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Abstract

Modeling financial returns on longer time intervals under the assumption of station-
arity is, at least intuitively, given the pace of change in world’s economy, a choice
hard to defend. Relinquishing the global stationarity hypothesis, this paper conducts
a data analysis focused on the size of the returns, i.e. the absolute values of returns,
under the assumptions that, at least locally, the S&P500 daily return series can be
modeled by stationary processes. The challenging task when working under the as-
sumption of local stationarity is to define the intervals on which stationary processes
provide a good approximation. This task is accomplished by using a goodness of fit
test based on the integrated periodogram (Picard ([21]), Kliippelberg and Mikosch
([15])). The conclusion of the paper is that almost all the dynamics of return time
series seem to be concentrated in the shifts of the variance. More concretely, the
S&P500 absolute returns, |r;| can be modeled as

|re] = h(t)exp(er), t=0,1,...

where (¢;) is white noise, Ee = 0, Ee? = 02 and h(t) a function of ¢t which can be well
approximated by a step function, yielding a model with piecewise constant variance.
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1 Introduction

Standard time series asset price models assume time homogeneous unconditional dynamics
of returns, even when long periods are considered. This class includes, among others
most of the autoregressive conditionally heteroschedastic (ARCH) and stochastic volatility
models which describe asset returns as stationary non-linear processes. While these models
are designed to capture a time-varying conditional second moment, they fundamentally
assume stationarity, in particular constant unconditional variance, even when decades of
economic activity are modeled. The consistency of an econometric model specification
over time, however, is questionable. Given the pace at which new technological tools and
financial instruments have been introduced on the financial markets, the case for lack of
stationarity seems quite strong. The recent unmatched and unexpectedly long period of
economic expansion only highlights the need for reassessing our answer to the question:
Does history really repeats itself? The standard stationary time series models answers:
Always.

Rethinking our modeling approaches is even more actual in the light of an increasing
amount of scientific evidence that questions the relevance of the stationarity assumption.
The most important type of non-stationarity encountered in the return time series seems
to affect the unconditional variance of the returns. Modeling stock returns as a non-
stationary process with discrete shifts in the unconditional variance can be traced back to
Hsu, Miller and Wichern (1974). More recently a number of studies have shown that some
of the statistical features of return time series that puzzled researchers through their omni-
presence (the so called “stylized facts”), like the ARCH effects, the slowly decaying sample
ACF for absolute returns or the IGARCH effect receive an alternative simple explanation
under the hypothesis of non-stationary changes in the unconditional variance.

ARCH-type models that have become the dominant time series models for stock re-
turns postulates the existence of a constant pattern of changing conditional variance, the
so called ARCH effects. Simonato ([23]) and Cai ([4]) among others brought empirical
and theoretical evidence that presence of level shifts in the unconditional variance can
produce spurious ARCH effects. Statistical estimation of this class of models on data
produces extremely persistent processes of conditional variance. Diebold ([6]), Lamoureux
and Lastrapes ([17]), Mikosch and Starica([19]) among others suggested that shifts in the
unconditional variance could explain this common finding of persistence in the conditional
variance. Lobato and Savin ([16]) and Mikosch and Staricd([19]) argue also that the slowly
decaying sample ACF for absolute returns could be caused by level changes in the mean
of the absolute returns series.

Consequently, classes of models that allow for patterns of changing unconditional vari-
ance have recently been proposed (Hamilton and Susmel ([11]), Cai ([4])). In these models
the unconditional variance changes according to the states of a Markov chain. However,
the assumption of global stationarity is preserved. These models are hence based on the
hypothesis that the pattern of change we observed in the 70’s was similar with the one in



the 80’s and 90’s and it will remain unchanged in the future. This is another hypothesis
we find difficult to defend, particularly when modeling such a dynamic environment as the
financial markets.

In our view a more realistic approach to modeling financial returns is based on the
hypothesis of continuous change. Under the assumption that the returns follow a non-
stationary process, an interesting class of models is those with time depending parameters.
The price one pays for relinquishing the hypothesis of global stationarity is a more compli-
cated approach to the statistical estimation (of the changing parameters) of these models
(see Dahlhaus ([5])). One possible approach is to approximate locally the non-stationary
process by stationary models. One is then interested in identifying intervals of homogene-
ity, i.e. intervals where a certain estimated stationary model describes well the reality of
the data. On an interval of homogeneity the parameters of the return process do not vary
much relative to the estimation error of the parameters of the stationary model used as an
approximation on that particular time interval (see Hérdle et al.[12]).

