1) case.

Our analysis is based on the spectral properties of the underlying time series. Consider
the classical estimator of the spectral density, the periodogram, given by

1 & ’
T Zefi)\tXt
v t=1

Under general conditions, the integrated periodogram or empirical spectral distribution func-
tion

I

n,X

, Ae|0,m].

1 1

(2.2) Py nx(A) = %/0 I, x(x)dz, Xel0,7],

is a consistent estimator of the spectral distribution function given by
A
V= [ Ixle)do, Ae o,
0
provided the spectral density fx is well defined.

2.1. Main results. As a motivation for our main result, we start by considering the two-
parameter process Jy, x(z, A) related to (2.2) (see also Appendix Al):

A
D@ ) = [ [ i +2Z% et (1) cos(yh) | dy
0

sm()\h)
h Y

(2.3) = AN na)x(0) + 2 Z Ynfnal,
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where
1 [nz]—h
Yoo x (h) = — > XiXpn, h=0,1,2,...[na] -1, z€[0,1].
t=1

Clearly,

’Vn,X(h) = ’Yn,n,X(h)
denotes a version of the sample autocovariance at lag h; the standard version of the sample
autocovariance is defined for the centered random variables X; — X ,,, where X, is the sample
mean. We also write

vx(h) = cov(Xp, Xp) and wx(h) = var(XoX,) = E(XoX,)?, heZ.

The processes vy [n,x (h) satisfy a fairly general functional central limit theorem (FCLT).
Recall that D([0,1],R™) is the Skorokhod space of R™-valued cadlag functions on [0, 1]
(continuous from the right in [0, 1), limits exist from the left in (0,1]) endowed with the
Ji-topology and the corresponding Borel o-field; see for example Jacod and Shiryaev [27] or
Bickel and Wichura [6].

Lemma 2.1. Consider the GARCH(p, q) process (X;) given by (2.1). Assume that
(2.4) E|X[*° < 0o for some § > 0.

Then for every m > 1, asn — oo

_ d 1/2 _
(25) VA (xR h =1 m) oS (0 (0) Wale), =1, ,m)we[()’l] ,
in D([0,1],R™), where Wi(-), h =1,...,m, are iid standard Brownian motions on [0, 1].

The proof of the lemma is given in Appendix Al.
A naive argument, based on Lemma 2.1 and the decomposition (2.3), suggests that

h=1

= sin(Ah
V(Jax (2, 8) = M nal.x (0)acloaelon] 2(21&”(’0 Wa(a) 5} )> ,
z€[0,1],A€[0,7]

in D ([0, 1] %[0, 7]). This result can be shown to be true; one can follow the lines of the proof of
Theorem 2.2 below. However, the two-parameter Gaussian limit field has a distribution that
explicitly depends on the covariance structure of (X?), which is not a very desirable property.
Indeed, since we are interested in using functionals of the limit process for a goodness of fit
procedure, we would like that the asymptotic distribution of those functionals is independent
of the null hypothesis we test. In other words, we want a “standard” Gaussian process in
the limit since otherwise we would have to evaluate the distributions of its functionals by
Monte—Carlo simulations for every choice of parameters of the GARCH(p, ¢) we consider in
the null hypothesis.

A glance at the right-hand side of (2.3) suggests another approach. The dependence of
the limiting Gaussian field on the covariance structure of (X?) comes in through the FCLT
of Lemma 2.1. However, it is intuitively clear that, if we replaced in (2.3) the processes
“n,fn,x (h) by

_ Tnfngx(h)

a/n,n-, h — T 179 ...
m.x (h) W2 (h)

the limit process would become independent of the covariance structure of (X?).
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Therefore we introduce the following two-parameter process which is a straightforward
modification of J,, x(z, A):

[nz]—1

Cox(z,\) = Z%m s1n§l)\h)’ z€[0,1], Xel0,7].

Our main result is a FCLT for C, x.

Theorem 2.2. Let (X;) be a stationary GARCH(p, q) process given by (2.1). Assume that
(2.4) holds. Then

d sm )\h
vn (Cnx(z, )‘))wE[O,l],)\E[O,ﬁ] = (K(z, )‘))IE[O 1Ae[0,7] = (Z Wi (2 ) ’
[0,1],A€[0,n]

(2.6)

in D([0,1] x [0,7]) where (Wh(-))n=1,.. is a sequence of iid standard Brownian motions on
[0,1]. The infinite series on the right-hand side converges with probability 1 and represents
a Kiefer—Miiller process, i.e., a two-parameter Gaussian field with covariance structure

E (K (21, M) K (22,0)) = min (21,22) Y sin (Alt)tzsin (Nat)

t=1

(2.7) = 27'7°min (21, 75) <m1n (Al, )\2) _M &) _

™ T ™ T

The proof of the theorem is given in Appendix Al.

The series representation of the Kiefer-Miiller process can be found in Kliippelberg and
Mikosch [29]. This process is known in empirical process theory as the limiting Gaussian
field for the sequential empirical process; see Shorack and Wellner [40].

