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Abstract

We prove uniqueness of the infinite rigid component for standard bond perco-
lation on periodic lattices in d-dimensional Euclidean space for arbitrary d, and
more generally when the lattice is a quasi-transitive and amenable graph. Our
approach to uniqueness of the infinite rigid component improves earlier ones, that
were confined to planar settings.

1 Introduction

One of the most celebrated results in percolation theory is that for i.i.d. site or bond
percolation on the cubic lattice Z%, there is a.s. at most one infinite connected compo-
nent; see Harris [11], Aizenman, Kesten and Newman [1], Burton and Keane [5] and
Grimmett [7]. As has been noted many times by various authors, the arguments of
Burton and Keane extend easily to other periodic lattices in Euclidean space, as well
as to amenable (quasi-)transitive graphs in general.

There has in recent years been some interest in studying not only connected compo-
nents, but also rigid components, in percolation models. Jacobs and Thorpe [15] report
numerical findings, while rigorous mathematical treatments can be found in the papers
by Holroyd [12, 13, 14] and Héaggstrom [8]. Here we will be interested in the rigidity
analogue of the uniqueness of infinite connected components. This was studied for the
case of bond percolation on the triangular lattice in two dimensions in [12] and [8] (the
reason for studying the triangular rather than the more usual square lattice is that the
latter contains no nontrivial rigid components). In [12], uniqueness of the infinite rigid
component was shown to hold for all but at most countably many values of the reten-
tion parameter p. Then, in [8], this result was extended to all p. The techniques in [12]
and [8] both rely heavily on planarity. The purpose of the present paper is to develop
techniques for proving uniqueness of infinite rigid components in nonplanar settings.
Our main result is the following; see Section 3 for careful definitions and (in Theorem
3.4) a more general version of the result.

Theorem 1.1 Let G be a rigid d-dimensional periodic lattice with d > 2, and let py(G)
be the rigidity percolation critical value for G. Then, for bond percolation on G with
retention parameter p > pqa(G), we obtain a.s. a unique infinite rigid component.
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Some remarks:

1. The definition of infinite rigid components is not altogether straightforward. In
[14], two natural (and non-equivalent) definitions are discussed, corresponding to
the “free” and “wired” boundary conditions that are nowadays standard in models
such as the random-cluster model [6] and uniform spanning forests [3]. As in [12]
and [8], we shall employ the definition corresponding to free boudary. Under
the alternative definition, corresponding to wired boundary, uniqueness of infinite
rigid components becomes a trivial statement.

2. Rigidity is, as we shall see in the next section, a dimension-dependent concept.
Mathematically, there is nothing strange about studying d’-dimensionally rigid
components on a d-dimensional lattice with d # d’, but physically the interesting
case is obviously d = d’. Theorem 3.4 below covers both cases, and in fact the
possibility d # d' does not induce any extra complications for the proof.

3. It is not known whether or not at the rigidity critical value pg(G) there is an
infinite rigid component. One shortcoming of Theorem 1.1 (and of Theorem 3.4)
is that it does not rule out the existence of more then one infinite rigid component
at criticality. In contrast, the uniqueness result in [8] for the triangular lattice
shows that the number of infinite rigid components at criticality must be 0 or 1.

The rest of this paper is organized as follows. In Section 2, we recall the definitions
of rigidity and related concepts. In Section 3 we give some definitions pertaining to
percolation and the lattice, and state the more general version of the main result. Section
4 deals with some general tools in percolation theory that will be of use to us, and finally
Sections 5 and 6 are devoted to the proof of our main result. Similarly as in the paper
by Haggstrom [9] on uniqueness in so-called entanglement percolation, the proof splits
naturally in two stages: the first stage (carried out in Section 5) is to obtain “uniqueness
monotonicity” results in the spirit of Haggstrom and Peres [10] and Schonmann [18],
while the second stage (carried out in Section 6) invloves the combinatorial argument
for uniqueness introduced by Burton and Keane [5]. We emphasize, however, that our
proof is far from being a straightforward adaptation of the techniques in [9], as our focus
on rigidity (as opposed to connectivity or entanglement) forces us to invoke several new
ideas.

2 Rigidity

In this section, we recall the notion of (generic) d-dimensional rigidity of graphs. We
shall essentially follow the exposition in [12], where more background and detail can be
found.

Let G = (V, E) be a finite graph, and let d be a positive integer. By a d-dimensional
embedding of G, we mean a map r : V — R%. The pair (G, ) is called a framework.
Let || - || denote Euclidean norm on R%. A d-dimensional motion of a framework (G, r)
is a differentiable family {r; : ¢ € [0,1]} of embeddings of G such that for each edge
e = (z,y) € E and all t € [0,1] we have

Ire(z) = ()l = lIr(z) = r(¥) (1)



The motion is said to be rigid if (1) holds for all pairs of vertices z,y € V (and not
just for those linked by an edge). The embedding r and the framework (G,r) are said
to be rigid if all their d-dimensional motions are rigid.

Whether or not (G, r) is rigid turns out to depend in general not only on G but also
on the embedding G. It is known, however, that for a given graph G, either almost
all or almost no embedding of G in R are rigid; here “almost all” is with respect to
R%V|-dimensional Lebesgue measure. This makes the following definition natural.