For example, if one thinks of the sequence of returns as of an independent sequence of
random variables with changing variance, an interval of homogeneity is a period of time
where one has reasons to believe that the variance was almost constant (more precisely, that
the change in variance cannot be distinguished from estimation error). On the intervals of
homogeneity, one approximates the changing variance of returns with a constant. Hence, in
the end, the changing pattern of variance will be approximated by a step function, yielding
a model with piecewise constant variance.

In this paper we assume that the return generating process is locally stationary and
we use ARMA processes with changing coefficients to approximate it locally. We apply
a statistical methodology based on a goodness of fit test in the spectral domain (similar
to the ones proposed in Picard ([21]) and Kliippelberg and Mikosch ([15])) to identify
the homogeneity periods. Our approach leads to modeling the returns as a sequence of
uncorrelated (possibly independent) variables with a piecewise constant variance function.
We show that even our rough approximation of the variance dynamics by a step function
suffices to explains most of the dependency structure present in the sample ACF of long
absolute return series. Our results seem to point out that most of the dynamics of stock
returns can be explained through a relatively simple pattern of changing unconditional
variance.

A commonly hold belief in the econometric community is that taking the slow decay of
the sample ACF at face value (even though it might be caused by shifts in the unconditional
variance) is a meaningful way of making use of the past in forecasting the future. In other
words, estimating long memory stationary models (based on the slow decay of the sample
ACF) and using them in forecasting exploits in a meaningful way the patterns of change
observed in the past. Faced with a modeling choice between a stationary long-memory
model and a non-stationary model (informed by the paradigm of changing unconditional
variance described above), we compare in the second half of the paper the forecasting
performance of the two alternatives. Our results argue for the superiority of the non-



stationary modeling approach and support the hypothesis that the non-stationarity of the
unconditional variance is the main source of long memory in absolute stock returns.

2 Delimitation of intervals of homogeneity using the
integrated periodogram

In this section we describe a statistical methodology based on a goodness of fit test in the
spectral domain (see Picard ([21]) and Kliippelberg and Mikosch ([15])) for identifying the
homogeneity intervals in series of stock returns.

Our analysis is based on the spectral properties of the underlying time series. Recall
that the periodogram
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is the natural (method of moment) estimator of the spectral density fx of a stationary
sequence (X;); see Brockwell and Davis [3] or Priestley [22]. Under general conditions, the
integrated periodogram or empirical spectral distribution function
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(2.1) S Tnx () = %/OAIR,X(:E) dz, Ae[0,x],

is a consistent estimator of the spectral distribution function given by

Fx()) = /0A fx(z)dz, Xelo,],

provided the density fx is well defined. Given a finite 4th moment for X and supposing
that X, is a linear process, the limit of /n(J, x — Fx) in C'[0, 7], the space of continuous
functions on [0, 7] endowed with the uniform topology, is an unfamiliar Gaussian process,
i.e. its covariance structure depends on the spectral density fx; see for example Anderson
[1] or Mikosch [18]. Since one wants to use the distributional limit of \/n(J, x — Fx) for the
construction of goodness of fit tests of the spectral distribution function, as proposed by
Grenander and Rosenblatt [10], one needs to modify the integrated periodogram to get a
more familiar Gaussian process, if possible a bridge type process. Bartlett [2] (cf. Priestley
[22]) had the idea to use a weighted form of the integrated periodogram:
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Dividing the periodogram by the spectral density makes the limit process independent of
the spectral density. The process J, x(z, ), properly centered and scaled, converges in
distribution in the Skorokhod space D ([0, 1] x [0, 7]) to a two-parameter Gaussian process
which, for fixed A, is a Brownian motion and, for fixed x, a Brownian bridge. Such a
process is known as Kiefer—Muiiller process; see Shorack and Wellner [24].