Remark 2.3. The statement of Theorem 2.2 remains valid for wider classes of stationary
sequences. In particular the result holds if the conditions in Remark Al.1 are satisfied
and in addition, (X;) is symmetric and (|X;|) and (sign(X;)) are independent. The latter
conditions are satisfied by any stochastic volatility model of the form X; = oy Z;, where (Z;)
is a sequence of iid symmetric random variables and the random variables o; are adapted to
the filtration o(Z;_1, Z;_o, .. .), or alternatively, (o;) and (Z;) are independent.

Immediate consequences of Theorem 2.2 and the continuous mapping theorem are limit
theorems for continuous functionals of the process C,, x which can be used for the construc-
tion of goodness of fit tests and tests for detecting changes in the spectrum of the time
series.

Corollary 2.4. Under the assumptions of Theorem 2.2,

v s (Cox(e, ) 4 sup |K(z, ).
€[0,1],A€[0,7] z€[0,1],A€[0,7]

IS
// 2 x(z,\) dzdA N //KZx)\)dxd/\
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For z = 1, convergence in (2.6) yields

n—1 .
(28) \/E Cn,X() — \/E ,Ynl’/);(h) Sln( h ZWh sm ,
1 vx () h
in C[0, 7|. The series on the right-hand side is the so-called PaleyfVVlener representation of
a Brownian bridge on [0, 7|; see (2.7) with z = 1 (see for example Hida [25]).
The one-parameter process C), x will be our basic process for testing the goodness of fit of
the sample Xi,..., X, to a GARCH process. The convergence of the following functionals

can be used for constructing Kolmogorov-Smirnov and Cramér-von Mises type goodness of
fit tests for a GARCH(p, ¢) process.

Corollary 2.5. Under the assumptions of Theorem 2.2,

(2.9) Spi= v s [Cox()| 4 sup (B,
A€[0,7]

A€[0,7]

/Cﬁx A S /BZ()\)d)\.
0

2.2. The goodness of fit test. In what follows, we focus on the GARCH(1,1) case but
a similar theory can be developed for the general GARCH(p, q) case. The quantities vx (h)
are continuous functions of the GARCH parameters and the fourth moments of the iid noise
Z;. We refer to Appendix A2 where vy is explicitly given for the GARCH(1, 1) case. For
an application of the results above it is natural to replace the unknown quantities vx(h) in
the definition of 7, x x(h) by their sample versions vx(h), i.e., the parameters o; and [, are

replaced by some estimators @; and 3; and EZ* is replaced by the sample mean of the 4th
powers of the residuals EZ* = n~'Y"" | Z}, where Z; = X, /6, and 57 = Qo+a1 X7+ 107,
and 55 and X¢ are arbitrarily chosen, but fixed. Denoting by

~ Vn,[n],X(h)
Yo, x () = —5—
=5k
we produce the straightforward modification of C,, x(z, A):
nz]-1 .
s1n()\h)
Crx(z, ) = hz T zel0,1], Melo,n],

and that of Sn:

(2.10) S, = +/n sup
A€[0,7]

@n,X()\)‘

The following result states that the theory developed in this section remains valid if vy is
replaced by its sample analogue.
Theorem 2.6. Assume that the parameter estimators o1 and Bl based on X4,...,X, are

independent of (sign(Xy)) and consistent, i.e. LN o1 and Bl LN Bi. Then Theorem 2.2
and its corollaries remain valid for a GARCH(1,1) process if vx is replaced by its sample
analogue Vx. In particular

(2.11) S, % sup |[B(\)].
A€[0,7]
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Remark 2.7. The Whittle parameter estimators of a GARCH process are consistent if
EX* < 00, and so are the Gaussian quasi maximum likelihood estimators; see Giraitis and
Robinson [22] and Mikosch and Straumann [32] for the former case and Berkes et al. [5] for
the latter case. Moreover, by their definitions they are calculated from the X?’s and o?’s
only and therefore they are independent of (sign(X3)).

The results we presented so far are sufficient for providing a theoretical understanding of
the behavior of tests based on functionals of C, x (for example S,). These are tests of the
null hypothesis that the sample X, ..., X, comes from a GARCH(1,1) model with given
parameters ; and (; against the alternative of another GARCH(1, 1) model with parameters
o, v = 0,1 and Sf. They reject the null hypothesis if the functional is in a certain region.
The rejection region giving the test the right size is constructed based on the quantiles of the
appropriate functional of the limit process in Theorem 2.6 (i.e. the supremum of a Brownian
bridge in the case of the statistic S,). As for the power ot the test, similar arguments as for
the proof of Theorem 2.6 yield under the alternative the following result.