Definition 2.1 A finite graph G = (V, E) is said to be d-dimensionally rigid (or
simply d-rigid) if Lebesgue-almost all embeddings of G in R are rigid.

To make sense of the main question studied in this paper, we need to define rigidity
also for infinite graphs:

Definition 2.2 An infinite graph G = (V, E) is said to be d-rigid if every finite subgraph
of G is contained in some d-rigid finite subgraph of G.

When considering infinite graphs in this paper, we shall always assume that they are
locally finite, and therefore countable.

We shall be interested in d-rigid components of a graph G, by which we mean
maximal d-rigid subgraphs of G. Such components are not necessarily disjoint, but the
following weaker result holds. For two graphs G; = (V4, E1) and Gy = (Va, E2), define
their union G; U G2 as the graph with vertex set Vi U Vo and edge set Eq U Es.

Proposition 2.3 Let G1 = (V1,E1) and Gy = (Va, E3) be (finite or infinite) d-rigid
graphs. If |Vi N'Va| > d, then G1 U Gy is d-rigid.

Note also that (d+ 1)-rigidity of a graph implies d-rigidity, and that 1-rigidity is equiv-
alent to connectivity.

For d = 2, it seems fairly clear that the notion of d-rigid components in a graph
capture the physically relevant aspects of d-rigidity; see Holroyd [13, Sect. 4.8]. The
situation for d > 3 is, however, more complicated: It is shown in [13] how to construct
a graph G = (V, E) with two vertices z,y € V such that x and y are not in the same
3-rigid component of G, while on the other hand Lebesgue-a.e. embedding r of G in
R? has the property that all 3-dimensional motions of (G,r) preserve the Euclidean
distance between x and y. Be that as it may, our focus in this paper will be on d-rigid
components.

3 Lattices, percolation and the main result

The percolation processes that we consider will be living on amenable quasi-transitive
graphs, so we need to recall the notions of (quasi-)transitivity and amenability.

An automorphism of a graph G = (V, E) is a bijective mapping v : V' — V such
that v(z) and 7(y) share an edge in G if and only if z and y do. We write Aut(G) for
the group of automorphisms of G. For v € Aut(G), we will sometimes write (with some
abuse) v also for the induced mapping from E to E.

Definition 3.1 A graph G = (V, E) is said to be transitive if for all z,y € V, there
exists a v € Aut(G) such that v(x) = y. More generally, a graph G = (V, E) is said
to be quasi-transitive if V' can be partitioned into a finite number of sets (orbits)
Vi,..., Vi such that for any i € {1,...,k} and any two vertices z,y € V;, there ezists a
v € Aut(G) such that y(z) = y.



For a graph G = (V, E) and a subset W C V of its vertex set, define the boundary 0W
of W as
OW ={z € V\W: Jy € V such that (z,y) € E}.

Definition 3.2 An infinite connected graph G = (V, E) is said to be amenable if there
exists a sequence of finite subsets W1, Wa, ... of V such that

nooo (Wl

0.

Among the class of quasi-transitive amenable graphs, perhaps the physically most rele-
vant are the periodic lattices in R¢, defined as follows.

Definition 3.3 A graph G = (V, E) is said to be a periodic lattice in R? if there is
a finite set {vy,...,vx} € R? such that

V={vi+z:i€{l,...,k},z € 2%},
2
and another finite set {(z1,91),...,(@Tn,yn)} C (Rd) such that

E={{zi+zy+2):ie{l,...,n},zec Z%.

Clearly, a periodic lattice in R? is quasi-transitive with orbits V; = {v; + z : z € Z%}.
It is also amenable, as can be seen by taking W,, = V N [-n,n]¢ in Definition 3.2. As
an example of a d-rigid d-dimensional periodic lattice, the reader may keep in mind the
case G = (V, E) where V = Z% and E consists of all pairs of vertices at L.-distance 1
from each other. Note that already in the case d = 2, this example falls outside of the
scope of the approaches of [12] and [8], because it fails to be planar.

For later purposes we introduce some more graph notation. Given G = (V, E) and
two vertices z,y € V, we let dist(z,y) denote graph-theoretic distance between z and y
in G. Given x € V and a positive integer n, we define the ball

B(z,n) ={y € V : dist(z,y) <n}.

When more than one graph is discussed, we may need to emphasize which graph G the
graph-theoretic distance is with respect to, and will then write distg(x,y) for dist(z,y).

We next introduce percolation. In standard bond percolation, each edge of a graph
G = (V, E) is independently assigned value 0 or 1 with probabilities 1 — p and p, where
p € [0,1] is the so-called retention parameter. We write 1, for the induced probability
measure on {0,1}¥. The values 0 and 1 should be interpreted as “closed” and “open”,
respectively, and we can then go on to study connectivity and rigidity properties of
the random subgraph of G consisting of all vertices, together with those edges that are
assigned value 1.