In the sequel the integrated periodogram will be used to determine the intervals of
homogeneity by monitoring the changes in the spectral distribution function of a time
series. The method we discuss is related to the one proposed in Picard [21] for detecting
changes in the spectral distribution function of a time seriesand further developed for
various linear processes under mild assumptions on the moments of X and the coefficients
of the process by Giraitis and Leipus [7] and Kliippelberg and Mikosch [15].

Functionals of J, x(z,A) of Kolmogorov-Smirnov type will be used to define intervals
of homogeneity as follows. Assume we know that the subsample X,,, X,,11, ..., X, is well
described by a linear parametric model with mean p, variance of the noise o2 and spectral
density f, i.e. the interval of homogeneity contains at least the observations between the
m-th one and the m;-th one, and we try to decide whether the following p observations,
X415 - - - s Xmy+p do also belong to the interval or not. A functional of J, x(x, ) based
on the subsample X, ;,..., Xp,1p (M1 — 1 > m) is calculated and compared with the
asymptotic distribution of the functional under the null hypothesis that the subsample
Xmi—ty--+, Xm,+p is part of a stationary sequence, with the prescribed mean p, variance
0? and spectrum f . If the value of the statistic falls within the asymptotic confidence
interval, the homogeneity interval is extended to include observations, X, 11,..., Xm,4p-
Otherwise a new homogeneity interval is started with the observations X, 11,..., Xy, 4p-

Before recalling the main result that rests the theoretical foundation of our procedure
we need to introduce a few notations. We consider the linear process

(2.2) Xe= > ¥iZiy, t€Z
j=—00

where the innovations (Z;) are a sequence of iid random variables with mean 0 and finite
variance o2. The assumption

2 Iili < o0

j=—00

ensures that X, is properly defined as an a.s. absolutely converging series. The function

e ™P =] 3 e NP, —r<A<m,

j=o0

is called the power transfer function of the linear filter (¢;) and

(2.3) FN) = [o(e™)*a?/ (2m)



is the spectral density of the linear process (X;). The following result describes the asymp-
totic behavior of the integrated periodogram for linear processea and provides the theoret-
ical basis for the analysis to follow.

Theorem 2.1 (Kliippelberg and Mikosch ([15])) Assume that EZ = 0 and that
EZ* < 0o and denote var(Z) = o2,
a. If X; is the linear processes (2.2) with EZ* < oo, the following holds
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in D ([0,1] x [0, 71]) where (Wh(-))n=1,.. is a sequence of iid standard Brownian motions on
[0,1]. The infinite series on the right-hand side converges with probability 1 and represents
a Kiefer—Miiller process, i.e., a two-parameter Gaussian field with covariance structure
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t=1
(2.6) = 27'7%min (21, 75) (mln (Al, )\2> _M ﬁ) )
Tow T
b. In the case (X;) = (Z;) the following holds
fnal
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(2.8) 4 202 (K (2, N))aejo.1acfom;
where K (x, X)) zepo],0e[0,x] @5 the Kiefer—Miiller process (2.6).
3 Data analysis
The data we use for our analysis are the daily returns r; := log P, — log P, 1, where P,

is the daily closing level of S€&P500 between the 3rd of January 1928 until the 25th of
May 2000. From a traditional time series point of view, the information contained in the
time series of daily returns can be split in two components: the sign of the return and
its size. Empirical evidence (Granger et al. ([9]) shows that the sign of daily returns is
not predictable. In what follows we concentrate on studying the time series of absolute
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Figure 3.1 Left: The AR (continuous line) and the MA (dotted line) estimated coefficients
for some intervals of homogeneity of the log-absolute returns of the S&P500. Right: The
95% confidence intervals for the AR coefficient displayed on the left. Zero is most of the time
covered by the interval.

returns. More precisely, due to the presence of heavy tails in the absolute returns, we chose
to analyze the series of the logarithm of the absolute values of daily returns.

We assume that the logarithm of the absolute values of daily returns, X; := log(|ry|)
follows a locally stationary process. For simplicity one can think of an ARMA process with
time varying parameters

(3.1) o(t, B)(Xy — pu(t)) =0(t, B)Zy, Zi=o0(t)e,

where ¢, 6 are polynomials of degree p, q respectively, B is the back shift operator, ¢
are iid with Fe;, = 0, Fe2=1. In words, the model displays local linear dependence built
with innovations with changing mean and variance. We intend to approximate the func-
tions ¢(t, B), 0(t, B), u(t), o(t) with step functions on appropriately defined homogeneity
intervals. In other words, we will approximate the process log(|r;|) by stationary ARMA
models whose parameters change every once in a while. We start hence with a very general
model and we will let the data render it more specific by means of testing and deciding on
the relevance of different parameters.