Theorem 2.8. Assume that (X;) and (Y;) are two stationary GARCH(1, 1) processes (2.1)
with coefficients o, 1 = 0,1, By and of, i = 0,1, B} respectively. Assume that the parameter
estimators & and [ (based on the sample Xy, ..., X, ) are independent of (sign(X;)) and

. . . P ~ P
consistent, i.e. &y — oy and 3y — (1. Define

~a ryny[n]ay(h)
s[n] v;{/Q(h)
nz]—1 .
~a ,\a sin(\h)
n,X,Y(xﬂ A) = ’Yn,[nac}(h) h , z€[0,1], Ael0,7].
h=1
Then
~ 0 [0 (R) sin(AR)
@12n (Coxy(@n) A3 W (@) ,
]}E[Oa ]7 E[O;ﬂ'] h=1 ’UX (h) .'EE[O,IL)\E[O,W]

in D ([0,1] x [0,7]) where (Wy(-)) is a sequence of iid standard Brownian motions on [0, 1]
while v% (h) = E(Y,Y3)2

This result yields a theoretical description of the power of tests based on functionals
of Cp x. It individuates the functional of the Gaussian process on the right hand side

~

of equation (2.12) as an asymptotic equivalent of the desired functional of Cf y,. Note
that the distributions of the functionals of the limit processes depend on the parameters of
the alternative hypothesis in a rather complicated way. This makes the direct use of the
Theorem 2.8 in applications rather difficult. For this reason we will rely on Monte-Carlo
based calculations of the distribution of C . See Section 3 for a simulation study on the
size and the power of a test based on the statistics S,.

Results similar to Theorem 2.8 can be derived for the alternative hypothesis that the
sample X7,..., X, consists of subsamples from different GARCH(p, q¢) processes. Clearly,
the asymptotic distribution will be even more complex and the Monte-Carlo approach again
inevitable.
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3. A SIZE AND POWER MONTE CARLO STUDY

The aim of this section is to investigate the size and the power of a test based on the
statistic S, in (2.10). The set up is relevant to the real data analysis performed in Section 4.
There we check the goodness of fit of a GARCH(1, 1) process with parameters estimated on
the first 3 years of data (750 observations)

(3.1) a=858%x10°% « =0.072, B =0.759, v=5.24,

to various segments of the data set. Here v is the number of degrees of freedom of the
t-distributed noise sequence (Z;). The corresponding value of the fourth moment of the
estimated residuals of the model 3.1 is EZ* = 7.82.

6 T T T T T 0.06

S
T+

o Bt #

Y Quantiles
w

N
T

o

. . . . .
o 1 2 3 4 5 6 -0.06 L L L L L L L L L
X Quantiles 0 100 200 300 400 500 600 700 800 900 1000

Figure 3.1. Left: QQ-plot of 1000 values of 5125 (z-azis) against the quantiles of the supre-
mum of a Brownian bridge (y-azis). Right: The difference between the sample cdf of 1000
stmulated values of 5125 and the theoretical cdf of the supremum of a Brownian bridge with
the Kolmogorov-Smirnov 95% confidence bands.

The first choice we need to make when applying our test on data is precisely that of the
size of the window that guarantees a correct behavior of the statistic S,,. Theoretically, the
correct size of the test will be guaranteed by a choice of the rejection region based on the
asymptotic behavior of S,, described by Theorem 2.6. These results are only asymptotic
and provide the right size if the data window used to calculate the S, statistic is large.
For reasons that are explained in Section 4, we want to keep the length of the window as
small as possible. It is by means of simulations that we find the right balance between these
opposing requirements on the window size. As a byproduct of the simulation study, we will
understand how to adjust the interval provided by Theorem 2.6 in order to maintain the
correct size. N

The left graph in Figure 3.1 displays the QQ-plot of 1000 simulated values of Sja5 (the
quantiles on the z-axis), calculated on samples of 125 observations from a GARCH process
with Student-¢ innovations and parameters (3.1) against the quantiles of the supremum of
a Brownian bridge (on the y-axis). The right graph in the same figure together with the
graphs in Figure 3.2 shows the goodness of fit of the distribution of the supremum of a
Brownian bridge to samples of 1000 simulations of Sis5 (Figure 3.1), Sso0 and Sigeo (Figure
3.2) respectively. The statistic S is calculated using the parameters (3.1). The goodness of
fit is based on the Kolmogorov-Smirnov test. The solid line in these graphs represents the
difference between the sample cdf and the theoretical cdf of a Brownian bridge while the
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L L L L L L L L L — L L L L L L L L L
100 200 300 400 500 600 700 800 900 1000 [ 100 200 300 400 500 600 700 800 900 1000

Figure 3.2. The difference between the sample cdf of the 1000 simulated values of §500 (Left)

and of Sipeo (Right) and the theoretical cdf of the supremum of a Brownian bridge with the
Kolmogorov-Smirnov 95% confidence bands.

Y Quantiles
IS
T

w
T

1k

o)

. . . .
o 1 2 3 4 5 6 7
X Quantiles

Figure 3.3. QQ-plot of 2500 values of Si95 (x-azis) against 2500 values of Sios (y-azxis).

dotted lines are the 95% confidence intervals stipulated by the Kolmogorov-Smirnov test.
This test seems to indicate that the asymptotic behavior fully works for sample sizes of the
order 1000 while the qualitative differences between sample sizes of order 125 and 500 are
not too big. This observation together with the good fit showed by the QQ-plot in Figure
3.1 motivate our choice of a window size of 125 data points or half of a business year.