By ergodicity of i.i.d. processes, the number of infinite d-rigid components in this
random subgraph is, for any d and p, an a.s. constant K = K(G,d,p). It is obvious
(if not, see the simultaneous construction in the next section) that the probability of
having at least one infinite rigid component is increasing in p. Hence, there exists a
critical value pg = pg(G) € [0, 1] such that

0 if p<py

1p(3 some infinite d-rigid component) = { 1 ifp > py.
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Holroyd [12] showed that if G is a connected d'-rigid d-dimensional periodic lattice
with d > 2, then pgy (G) € (0,1), i.e., that the threshold is nontrivial. Using the general
stochastic domination result of Liggett, Schonmann and Stacey [16, Thm. 1.3], Holroyd’s
approach generalizes to prove that the threshold is nontrivial also in the more abstract
setting of amenable quasi-transitive d-rigid graphs considered here (and in fact not even
amenability is nedded for this). The aforementioned more general variant of our main
result is the following.

Theorem 3.4 Fiz d € {1,2,...}, and let G be an infinite d-rigid amenable quasi-
transitive graph satisfying pa(G) < 1. Then, for all p > p4(G), the Pp-a.s. number
K(G,d,p) of infinite rigid components satisfies K(G,d,p) = 1.

Clearly, this result implies Theorem 1.1, where “rigid” can be read as “d’-rigid” with
arbitrary d'.

4 Some basic tools

In this section, we consider some general tools in percolation theory that we will need
in the following sections for the proof of our main result.

4.1 The simultaneous construction

A standard construction useful for comparing percolation processes on G = (V, E) at
different values of the retention parameter p, is the following. Assign, to the edges of
G, i.i.d. random variables {U(e)}eck, each being uniformly distributed on the interval
[0,1]. Write ¥ for the induced probability measure on [0, 1]€. For any p € [0, 1], define
{Xp(e)}eck by setting
1 ifU(e) <p

Xple) = { 0 otherwise 2
for each e € E. Clearly, {X,(e)}ecr has distribution 1,. Furthermore, for all e € E,
we have

X,(e) < Xp(e) (3)

whenever p < p’, and this makes the simultaneous construction a very useful coupling
of the measures v, for all p € [0, 1]. Tt is immediate from (3) that a quantity such as

p(the vertex z is in an infinite d-rigid component)

is increasing in p. More elaborate uses of the simultaneous construction can be found,
e.g., in [4], [10], [18], [9] and in the following sections.

4.2 Mass transport

The mass-transport method was developed by Benjamini, Lyons, Peres and Schramm
[2] in the setting of percolation on nonamenable lattices, where it replaces more classical
density arguments that are confined to amenable lattices. In amenable settings, such
as in the present paper, mass transport is less indispensable, but still a very convenient
device.

Let G = (V, E) be infinite and quasi-transitive. We identify Aut(G) with a measure-
preserving transformation of the probability space ([0,1]¥,T). Let m(z,y,w) be a



nonnegative function of three variables: two vertices z,y € V and a realization w €
[0,1]% of the simultaneous construction. Intuitively, m(xz,y,w) should be thought of
as the amount of mass sent from z to y given the outcome w of the simultaneous
construction. We assume that m(-,-,-) satisfies

(i) m(z,y,w) =0 whenever z and y are in different orbits of Aut(G), and

(ii) invariance under the diagonal action of Aut(G), i.e., m(z,y,w) = m(y(x),v(y), v(w))
for all z,y € V, all w € [0,1]¥ and all v € Aut(G).

The following is a special case of the mass-transport principle in [2].

Theorem 4.1 Let G = (V, E) be quasi-transitive and amenable, let m(-,-,-) be as above,
and define M (z,y) = f[o,l]E m(z,y,w)d¥. Then, for any x € V, we have

Y M(z,y) =3 M(y,z).

yev yev
In other words, the expected mass sent out from a vertex z equals the expected mass
received at z. (Interestingly, this symmetry fails for certain graphs when the amenability
assumption is dropped; see [2].)

4.3 Local modification

Arguments based on local modifications of realizations are very common in percolation
theory today; some influential early uses can be found in the papers by Newman and
Schulman [17] and Burton and Keane [5]. In Sections 5 and 6 we shall apply this
technique several times in a rather involved manner, and for that reason we choose to
formalize it as an explicit coupling argument, as follows.

Write £ for the set of all finite subsets of the edge set E of the graph G = (V, E)
that we are considering. Since F is countable, we have that £ is countable as well.
We can therefore find a probability measure on £ that assigns positive probability to
each 1 € &; let Q be any such probability measure. For p € [0,1], consider now the
coupling of two {0, 1}¥-valued random objects, both with distribution p, obtained in
the following way.

1. Pick F € &€ according to Q.

2. For each edge e € E'\ F independently, set X(e) = X'(e) = 0 or 1 with respective
probabilities 1 — p and p.

3. For each edge e € F independently (and independently of the assignments in stage
2), set X(e) = 0 or 1, and independently X'(e) = 0 or 1, each with probability p
of taking value 1.

We call this the local modification coupling, or LM-coupling for short. It is immediate
that {X (e)}ecr and {X'(e)}ecr will, with probability 1, differ in at most finitely many
edges. Furthermore — and this is the key property — the coupling admits conditional
probabilities such that for any two edge configurations ¢, ¢’ € {0, 1}¥ that differ only at
finitely many edges, we have

P(X'=¢|X=¢>0. (4)

As a first illustration of how the LM-coupling works, we shall use it to prove the following
weaker variant of our main result.