In order to construct this approximation we proceed as follows. Assume we know
that the subsample X,,, X,,11,..., X, is well described by a linear parametric model
with mean u, power transfer function 1 and variance of the innovations o (these values
were estimated on the observations in the beginning of the homogeneity interval), i.e. the
interval of homogeneity contains at least the observations between the m-th one and the
my-th one. Next we try to decide whether the following 20 observations (or the next
month), X, 4+1,..., X/, 120 belong to the same homogeneity interval. Towards this goal
we calculate the following statistic (whose asymptotic distribution is a Brownian bridge as



it follows from Theorem 2.1 by making = 1 and taking a supremum over \)
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using the subsample X, 180, .., Xm,+20. If the statistics value is well explained by the
distribution of the supremum of a Brownian bridge, the interval of homogeneity is extended
to include the subsample X, 41, ..., Xm,4+20. Otherwise a new homogeneity interval com-
mences with the observation X,, ,; and the parameters p, 1) and o? are reestimated on
the block X,,,4+1,--., X/, 4+200. Then the procedure is reiterated.

In this procedure we choose to neglect the error committed by taking the estimated
values of the model’s parameters for the real ones. The reason is two fold. We try to
keep things as simple as possible but more important our empirical experiece showed that
allowing for large deviations of the asymptotic variance of the goodness of fit statistic
from the value prescribed by the Brownian bridge does not change at all the results of the
analysis.

We begin by performing this analysis using an ARMA(1,1) process as a local approxi-
mation of the series of logarithm of the absolute values of daily returns. Figure 3.1 displays
the estimated AR and MA coefficients for the intervals of homogeneity corresponding to
roughly 10 years of data, the 70’s. (We chose to show only a part of the data for the
sake of visual clarity. The rest of the data displays the same traits). Figure 3.1 presents
a remarkable finding of our analysis: in the framework of the general model of local linear
dependency with innovations with possibly changing mean and variance, the data rejects
the significance of the linear dependency (retaining as significant the changes in the mean
and the variance of the innovations). First, that the AR and MA estimated coefficients
are always almost equal although taking a wide range of values. Second, the 95% confi-
dence interval almost always covers 0. As anyone working with time series models knows,
this situation is typical of fitting ARMA(1,1) models to independent data. Other linear
models were used to locally approximate the data and the results were consistent with the
findings for the case ARMA(1,1). Figure 3.1 suggests that piecewise, on the intervals of
homogeneity, the data is in fact white noise.

Hence the following simple model for X; := log(|r;|), where r; are the daily returns on
the S&P500, could be considered

(3.2) Vv/n sup

A€[0,7]

(3:3) X = p(t) + o(t)er,

where (€;) is a white noise with E(e;) = 0, Ee2=1 and u(t) and o(t) are functions of ¢. For
the absolute returns, this model translates into

(3.4) 1| = exp(u(t))exp(o(t)er).

From this discussion it follows that a simpler statistic corresponding to an i.i.d. model can
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Figure 3.2 Top: The mean (left) and the variance (right) of the logarithm of the absolute
returns of the S&P500 . Bottom: Sample ACFs of the logarithm of the absolute returns of the
S&P500 before (left) and after (right) subtracting the mean in Top (left).

be used in place of (3.2) for determining the homogeneity intervals, i.e.