A next issue that we need to clarify is the behavNior of Sig5. Recall that Theorem 2.6
stipulates that the asymptotic behaviors of S,, and §,, are the same. A verification of this
statement is provided in Figure 3.3 which displays the QQ-plot of 2500 simulated values
of Sio5 against 2500 simulated values of Sio5. In all cases the data generating process is a
GARCH model with Student-¢ innovations and parameters (3.1). To obtain one value of
Sia5, 125 simulated data and the true parameters (3.1) are used, while in the case of Sias,
875 data points are simulated, the parameters are estimated on the first 750 data points and
the last 125 observations together with the estimated parameters are used to produce the
statistic. The two distributions seem indeed very close to each other.

This part of the simulation study serves also to define the rejection regions of the test based
on the statistic Sio5. The rejection intervals for a 95% size one-sided, respectively two-sided
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Figure 3.4. Top: Power against GARCH alternatives of a test based on Sio5 and the re-
jection interval (0,1.01) (Right) and (3.32,00) (Left). The parameters o and v* are kept
constant and equal to the values in (3.1), i.e. 8.58 x 107% and 5.24 respectively. The z- and
y-azes show the {- and of-values of the alternatives. Bottom: The difference between the
standard deviations of the alternative models and that of the model with parameters (3.1).

test for the Sio5 statistic are (0,1.01) and (3.32,00), and (0,0.92) U (3.8, 00) respectively.
The interval that gives a size of 99% to our two-sided test (and that will be used for the
data analysis in the next section) is (0,0.785) U (4.9, c0).

The alternatives we consider in our study are those of GARCH processes with parameters
different from those in (3.1). Although Theorem 2.8 gives the theoretical power of our test
against various GARCH alternatives, its complicated form renders it of little practical help.
For understanding the behavior of the S,, statistic under various GARCH alternatives we
again have to turn to a Monte Carlo analysis.

The results are displayed in Figures 3.4-3.7. The tests have size 95% and are based on
the choice of intervals given by our simulation study as discussed above. In Figures 3.4 and
3.5 the parameters oy and EZ* are kept constant while the other two parameters «; and
By are made to vary between 0.04 and 0.14 and 0.6 and 0.92 respectively. In Figures 3.6
and 3.7 the parameters o; and (; are kept constant while the other two parameters oy and
EZ* are made to vary between 1.5 x 107 and 4.05 x 10~® and 3 and 9 respectively. For
every alternative, 500 simulations were produced. The top graphs in Figures 3.4 and 3.6
display the power of the one-sided tests (for the left hand side graph, the rejection interval
is (0,1.01), for the right hand side graph (3.32,00)) while the graphs on the bottom row
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Figure 3.5. Left: Power against GARCH alternatives of a test based on Si95 and the two-
sided rejection region (0,0.785) U (4.9,00). The parameters o and v* are kept constant
and equal to the values in (3.1), i.e. 8.58 x 107® and 5.24, respectively. The x- and y-azes
show the [3{- and af-values of the alternatives. Right: The absolute value of the differences
between the log of the standard deviations of the alternative models and that of the model
with parameters (3.1).

display the difference between the standard deviation of the alternative models and that of
the model with parameters (3.1). The left graphs in Figures 3.5 and 3.7 show the power of
the two-sided test (rejection region (0,0.785) U (4.9, 00)) while the right graphs in the two
pictures display the absolute value of the difference between the log of the standard deviation
of the alternative models and that of the model with parameters (3.1).

The graphs in Figures 3.4 and 3.6 shed light on the relationship between the difference of
the unconditional variances and the distribution of the Sjs5 statistic under the alternative.
They show that the sampling distribution of the statistic Sio5 (calculated with the parameters
of the null hypothesis) for GARCH models with lower (higher) unconditional variance is
dominated (dominates) the sampling distribution for the null model. Hence rejecting for
small (high) values of the statistic Sjo5 gives power against alternative models with smaller
(larger) unconditional variance. The graphs in Figures 3.5 and 3.7 show a strong connection
between the power of the test and the absolute value of the difference of the log unconditional
variances of the two models. The higher the size of the difference, the higher the power. Even
more, Figures 3.6 and 3.7 show that the test has equal power against alternatives of equal
variance. Note that the variance of the alternative GARCH(1, 1) processes does not depend
on the EZ* parameter.

As a conclusion, the study motivates the interpretation of the rejection of the null hypoth-
esis not only as signaling the need for another GARCH model but also as a clear sign of a
change in the unconditional variance of the time series. More concretely, a rejection on the
upper (lower) end of the rejection region also signals an increase (a decrease, respectively)
in the unconditional variance of the time series.