Proposition 4.2 Fiz d and p, and let G = (V, E) be as in Theorem 3.4. Then the
Pp-a.s. number K = K(G,d,p) of infinite d-rigid components satisfies K € {0,1,00}.

The overall structure of the proof will be quite close to that of the corresponding result
for connectivity (in place of rigidity) in [17]. The details of the local modification
are, however, more involved, due to the less “local” character of rigidity compared
to connectivity. For instance, it is possible to add a single edge to an infinite graph
consisting only of finite rigid components, and thereby create a single infinite rigid
component; an example of this can be obtained by as minor modification of the graph in
[14, Fig. 1, p. 1071]. Of course, no such monkey business can happen with connectivity.

Proof of Proposition 4.2: Recall that K is an a.s. constant. Assume for contradiction
that K € {2,3,...}. Fixing a vertex z, we can then find an n such that ,(A4,) > 0,
where A,, is the event that each of the K infinite d-rigid components intersect the ball
B(z,n) in at least d vertices. In the LM-coupling, this means that

P({X(€)}ecr € An) > 0. (5)

Now let B denote the edge set of some finite rigid subgraph of G containing B(z,n);
such a B can be found by the assumption that G is d-rigid. Also, let 9B denote the
set of edges in E \ B that sit within distance d from B.

Now imagine taking an edge consiguration ¢ € A,, and modifying it by first giving
value 0 to all edges in §;B that are not in any of the K infinite d-rigid components, and
then giving value 1 to all edges in B. We claim that the resulting modified configuration
¢ has a unique infinite rigid component. To see this, note first that none of the K
original infinite d-rigid components are hurt by the removal of edges in 8;B, and that
by Proposition 2.3, the insertion of edges in B causes them to merge into a single
infinite d-rigid component. But we must check also that no additional infinite d-rigid
components are created through this insertion. If such a component is created, it must
intersect B, and therefore (since d-rigidity implies connectivity) it must intersect 9,B
in at least d edges. But then it must intersect the union of the K original infinite d-rigid
components in at least d edges (because all other edges in 9B are removed), whence
(again using Proposition 2.3) it will merge with them.

By construction of the LM-coupling and (4), we therefore get

P({X'(e)}ecr has exactly one infinite d-rigid component | {X (€)}ecr € An) > 0
so that, using (5),

P({X'(e)}ecr has exactly one infinite d-rigid component)
> P({X(€)}ecr € An,{X'(e)}cck has exactly one infinite d-rigid component) > 0.

But since {X'(e)}ecr has distribution ,, we have the desired contradiction to the
1p-a.s. constance of the number of infinite d-rigid components. O

The LM-coupling can also be combined with the simultaneous construction. We then
pick two [0, 1]¥-valued random objects {U(e)}ecr and {U’(e)}ecr, both with distribu-
tion ¥, analogously to how { X (e)}ecr and {X'(e) }ccr were picked above: first F C E is
chosen according to Q, and then {U(e) }ecr and {U’(€) }cck are taken to be independent
on F and identical on E \ F.



Note that if we pick ({U(e)}ecr, {U'(€)}ecr) according to this simultaneous LM-
coupling, and then obtain {X(e)}ecr from {U(e)}ecr as in (2), and {X(e)}ecr from
{U'(e)}ecr in the analogous way, then the pair ({X,(e)}ecr, {X,(€)}ecr) has exactly
the same joint distribution as in the ordinary LM-coupling.

See (12) for a useful extension of the key property (4) to the setting of simultaneous
LM-couplings.

5 Uniqueness monotonicity

This section is devoted to the first stage of the proof of our main result, which is to
obtain rigidity analogues of the uniqueness monotonicity results obtained in [10] and
[18] for connected components in percolation on nonamenable lattices. Our first such
result is the following.

Proposition 5.1 Let d and G = (V, E) be as in Theorem 3.4, and fiz py and ps such
that pa(G) < p1 < pg < 1. If the 9p-a.s. number of infinite d-rigid components satisfies
K(G,d,p1) =1, then K(G,d,p2) =1 holds as well.

The proof will use the following (non-probabilistic) fact about rigidity.

Lemma 5.2 Let d and r be positive integers, and let G = (V, E) be a (possibly infinite)
graph where each vertex has degree at most r. Then there ezists a constant A = A(d,r)
such that the number of d-rigid components of G containing any given vertex x, is at
most A.

Proof: Call a d-rigid component of G containing x small if all its vertices are within
distance d from z, and call it large otherwise. We shall bound the number of small and
large such components separately. Note that the number of vertices at precisely a given
distance | from z is at most 7!, so that the total number of vertices within distance d

,,.d+1

—7_1_1. The number of small d-rigid components containing

x is therefore certainly at most 20" =1/(r=1),
To bound the number of large d-rigid components containing z, suppose for contra-

diction that there are at least

from z is at most 0ol =

Pt 4] = pdd+1)/2 4 4

such components. Since d-rigidity implies connectivity, each such component must, for
each [, contain at least one vertex at distance exactly [ from z. By the pigeonhole
principle, at least two of these components must therefore intersect in at least d vertices
(one at each of the distances 1,...,d from z), and will therefore (due to Proposition 2.3)
merge. Hence, an upper bound for the number of large d-rigid components containing
 is 7%@+1)/2_ This completes the proof, with A = 2" ~1/(r=1) | pd(d+1)/2 (31though
our bound for A is obviously very crude). O