(3.5) Vn sup

A€[0,7]

A n
[ (st = 3222y 2o
d t=1

(see Theorem 2.1). Applying the methodology described above (with statistic (3.2) replaced
by (3.5)), the homogeneity intervals associated with logarithm of the absolute values of
daily returns are produced. Figure 3.2 displays the mean and the standard deviation of the
absolute values of logarithm of daily returns estimated within the homogeneity intervals.
The top-left graph in Figure 3.2 shows a very volatile decade between 1928-1938 and
a general upwards trend for the period from 1938 up to the present. One can possibly see
a certain connection between the higher levels of the mean of log-absolute returns (hence
variance of returns), the 1973 oil crisis and the economic recessions in the beginning of the
80’s and 90’s. The recent period of economic expansion covering the past decade is also
characterized by higher levels of the mean of log-absolute returns, i.e. variance of returns.
Figure 3.2 bottom displays the sample ACF for the logarithm of absolute values of daily
returns before and after the data was centered by the mean estimated by our methodology.
The two graphs show a strong reduction of the dependency present in the sample ACF
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Figure 3.3 Top: (left) Variance of the absolute returns of the S&P500. (right) E|r:|?
(continuous line) and 0.23 exp(2u(t)) (dotted line) as evidence that o(t) = o in (3.6). Bottom:
Sample ACFs of the absolute returns of the S&P500 before (left) and after (right) scaling
with the standard deviation estimated on the homogeneity intervals constructed using the log-
absolute returns.

(the dependency is reduced to the first circa 40 lags). Work in progress shows that finding
a better approximation of the changing mean (than our present rather rough step func-
tion approximation) removes even the dependence still present in the sample ACF of the
residuals in Figure 3.2. Before discussing the possible implications of the top-right graph
of this figure, let us say a few things about modeling the absolute returns.

The intervals of homogeneity for the logarithms of absolute returns define intervals of
homogeneity for the absolute returns. (A direct application of our methodology although
theoretically feasible does not produce meaningful results. Due to the presence of heavy
tails a close tracking of the variance is practically impossible.) Figure 3.3 top-left displays
the variance of the absolute returns of the S&P500. Figure 3.3 bottom displays the sample
ACF for the absolute values of daily returns 1928-2000 before and after the data was
scaled by the standard deviation estimated on every interval of homogeneity constructed
by our method. The two graphs show a strong reduction of the dependency present in the
sample ACF (the dependency is reduced to the first circa 50 lags). The still unexplained
dependency present in the sample ACF of the residuals is very likely due (as work in
progress shows) to the imperfection of our tracking of the changes in variance.
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Figure 3.4 Top: Plot (left) and histogram (right) of the estimated residuals ¢; based on the
model (3.6) corresponding to the period 1953-present. Bottom: (right) Sample ACF for the
estimated residuals ¢;. Possibly due to the rough approximation of the mean of the time series
by a step function, the first circa 25 lags are slightly significant. (left) Sample ACF of absolute
estimated residuals |¢;|. The graph shows no properties in the variance.

We return now at Figure 3.2. The top-right graph in Figure 3.2 shows a change in the
role played by the variance o?(t) around 1953 (the year the modern and current structure
of the S&P500 was defined). Before 1953 the variance seems to have been a meaningful
parameter carrying a certain amount of information. After 1953 the value of o2 stayed
roughly constant around the value of 1.4. For the time period 1953-present the model for
log-absolute returns can be then simplified to

(3.6) Xy = p(t) + oe,

where ¢, are white noise with Ee; = 0 and Ee?=1. Figure 3.4 displays a brief analysis of
the estimated residuals €; based on the model (3.6). Both the sample ACF of the residuals
€; as well as |¢| are close to being statistically insignificant. Almost all the dynamics of
the log-absolute returns (hence absolute returns) time series seem to be concentrated in
the shifts of the mean (variance).

More evidence that the assumption of a constant o(t) in the model (3.6) for the period
1953-2000 is plausible is displayed in the top-right graph of Figure 3.3. If o(t) = o, a
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Figure 3.5 Top: The mean (left) and the variance (right) of the logarithm of the absolute
returns of the S&P500 (intervals of homogeneity constructed using the t-test). Bottom: Sample
ACFs of the absolute log-absolute (left) and absolute (right) returns of the S&P500 after
subtracting the mean (dividing with the standard deviation, respectively) estimated on intervals
of homogeneity constructed using the t-test.

constant, (3.4) can be rewritten as

(3.7) Ire| = exp(u(t))exp(oe;) = h(t)ey,

with (g;) a white noise sequence. Hence E|r;|?/h(t)? would be constant and equal to E(g?).
A variable o(t) would imply that the the ratio E|ry|*/h(t)? changes from an interval of
homogeneity to another as E(g?) changes. The top-right graph in 3.3 displays both F|r|?
and 0.23 h(t)? and shows a very close concordance between the two series in all the intervals
but the one containing the October 1987 crash.