4. A STUDY OF THE STANDARD & POOR’S 500 SERIES

We now proceed to analyze a time series that has been previously used to exemplify the
presence of LRD in financial log-return series: the Standard 90 and Standard and Poor’s
500 composite stock index. This series, covering the period between January 3, 1928, to
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x10°

Figure 3.6. Top: Power against GARCH alternatives of a test based on Si95 and the one-
sided rejection intervals (0,1.01) (Left) and (3.32,00) (Right). The parameters of and (¢
are kept constant to the values in (3.1), i.e. 0.072 and 0.759, respectively. The z- and y-azes
show the of- and v*-values of the alternatives. Bottom: The difference between the standard
deviations of the alternative models and that of the model with parameters (3.1).

August 30, 1991, was used in Ding et al. [15], Granger et al. [23], Ding and Granger [14]
for an analysis of its autocorrelation structure. It led the authors to the conclusion that
the powers of the absolute values of the log-returns are positively correlated over more than
2500 lags, i.e., 10 years. It is hard to believe that this time series is likely to be stationary.
It covers the Great Depression, a world war together with the most recent period, marked
by major structural changes in the world’s economy. In addition, there was a compositional
change in the S&P composite index that happened in January 1953 when the Standard 90
was replaced by the broader Standard and Poor’s 500 index. Despite all these, Ding et al.
[15] conclude the section which describes the data as follows (page 85): “During the Great
Depression of 1929 and early 1930s, volatilities are much higher than any other period. There
is a sudden drop in prices on Black Monday’s stock market crash of 1987, but unlike the
Great Depression, the high market volatility did not last very long. Otherwise, the market
is relatively stable.” Bollerslev and Mikkelsen [9] used the daily returns on the Standard
and Poor’s 500 composite stock index from January 2, 1953, to December 31, 1990 (a total
of 9559 observations) to fit a FIGARCH model under the assumptions of stationarity and
LRD. (It is unknown whether the FIGARCH has a stationary version, and if it existed, it
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Figure 3.7. Left: Power against GARCH alternatives of a test based on Sis5 and the two-
sided rejection interval (0,0.785) U (4.9,00) and (3.32,00). The parameters of and ¢ are
kept constant to the values in (3.1), i.e. 0.072 and 0.759, respectively. The x- and y-azes
show the of- and v*-values of the alternatives. Right: The absolute value of the difference
between the log of the standard deviations of the alternative models and that of the model
with parameters (3.1).

had infinite variance marginals, thus the definition of LRD via the ACF would break down.
See Giraitis et al. [21] and Mikosch and Starica [33] for some discussions.)

In the sequel we perform a detailed analysis of the same data set covering the time span
from January 2, 1953, to December 31, 1990; see Figure 4.1. The first goal of the analysis

logretums
0500 00

10 A5 10

1960 1970 1980 1990
time

Figure 4.1. Plot of 9558 S&P500 daily log-returns. The year marks indicate the beginning
of the calendar year.

is to check the goodness of fit of a GARCH process with parameters estimated on the first
3 years of data, the period from the beginning in 1953 until the beginning of 1956 (750
observations)

(4.2) ap=858x10"% o =0072, B/ =0.759, v=524,

to various segments of the data set. Here v is the number of degrees of freedom of the
t-distributed noise sequence (Z;). The corresponding value of the fourth moment of the esti-
mated residuals of the model (4.2) is EZ* = 7.82. The analysis verifies if this GARCH(1, 1)
model which provides a good description to the beginning of the sample can be used to model
later periods. In the case of a negative answer we are interested in understanding the type
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of changes that occurred and, if possible, to pin them to new economic conditions. In other
words, the second goal of the analysis is the timing of possible changes in the structure of
the data. We try to achieve this goal by evaluating the statistic S, on a window that moves
sequentially through the data. We will chose the window as small as possible to make sure
the statistic reacts promptly to possible structural changes. In the end of the section we
document the effect which changes in the variance have on the sample ACF. We find that
the shape of the sample ACF changes drastically after episodes of increased variance that
cannot be properly described by the estimated model.

x10
T

18

16

14+

12+

10+

L L L i L i L L o L L L L L L L L
1955 1960 1965 1970 1975 1980 1985 1990 1955 1960 1965 1970 1975 1980 1985 1990

Figure 4.2. Left: The goodness of fit test statistic S195 for the S&P500 data. The horizontal
lines are the limits of the 99% confidence interval of Sio5 as obtained from the simulation
study in Section 3. The dotted vertical vertical lines mark the start and the end of economic
recessions as determined by the National Bureau of Economic Research. Right: The implied
GARCH(1, 1) unconditional variance of the S&P500 data. A GARCH(1,1) model is esti-
mated every 2 months using the previous 2 years of data (i.e., 508 observations). The graph
displays the variances 0% = ag/(1 — oy — B1); see (A2.1).