Proof of Proposition 5.1: We shall consider the coupling of two {0, 1}¥-valued ran-
dom objects {X,,(e)}ecr and {X,,(e)}ecr with respective distributions v and o,
provided by the simultaneous construction in Section 4.1. By the assumption of the
proposition, {X,, (¢)}ecr has, with probability 1, a unique infinite d-rigid component.
We write Cp, for that component. Let us assume, for the purpose of deriving a con-
tradiction, that {X,,(e)}ecr has more than one infinite d-rigid component (in which



case it has, in view of Proposition 4.2, infinitely many). Clearly, exactly one of these
components will contain C,,, so that there will also be infinite d-rigid components in
{Xp,(€e)}ecr that do not contain Cp,. We call these latter components nasty. Clearly,
we are done if we can rule out the existence of nasty components.

We now claim that

nasty components will not even intersect Cp, . (6)

As a fisrt step towards establishing (6), note that each nasty component will intersect Cp,
in at most d — 1 vertices, because otherwise it would merge with C,, due to Proposition
2.3.

Next, consider the following mass transport. Each vertex x € V looks around to see
whether it sits in a nasty component intersecting Cp,. If no, then no mass is sent from
x, while if yes, then unit mass is sent from x and distributed equally among all vertices
in the same orbit of x that

(i) are in the same nasty component C as z, and

(ii) minimizes, among all such vertices, the (graph-theoretic) distance from the set of
vertices that are both in C and in C,,.

(Clearly, any nasty component C intersecting Cp, in at most d — 1 vertices, has only
finitely many such minimizeres.) If z happens to sit in several nasty components
C1,...,Ck, then it sends mass 1 as above separately for each such component.

Since G is quasi-transitive and thus of bounded degree, we have from Lemma 5.2
that the number of nasty components intersecting a vertex « € V is bounded. Therefore,
the expected mass sent from each vertex is finite. On the other hand, if there are nasty
components intersecting C,,, then, clearly, some vertices will receive infinite mass. Hence
the expected mass received at some vertices will be infinite, and we have a contradiction
to the mass-transport principle (Theorem 4.1), so that (6) is established.

Given a nasty component C, define its distance to Cp, as

dmin(C) = min{dist(z,y) : z,y € V, z isin C and y is in C,, }, (7

and let ng_, (C) denote the number of such distance-minimizing vertices in C, i.e.,
ng . (C) is the cardinality of the set

{z € V:zisin C, and Jy € Cp, such that dist(z,y) = dmin(C)} . (8)

By (6), each nasty component C must have dj,;,(C) > 1. Furthermore, it must satisfy
N, (C) = 00, because the event of having a finite value of ng4_, (C) for some nasty
component C is ruled out by a minor modification of the mass-transport argument used
in establishing (6). We will now go on to show that for each k € {1,2,...}, we have
that

¥ (3 a nasty component C with dp,(C) = k and ng,,, (C) = 00) =0. 9)

Once we have shown this, we have ruled out the existence of nasty components alto-
gether, thereby completing the proof of the proposition.
Fix k, and consider the following sequential way of revealing the pair of edge con-

figurations ({ X5, (€) }eer, {Xp, (€) }ecE)-
1. Reveal {X,, (€)}ecE-



2. Define (based on what we saw in stage 1) the edge set

E* = {(z,y) € E : for all vertices z in Cp, we have dist(z, z) > k and dist(y, 2) > k},
(10)
and then reveal {X,,(€)}ecr~-

3. Finally, reveal {X,,(e)}ccp\p*-

Define the {0, 1}¥-valued random configuration {X,, ,,(e)}ecr by setting

- ) Xp,(e) ifee E*
XPIaPQ(e) - { Xpl(e) if e c E\E* . (11)

Another way to say this is that X, ,,(e) = 1 exactly for those edges e € E for which
we know that X),,(e) = 1 already after the second stage of the three-stage revelation
procedure above.

A crucial observation now is that any nasty component C in {Xp,(e)}ccr such that
dmin(C) = k, is an infinite d-rigid component already in { X}, ,,(e)}ecx. This is because
the only difference between {X,, (€)}ecr and {Xp, p,(€)}ecr is that some of the edges
in E'\ E* are open in {X,, (e) }ecr but closed in {X,, ,,(€)}ecr, while such a C does not
(by the definition of dyin(C)) contain any edges in F'\ E*. We call an infinite d-rigid
component of {X, ,,(¢)}ecr potentially nasty, if it has dy;,(C) = k and contains
infinitely many vertices at distance k& from Cp,. Since the possibility ng, , (C) < oo
has been ruled out, we have that any nasty component seen in {Xp,(e)}ecr must be
identical to a potentially nasty component seen in {Xpl,m(e) YecE-

The idea now is that after the second stage of the revelation procedure, each po-
tentially nasty component comes close to Cp, in so many places (infinitely many!) that
with probability one there must be some place where the third stage will open up suf-
ficiently many new edges to make the potentially nasty component merge with Cp,. If
we had been dealing with connectivity rather than d-rigidity, then things would have
been easy from here, following arguments of Higgstrom and Peres [10]. However, due
to the more complicated nature of d-rigidity, we are foreced to go through a few more
technical arguments.