We end this section with a discussion on the performance of our procedure when re-
placing the goodness of fit test based on the integrated periodogram with a very simple
goodness of fit based on the central limit theorem. The null hypothesis is that on a certain
interval of length n, the data is independent with the mean u and variance o2 and the
test statistic is simply /(X — p)/o. The results of this approach are displayed in Figure
3.5. The overall pattern of change is the same. However the t-statistic finds more changes
then the integrated periodogram. Although the overall goodness-of-fit (as measured by the
shape of the residual correlation in sample ACF) is a bit higher for the t-statistic method,
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the integrated periodogram approach offers a simpler overall picture of the pattern of
changes in the long time series we analyzed (at the price of a worse fit) and serves to mo-
tivate the assumption of locally independent log-absolute returns on which the t-statistic
based method rests.

4 Forecasting comparison

In the stationary framework, a sample ACF behavior as shown in Figure 3.2 and Figure 3.3
will be interpreted as evidence of long memory. Hence we are facing a modeling choice for
X, :=log(|r¢]), the logarithm of the absolute values of daily returns. The choice is between
a stationary long memory model and a non-stationary model with its dynamics mainly
concentrated in the changes of the mean. One possible way of solving this dilemma is to
compare the forecasting behavior of two paradigms on the data at hand. Since our approach
is to describe the volatility directly by analyzing the sequence of absolute returns, a natural
choice for a long memory stationary model is the fractionally ARIMA class introduced by
Granger and Joyeux ([8]) and Hosking ([13]).

The process {X;,t =0,1,...} is said to be a FARIMA(p,d,q) with d € (0,0.5) if {X;}
is stationary and satisfies the difference equation

(4.8) ¢(B) Vd Xy =0(B)Z,

where {Z,} is white noise and ¢, # are polynomials of degree p, ¢ respectively. The operator
¢ is defined by

(4.9) vii= (1- B)d = Zﬂ'ij,
=0

where I — d) b1
] = H0<k§jT, j == ]_,2, P

YETGH NI —a)
The data used in the comparison are the logarithm of the absolute values of daily returns
in the interval 1957-2000. A FARIMA(1,d,1) model (LM) was estimated on the first 1000
observations and reestimated every 2 years (i.e. every 500 observations) using the last 1000
observations. With the estimated long memory model, predictions {fXM} for the future
values of X; = log(|r;|) were made every month (i.e. every 20 observations). The maximal
forecasting horizon was 200 days ahead. The other model used which will be referred as the
shifts-in-the-mean model (SM) is described by equation (3.3). The observations anterior to
the date when a forecast was made were used for determining the (then) current interval
of homogeneity. The forecasts for the future values of X; = log(|r;|) (independent of the
horizon), { ™} were simply the estimated mean on this homogeneity interval.
One way of comparing the two forecasts would be by assesing the orthogonality of one
forecast error (at horrizon h) to the other forecast. Concretly one can test something less

12



Horizon P-value of the Wald statistic for

(days) Ho:a=0,61=0,62=1 Ho:a=0,81=1,6=2
i.e. f7M orthogonal to LM forecast error  i.e. f&ZM™ orthogonal to SM forecast error
10 0.00 0.21
20 0.03 0.27
30 0.00 0.31
40 0.06 0.67
50 0.01 0.50
60 0.09 0.23
70 0.01 0.32
80 0.09 0.39
90 0.01 0.44
100 0.01 0.12
110 0.03 0.22
120 0.06 0.27
130 0.00 0.06
140 0.06 0.40
150 0.01 0.27
160 0.03 0.08
170 0.00 0.48
180 0.06 0.16
190 0.00 0.58
200 0.06 0.23

Table 1: Comparison of forecasting performance between the LM model and SM model. The LM
process is reestimated every 2 years using the observations of the previous 4 years. The Wald statistic
of the F-ratio test is calculated under the two alternatives and the p p-values are reported. A small
p-value is a signal of the failure of the null. Overall the table seems to show a better performance of
the SM model in forecasting.
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general, i.e whether one forecast error is uncorrelated with the other forecast. This would
be accomplieshed by means of a regression. For example, to test if the SM forecasts and
the LM forecast errors are uncorrelated, one would test whether « = 0, #; = 0 in the
regression

(410) Xt+h — ftLM =o+ ﬂlftSM + &4

However, given the possibly non-stationary nature of the time series the assumption of
ergodic stationarity of the regressor and dependent variables needed for the well-functioning
of the GMM machinery, is likely to be violated (f°™ is close to a piecewise constant
function).