The left-hand graph in Figure 4.2 shows the results of calculating the statistic S, (see
(2.10)) on a weekly basis (i.e., every 5th instant of time) with blocks of n = 125 past obser-
vations, corresponding to approximately 6 months of previous observations. The horizontal
lines correspond to the ends of the rejection region of a goodness of fit test of size 99% based
on Sio5 statistic as obtained from the simulation study in Section 3. The dotted vertical
lines mark the start and the end of economic recessions as determined by the US National
Bureau of Economic Research. This graph shows that one simple GARCH(1,1) process
(which, according to the Sjg5 statistic, models the first ten years of data or so quite well
cannot describe the complicated dynamics of longer, possibly non-stationary log-return time
series. More precisely, the graph shows that most of the more pronounced violations of the
confidence interval are on the upper side. It also shows that most of the recessions of the
period under study (apart the one in the beginning of the 60s) are associated with larger than
acceptable values of the 595 statistic. Recalling the simulation results of Section 3, these
two findings also seem to imply that the unconditional variance of the log-returns changes
through time and that most of the recessions of the period under study are characterized by
higher unconditional variance than the periods of normal economic activity.
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A closer look at the S&P 500 plot in Figure 4.1 together with the left-hand graph in Figure
4.2 reveals an almost one-to-one correspondence between the periods of larger absolute log-
returns (larger volatility) and the periods when the goodness of fit test statistic Sio5 falls
outside and above the confidence region.

If the unconditional variance changes through time, as our analysis seems to indicate,
no GARCH(1,1) model could be a good model for the whole period. It is then interesting
to verify whether a periodically updated GARCH(1, 1) model could account for the more
pronounced volatility periods that cannot be explained by the GARCH(1,1) model (4.2).
One way to do this is to calculate the implied unconditional GARCH(1,1) variance of a
periodically re-estimated GARCH(1, 1) model, i.e., one calculates the variance

ox = /(1= (on + B1))

based on the periodically re-estimated parameters o and fi; see (A2.1).

More concretely, we re-estimated a GARCH(1,1) model every 2 months, i.e., every 42
days, on a moving window of 508 past observations, equivalent to roughly two business
years of daily log-returns. We then plotted the implied variance o%. The results of this
procedure are displayed in the right-hand graph of Figure 4.2. One notices that the pattern
of increased implied unconditional variance is quite similar to the pattern of the excursions of
the statistic Sio5 above the 99% quantile threshold. This similarity seems to imply that one
can capture the changing patterns of volatility present in the data by periodically updating
the GARCH(1, 1) model. However a more in-depth study would be needed to substantiate
such a statement.

Let us now analyze the impact which these periods of different structural behavior detected
by the goodness of fit test statistic Sio5 have on the sample ACF of the time series. The left
hand side graph in Figure 4.2 identifies the period beginning in 1973 and lasting for almost 4
years as the longest and most significant deviation from the hypothesized model. This period
is centered around the longest economic recession in the analyzed data. Figure 4.3 displays

005 00 005 010 015 020 025
005 00 005 010 015 020 025

o 50 100 150 200 o 50 100 150 200

Figure 4.3. The sample ACF for the absolute log-returns of the first 20 and 24 years (left
and right) of the S&P500 data.

the sample ACF of the absolute values | X;| up to the moment when the change is detected,
i.e., beginning of 1973, next to the sample ACF including the 4-year period that followed. The
impact of the change in the structure of the time series between 1973 and 1977 on the sample
ACF is extremely severe as one sees from the second graph of Figure 4.3. The graph clearly
displays the LRD effect as explained in [33, 34]: exponential decay at small lags followed by
almost constant plateau for larger lags together with strictly positive correlations. Contrary
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to the belief that the LRD characteristic carries meaningful information about the price
generating process, these graphs show that the LRD behavior could be just an artifact due
to very plausible structural changes in the log-return data: variations of the unconditional
variance due to the business cycle.

5. CONCLUDING REMARKS

In this paper we have argued that long financial time series display complicated volatil-
ity structures for which the simplifying assumption of constant unconditional variance and
constant other moments is too rigid. Modeling the changing unconditional variance (possi-
bly together or instead of the changing conditional one) is an important component of the
modelization of long log-returns time series.

Al. APPENDIX

Proof of Lemma 2.1. We have to show the convergence of the finite-dimensional distri-
butions and the tightness in D ([0, 1], R™). Notice first that for every fixed h,

(AL.1) V(Yo na],x (1)) zefo] 4 (vy*(h) Whi())ze0,1] -

in D0, 1]; see Oodaira and Yoshihara [36]; c¢f. Doukhan [16], Theorem 1 on p. 46. In
the latter theorem one has to ensure that F|XyX[** < oo for some € > 0 (this follows
from (2.4)) and that the sequence (X;X;,) is a-mixing with a sufficiently fast rate for the
mixing coefficients; see (A1.2). However, the GARCH(p, ) is strongly mixing with geometric
rate since we assume that Z has a Lebesgue density on R (see Boussama [11]), and so the
mixing coefficients converge to zero at an exponential rate, which implies the conditions in
the aforementioned theorem.

Thus each of the processes /nv, n,x(h) is tight in D0, 1]. Using a generalization of the
argument for Lemma 4.4 in Resnick [38], one obtains that the map from (D[0,1])™ into
D ([0,1],R™) defined by

(.’L’l, ce ,.’L’m) — (.Tl(t), ceey xm(t))te[o,l]
is continuous at (x1,...,Z,) in (C[0,1])™. This and the sample path continuity of the limit
process ensure that the processes on the left-hand side of (2.5) are tight in D ([0, 1], R™).