Fix z € V, and consider the set B(z,k + d) of vertices in G within distance k + d
from z. By the assumption that G is d-rigid, we can find a finite rigid subgraph of
G containing B(z,k + d), and then an integer m < oo such that B(x,m) contains all
vertices of that finite rigid subgraph. The value of m needed to make this work depends
on the choice of z € V, but since G is quasi-transitive we can find an m that works for
any z; let us fix such an m.

Call a vertex z in a potentially nasty component C of {X,, ,,(¢)}ecr pivotal if

(i) it has distance k to Cp,, and
(ii) all edges e € E* that have both endpoints in B(z,m) satisfy X, p,(e) = 1.

If a vertex z is pivotal, and stage 3 of the revelation process causes all edges in E'\ E*
within distance m from z to become open in {X,,,(€)}ccr, then in fact all edges within
distance m from z will be open in {X,,(€e)}ccr, and by the choice of m this creates a
d-rigid component that intersects C and Cp, in at least d vertices each, thus (by repeated
use of Proposition 2.3) merging them into a single d-rigid component.
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From the construction of the pair ({ X, (€) }ecr, {Xp,(€) }ecr), we see that in stage 3
of the revelation procedure, each edge e € E\E* that is closed in { X,, ,,(€) }ecr becomes
open in {Xp, (e)}ecr independently with probability Z-PL. Hence we can find an ¢ > 0
such that each pivotal vertex z in C has probability at least € of sitting in the middle of
a “stage 3 merger” of C and Cp, as described above. If now C has infinitely many pivotal
vertices, then we can find an infinite subset A of the set of pivotal vertices in C, such
that no two vertices in A are within distance 2m from each other. For different vertices
in A, the events that they sit in the middle of such “stage 3 mergers” are independent,
and by the second Borel-Cantelli lemma we therefore have with probability 1 that at
least one such merger will happen.

Hence, if we can show that with probability 1 each potentially nasty component has
infinitely many pivotal vertices, then (9) is established and the proof will be complete.
So we need to rule out having a potentially nasty component C with at most finitely

many pivotal vertices. There are two cases to take care of:
CAsE 1. C has a finite nonzero number of pivotal vertices.

CASE 2. C has no pivotal vertices.

A mass-transport argument takes care of CASE 1: Imagine the mass transport where
each vertex zx sitting in a potentially nasty component with a finite nonzero number of
pivotal vertices sends unit mass, and distributes it equally among those pivotal vertices
(or — if they are in the wrong orbit — the vertices in the Aut(G)-orbit of z that are
closest to the pivotal vertices); all other vertices send no mass at all. If the scenario in
CASE 1 happens with positive probability, then the expected mass received is infinite
(because some vertices will receive infinite mass), while the expected mass sent from a
vertex is finite, contradicting the mass-transport principle (Theorem 4.1).

In order to take care of CASE 2, we will invoke an argument based on local modifi-
cation. To this end, we have to insist that the [0, 1]¥-valued random object {U(e)}ccr
underlying the construction of { X, (e) }ecr and {Xp, (€) }eck, is jointly constructed with
another [0,1]P-valued random object {U’(e)}ecr as in the simultaneous LM-coupling
introduced in the last two paragraphs of Section 4.3. Then we obtain {X]’J1 (e)}eer and
{X,,(€)}ecr from {U'(e)}ecr in the same way that {X}, (€)}ecr and {Xp,(e)}ecr were
obtained from {U(e)}ccr. Finally, {XIIH,IQ}"ZEE is constructed from {X, (e)}ecr and
{X,,(e)}eck according to the obvious analogue of (11).

Similarly to (4), it is easy to see that this simultaneous LM-coupling admits con-
ditional probabilities with the following property: for any four edge configurations

Epr>Epas €y Epy €10, 1}? satisfying
(i) &p,(e) < &py(e) foralle € E,
(ii) &, (e) <&, (e) for all e € E, and
(iii) (&pi(e),&pa(e)) = (€, (€), &y, () for all but at most finitely many e,

we have
P(leh = 51171’X1112 = 5;;)2 | Xpy = &prs Xpy = &pn) > 0. (12)

Now imagine a realization X, = {,, and X, = ,, where a vertex x € V sits at
distance k from Cp,, in a potentially nasty component C that has no pivotal vertices.
(This is the scenario of CASE 2.) Define E* as in (10), and construct the configurations
EpyrEpy €10, 1}F as follows.
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e For all edges e € F that have at least one endpoint in V \ B(z,m + d), set
£pi(€) = &pi (€) and &, (€) = &p, (e).

e For all edges e € FE that have both endpoints in B(z, m + d), set

' ) 1 ifeisapart of Cp,
En(0) = { 0 otherwise,

and
1 if eis a part of Cp, or of C

&, (e) = or if e € E* and has both endpoints in B(x, m)
0 otherwise.