To address this possible problem we reformulate our test. Testing whether a = 0,
1 =0 in (4.10) is equivalent to testing whether

(4.11) a=0, /=0 /p=1
in the following regression
(4.12) Xiwn — X = a+ Bi(fTY — Xo) + Bo(fF — X)) + &,

Notice that testing for
(413) o= 0, /61 = ]., /82 =0

in the same regression would be equivalent to verifying that the SM forecast error X;,, —
SM is uncorrelated with the FARIMA forecast f/M. For this regression the violations of
the assumption of ergodic stationarity of the regressor and dependent variables are likely to
be less severe. Indeed, the vector (Xy p — Xy, fPM — Xy, fLM — X,) is stationary and ergodic
on every interval on which the volatility process o(t) is constant, i.e. on any interval of
homogeneity. Because under the null hypothesis (4.13) the error term &, in regression (4.12)
equals the forecast error Xy, — f°™ orthogonal to anything known at date ¢ including
ft(i) — X3, i = 1,2, the regressors are quaranteed to be orthogonal to the error term (a
similar statement holds under the null hypothesis (4.11)). Even more, Figure 4.1 supports
the hypothesis of uncorrelated forecasting errors (the forecast errors X; ., — f/* have a
similar behavior), and hence it appears that an OLS estimate would suffice. Note that the
regression (4.12) is closely related to the so-called forecast encompassing equation

(4.14) Xipn = a+ B f7M + BofM + &

which cannot be employed due to the possibly non-stationary nature both of the regressors
and dependent variables. The p-values of the F-test Wald statistic corrresponding to Hj :
a=0,p=0and B =1and Hy: « =0, f; =1 and By = 0, respectively are reported
in Table 4. For most of the forecast horizons the hypothesis of orthogonality of the SM
forecast on the LM forecast errors is rejected while the hypothesis of orthogonality of the
LM forecast on the SM forecast errors remains unchallanged. Hence these tests seem to
support the conclusion that the SM model overperforms the LM model in forecasting.
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Figure 4.1 Top: The forecast errors X 5 — f7™ based on the model (3.6) corresponding
to the period 1957-present (the period 1953-1957 is used for the preliminary estimation of the
LM model. Bottom: (left) Sample ACF for the forecast errors X;,, — f7™. (right) Sample
ACF of absolute forecast errors | Xy, — f™|. The graphs suggest that the forecast errors are
uncorrelated and homoskedastic.

5 Conclusions

Understanding volatility of stock returns lies at the core of modern econometric research.
From a time series point of view, it means understanding and modeling the series of abso-
lute returns. In this paper an analysis of the S& P500 absolute returns is conducted giving
up the usual assumption of global stationarity. Supposing that the returns follow a non-
stationary process, an interesting class of models is those with time depending parameters.
We approximate locally the non-stationary process by stationary models and identify the
intervals on which stationary processes provide a good approximation by using a goodness
of fit test based on the integrated periodogram (Picard ([21]), Klippelberg and Mikosch
([15])). Our approach leads to modeling the returns as a sequence of independent vari-
ables with a piecewise constant variance function. More concretely, the S&P500 absolute
returns, |r;| can be described by the following

Ire| = h(t)exp(e;), t=0,1,...
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where (¢;) is a white noise sequence, E(¢) = 0, E(€)?> = o2 and h(t) a function of ¢ which
can be well approximated by a step function, yielding a model with piecewise constant
variance. We show that even a rough approximation of the variance dynamics by a step
function is enough to explains most of the dependency structure present in the sample ACF
of long absolute return series, providing an explanation for the so called “long memory in
volatility” phenomenon. In other words, we find that all the dynamics of return time series
seem to be concentrated in the shifts of the variance.
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