Notice that the multivariate CLT

[na]
1
% E (XiXip1, o XeXign) . (U¥2(1)W1($)a cees U;(/Z(h)Wh(f))
t=1

holds for every fixed x. This is again a consequence of the aforementioned CLT for a-
mixing sequences in combination with the Cramér-Wold device. A similar argument for a
finite number of z-values yields the convergence of the finite-dimensional distributions. This
proves the lemma.

Remark A1l.1. It follows from the argument in the proof of Lemma 2.1 that (2.5) remains
valid for stationary strongly mixing sequences (X;) with EX = 0, E|X[*" < oo for some
d > 0 and such that EXy X, = 0 for h > 1, cov(Xo Xy, XoX;) =0 for all h # [ > 1, and with
a-mixing coefficients o; satisfying

(A1.2) > &/t < 0.

=1



CHANGE OF STRUCTURE IN FINANCIAL TIME SERIES 17
The latter conditions are needed for the validity of the FCLT in (Al.1); see Oodaira and
Yoshihara [36].

Proof of Theorem 2.2. We proceed analogously to Kliippelberg and Mikosch [29]. It

follows from Lemma 2.1 and the continuous mapping theorem that, for every fixed m > 1,
in D ([0, 1] x [0, 7])

(A1.3) S VA A (1) sin(Ah) 4 S Wia) sin(Ah)

h

According to Theorem 4.2 in Billingsley [7], it remains to show that for every € > 0,

[nz]—1 .
~ Ah
(A1.4) lim limsupP | sup sup Z V1 Y g, x (h) sin(Mh) >e| =0.
M—00 00 0<a<10<A<r |, £ h

Since Z is symmetric the sequences (r;) = (sign(X;)) and (| X;|) are independent. Condi-
tionally on (] X3|),

sin(-h)
h

> Vi Fnkx(h)

h=m+1

, k=m+1,...,n—1,

is a sequence of quadratic forms in the iid Rademacher random variables r, and with values
in the Banach space C[0, 7| endowed with the sup-norm. Now condition on (| X3|). Use first
a decoupling inequality for Rademacher quadratic forms (e.g. de la Pena and Montgomery—
Smith [13], Theorem 1) then the Lévy maximal inequality for sums of iid symmetric random
variables, then again the decoupling inequality in reverse order, and finally take expectations
with respect to (|X;|). Then we obtain the inequality

[nz]

_ sin(Ah
P | sup sup Z \/ﬁ%,[mc],X(h) Ez ) > €
0<z<1 0<AL7 h=m+1
n—1 3
_ Ah
< ¢ Plcy sup Z V1 Fnx (h) sin(\h) > €
0<A<m h=m+1 h

for certain positive constants ci, co. The right-hand probability can be treated in the same
way as the derivation of (6.3) in [28], pp. 1873-1876. Instead of Theorem 3.1 in Rosiriski
and Woyczynski [39] one can simply use the Cauchy—Schwarz inequality in the first display
on p. 1876 in [28] with u = 2. Then all the calculations for (6.3) remain valid, implying that
(A1.4) holds. This concludes the proof of the theorem.

Remark A1.2. The condition of symmetry of Z is needed only for the application of the
Lévy maximal inequality for sums of independent random variables. Alternatively, one can
proceed as in the proof of Theorem 3.1 in Kliippelberg and Mikosch [29], p. 980, last display,
where instead of the Lévy maximal inequality Doob’s 2nd moment maximal inequality for
submartingales was used. Then one can follow the lines of the proof of Theorem 1 in
Grenander and Rosenblatt [24], Chapter 6.4.

Proof of Theorem 2. 6. We start by showing that Bzt B Bzt Indeed, consistency
of the estimators ¢; and ﬁl implies consistency of EZ* We have by induction, using the
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definitions of o7 and 57,

n n 4 n 4
X X

Z4—n—1§ :Zf:n_1§ = —n—1§ —
P Ot Ot

i=1 i=1
| 4 Ut Ut 1 4 8t)(‘7t2 + 87:2)
= n E X =n E X; o 8;1
-1 4 ~ ~ 2 2N 2 2.2 ~2 Ut2 +8t2
- X, [(ao = @) + (o1 = @)X7, + (81 = B)ody + Bulot - 87.0)| sy
- t Ot
= (g —ap)n~" EH:X4(1+31+32 +5)Gt+at
=1 ' 1 ' O-t 621
- 0?2 +6?
~ -1 4 2 D v2 2\ Yt t
+(041 - 0‘1) n ;:1 Xy (thl + 60X o+t /BlX ) o 6\?

~ < ~ 02 +70
+(B = B)n! ZXf (07 1 + Brof 5 + - + Bio}) fj 04

t Yt

_ 0?2 +5?
+ _Uo 1ZX4tt t

= (w—ap) 1 + (041 —ap) I + (,31 —B) I+ (0} —63) L.