Suppose that X, = ¢, and X, = {,,. Some thought reveals that the infinite d-
rigid component C},, of {X}, (e)}ecr is identical to Cp,, that there is a potentially nasty
component C' in {X, (e)}ecr that differs from C only by possibly having some extra
edges and vertices within distance m from z, and that z is a pivotal vertex in C’. No
extra pivotal vertices in C' can be created, except possibly some in the finite region
B(z,m). Hence, C' will have a finite nonzero number of pivotal vertices. This, using
(12), shows that if the scenario in CASE 2 has positive probability, then so does the
scenario in CASE 1. But CASE 1 has already been ruled out, so CASE 2 is ruled out as
well. Hence, any potentially nasty component must (with probability 1) have infinitely
many pivotal vertices, and this is what we needed to establish (9), so the proof is
complete. O

In the uniqueness monotonicity results in [10] and [18], some information in the case
of having multiple infinite components at level p; was obtained at no extra charge:
by letting the union of infinite connected components at level p; play the role of Cp,
above, it was shown that every infinite ps-component had to contain some infinite p;-
component. One might think that the analogous fact could be extracted from our proof
of Proposition 5.1. It seems, however, that (6) is more difficult to establish when Cp,
is the union of infinitely many infinite d-rigid components. The following result is a
weaker variant of the desired “nesting” result.

Lemma 5.3 Let d and G = (V,E) be as in Theorem 3.4, and suppose that p1 €
(pa(G),1) is such that K(G,d,p1) = oco. Let ¥ be as in Section 4.1. Then, for all
p2 € (p1,1) except possibly for a countable set of exceptional values, we have ¥-a.s. that
every infinite d-rigid component of {X,,(e)}ecr contains some infinite d-rigid compo-
nent of {Xp,(€)}ecE-

Before the reader starts to think too hard about how to strengthen this result by remov-
ing the qualification “except possibly for a countable set of exceptional values”, we note
that once our main result (Theorem 3.4) is established, we will know that the desired
strengthening holds vacuously.

Proof of Lemma 5.3: Let p; be as in the lemma, and pick ps and p3 in such a way
that p; < po < p3 < 1. Suppose that ps is such that it is not the case that U-a.s. all
infninte d-rigid components in {X,,(e) }ccr contains some infinite d-rigid component of
{Xp,(e)}ecr. Mimicking the notation and terminology of the proof of Proposition 5.1,
we write Cp, for the union of infinite d-rigid components in {X,, (e)}ccr, and we call an
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infinite d-rigid component C in {X,,,(e)}.cr nasty if it does not contain an infinite d-
rigid component of {X), () }ccr. For a nasty component C, define dy,,,(C) and nq,,, (C)
as in (7) and (8).

We now claim that with probability 1,

all nasty components C satisfy nq,,, (C) = co. (13)

To see this, consider the following mass transport. Every vertex in a nasty component
C with ng_, (C) < oo sends away unit mass, which is distributed equally among the
dist(z, C1)-minimizers of C (with the usual modification if these sit in the wrong Aut(G)-
orbit). If, with positive probability, there exists a nasty component C with ng_, (C) <
00, then the expected mass received at a vertex is infinite, while the expected mass sent
is finite, giving the usual contradiction to Theorem 4.1. Hence (13) is established.

Fix a nonnegative integer k; we shall now rule out the possibility of having a nasty
component C with ng_. (C) = k.

Consider first the conditional distribution of {X,,,(e)}ccr given {X,, (€)}eck, which
is simply as follows: all edges that are open in {X,,(e)}ccr are open in {Xp,(e)}ccr as
well, while those that are closed in {X),(e)}ccr become open in {X),(e)}ecr indepen-
dently, each with probability %ﬁ. Letting m be as in the proof of Proposition 5.1, we
can therefore find an € > 0 such that for any z € V, the conditional probability of D,
given {X,,,(e)}ecr is always at least €; here D, is defined as the event that all edges
within distance m from z are open in {X,,(€e)}ecr. Furthermore, if dist(z,y) > 2m,
then the events D, and D, are conditionally independent given {X,,(€)}ccE-

If we now see a nasty component C in {X,, (€) }ccr, then we can, due to (13), find an
infinite set A¢ of vertices in C that are all at distance £k from C,,, and with the property
that dist(z,y) > 2m for all z,y € Ac. By applying the second Borel-Cantelli lemma
to the events {D, : x € Ac}, we see that a.s. at least one of them will happen. Due
to our choice of m, this implies that C will a.s. merge with one of the infinite d-rigid
components of { X}, (e)}ecr. This holds for any nasty component C with d,;n(C) = &,
but since k was arbitrary we have it for all nasty components.

Note that this can be applied to all rational ps,ps € (p1,1) such that ps < p3, and
the conclusion will hold for all such po,ps simultaneously. Consequently, if we view
the configurations {X,(e)}ecr for all p € (p1,1) as a stochastic process where p plays
the role of time, then no infinite d-rigid component will avoid being absorbed by Cp,
for any nontrivial interval of “time”. That is, any vertex z € V will sit in an infinite
d-rigid component not containing one of the infinite d-rigid components of C,,, for at
most one “timepoint” p. But since V is countable, this means that the existence of
nasty components in {X,(e)}ecr has positive probability for at most countably many
p € (p1,1), and the proof is complete. a

6 Encounter points

In this section, we shall combine the results of the previous section with an encounter
point argument & la Burton and Keane [5], in order to finally prove Theorem 3.4. The
encounter point argument will be applied not to the original percolation process on G,
but to a derived process on a modified graph G’ y which is defined as follows.