Notice that, by consistency of the parameter estimators and since (Z}0?) is ergodic,

_ o-l-a
Il S (]-_ﬁl 1ZZ4 t i

S (]-_ﬁl 712Z4 GtaO +O{0]

i=1
B (1-B)PEZEctap? + o]
By similar arguments, for any § > 0 and € > 0 such that 8, + € < 1,
P(I, > 6)
o? + 0}

< (‘12X4X31 Bt OX 4 (B X >5)+P(31>51+6)

t Yt

< <_IZZ4X31 (B1 + €)X +---+(ﬂ1+6)tX3)("?&°2+a°1)>5>+O(1)'

It is not difficult to see, by an application of the Cauchy-Schwarz inequality, that the first
moments of

‘1224 (X2 1+ (Bi+ X o+ + (b +6°X3) 0] and

nl Zz‘* (X2, 4 (B + X2 o4+ (B + 0)'XD),
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are bounded, uniformly for n. Therefore I, is stochastically bounded, and a similar argument
applies to 3. Finally,

P(nl;>6) < P (Z ZH (B + o) (o7a5 + ag') > 5) +P(Bi > Bi+e).

=1

The second probability vanishes by consistency of ,5\1. Moreover,
n n

Z Z} (B +€)'o? and Z ZH (B +e)t,
i=1 i=1

have bounded first moments. This implies that I, is stochastically bounded, and n1I, Zo.
Collecting the bounds for all I;, we conclude by the law of large numbers that Ez* 5 EZ,.

For the remaining proof we follow the lines of the proof of Theorem 2.2. Write vx(h)
for the sample version of vx(h). By consistency of @, Q;, Bl and the form of vx(h), see
(A2.2), we have Oy (k) & vx(h) for every h. This fact and the continuous mapping theorem
immediately yield that (A1.3) remains valid with vx (h) replaced by vx(h). So it remains to
show

[nz]—1 .
lim limsup P | sup sup Z \/ﬁfy’[ 1]/)2(( ) sin(Ah) >e| =0.
M=o 00 0<e<10<ALT |, £ Uy h

Notice that for every A > 1,
Ux(h)V2<Eyt =a,t (1-31)"

See Appendix A2. By the assumptions, the estimators a;, B\l are independent of (sign(Xy)),
and so is EZ* by construction of the residuals. Thus, conditionally on (| X|)),

Z Jn o Tl/g( ) sin(A\h)

h
h=m+1

is a random quadratic form in the variables sign(X;), which, by symmetry of (Z;) are inde-
pendent of the coefficients of the quadratic form which only depend on the sequence (| X;).
An application of the contraction principle for Rademacher quadratic forms (cf. Kwapien
and Woyczynski [31]) implies that for some constants ¢y, ¢y > 0

[nz]—1

Yn,fnz],x (1) sin(Ah
P | sup sup Z N [Al]/);() Ez )

> €

0<e<1 0<A<T [, ©= Uy
[nz]—-1 .
~— Ah
< ¢ Ple maxvxl/2 sup sup Z V1 Yo [na), x (P) sin(Ah) €
h 0<e<10<ALT |, = h
PN el sin(Ah)
< aPlce Q (1 - §01) sup Sup Z \/_ T Yn,[na], ( ) €

h
0<e<10<ALT |, £
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Thus it remains to show that
[nz]—1

in(Ah
lim limsup P | sup sup V1 Y nal,x (R) sin(Ah) >e| =0,
M=00  p o0 0<e<10<A<r |, £, h
which follows along the lines of the proof of Theorem 2.2. g

A2. APPENDIX

Consider a GARCH(1, 1) process (X;) with parameters oy, oy, 81. We write 1 = a1 + 51
and assume EX* < oo. From the calculations below it follows that the condition

1-— (Od%E'Z4 + ﬁ% + 2041ﬁ1) >0

must be satisfied. The squared GARCH(1,1) process can be rewritten as an ARMA(1,1)
process by using the defining equation (2.1):

X{ =1 Xiy = oo+ v — Pivpa
where (1) = (X}? — 0?) is a white noise sequence. Thus, the covariance structure of
U,=X?—EX?, tel,

is that of a mean-zero ARMA(1,1) process. The values of yy(h) are given on p. 87 in
Brockwell and Davis [12]:

w(0) = o, [1+M] :

1— ¢
%ﬁ)=aﬂw—&+g%£§ﬁy
— ¥
wh) = e w(), h>2.
Straightforward calculation yields
14+ ¢ aG(EZ* —1)
1—pi1— (¢t +ai(EZ* - 1))’

o2 = (EZ*—1) Eo} =

Q)
A2.1 Y = :
( ) Ox 1— o
Thus we can calculate the quantities
vx(h) = B(XZX}?) =yy(h) + 0%, h>1,

which occur in the definition of the change point statistics and goodness of fit test statistics
of Section 2. We obtain:

EZ* 1)&1 (1 952 041Q51)
A2.2 h) = ot ( L goh_l +1 h>1.
( ) UX( ) X < 1 ( % %(EZ4 1)) 1 ) =
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