Definition 6.1 Given a graph G = (V, E) together with two positive integers A and N,
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we define its (A, N)-boosted graph G% y = (Vi x, B4 ) as follows. We set

VX,N:VX{O,].’...,A}

and
E:Z,N = FiUE,
where
El = {<(:L"Z)’(y,])> : Z’J E {1’27"' ’A}, "I"’y e V’ <'T’y> e E}
and

Ey; = {{(z,0),(y,7)) : 1 € {1,2,..., A}, z,y € V, distg(z,y) < N}.

It is easy to see that if G is quasi-transitive, then so is G y. Another graph property
that plays a key role when applying encounter point arguments is amenability, and
therefore the following lemma is important.

Lemma 6.2 Let A and N be positive integers, let G = (V, E) be an amenable graph of
bounded degree, and let G*A,N be its (A, N)-boosted graph. Then GE,N is amenable.

Proof: Fix € > 0, and let W be a finite subset of V' such that %l < €; the existence

of such a subset is immediate from amenability of G. Define the corresponding subset
W* of V}  as
W*={(z,i) : x e W,i € {0,...,A}}.

We have |W*| = (A + 1)|W]|, and our next job is to estimate |0W*|. From the con-
struction of G y, we see that if (z,1) € OW™, then distg(z, W) < N. Let r denote the
maximum degree in G. Clearly, for any n, there are at most 7"~ |0W | vertices z € V
such that distg(z,W) = n. The number of vertices z € V with distg(z, W) < N is
therefore at most
oW |(rY — 1)

r—1 ’

N
oW |y Nt =
n=1

Hence |0W*| < W#M, so that

|OW™| < oW |(rN — 1)

wH = W (r—1)

e(rV —1)
r—1

<

Since € > 0 was arbitrary, this can be made arbitrarily small, so G7y y is amenable. O

Let us next recall the notion of encounter points. Given a graph G = (V,E) and a
configuration ¢ € {0,1}F of open and closed edges in G, we say that the vertex z € V
is an encounter point for the configuration ¢ if

(i) € has three (but not four) edge-disjoint infinite open paths starting at =, and

(ii) ¢ is such that if it is modified by setting £(e) = 0 for all edges e incident to z, then
the three edge-disjoint paths (minus their respective first edges) in (i) end up in
different connected components of the modified configuration.

The following result is easily extracted from the arguments of Burton and Keane [5].
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Proposition 6.3 Let G = (V, E) be quasi-transitive and amenable, and suppose that
the random edge configuration X € {0,1}¥ is picked according to an Aut(G)-invariant
probability measure. Then, with probability 1, there are no encounter points for X.

Equipped with this result, we are now, finally, in a position to give the proof of our
main theorem (Theorem 3.4).

Let G be as in the theorem. The overall structure of the proof will be as follows:
First we assume, for contradiction, that there exists a p > p4 such that the a.s. number
K(G,d,p) of infinite d-rigid components in {X,(e)}ccr satisfies K(G,d,p) > 1. From
that, we show (for a suitable choice of A and N) how to construct an Aut(G% y)-

invariant probability measure on {0, l}E:‘,N with the property that it yields encounter
points with positive probability (this will build on the conclusions of Proposition 5.1 and
Lemma 5.3). Since G7 y is quasi-transitive and amenable, this contradicts Proposition
6.3, whence we must have K(G,d,p) =1 for all p > py, completing the proof.

The substantial part of the proof is of course how to construct the probability mea-
sure on {0, 1}E2!N that has the desired properties. Let us go ahead with the details.

Proof of Theorem 3.4: Suppose that K(G,d,p) > 1 for some p > py. Then, by
Proposition 5.1, we have K(G,d,p1) > 1 for all p; € (pg,p). Proposition 4.2 then
ensures that K(G,d,p;) = oo for all such p;. Fix p; € (pg,p). Due to Lemma 5.3, we
now have in the simultaneous coupling that for all but at most countably ps € (p1,p),

U (each of the infinitely many infinite d-rigid components of {X,,(€)}ccr contains

an infinite d-rigid component of {X,,, (€)}ecr) =1, (14)

so let us fix a py € (p1,p) such that this holds.

We shall now go on to construct a dependent percolation process {X*(e)}ecrs , for
the graph G7 y; here A is the maximal number of d-rigid components of {Xp, (e)}eeE
that can contain the same vertex in G (Lemma 5.2 guarantees that A is finite) while N
is specified as follows. Due to our choice of po, we can a.s. find infinitely many infinite
d-rigid components in {X,, (e) }ccr that are all contained in distinct d-rigid components
of {X,,(€e)}ecr. For a given vertex z € V, we can therefore find an N < oo such that
with positive probability, at least three such infinite d-rigid components of { X, (e)}ecr
intersect the ball B(z, N). Furthermore, since G is quasi-transitive, we can (and do)
choose N in such a way that this holds uniformly for all z.

For later purposes, let M be large enough so that B(z, M) contains a the vertex set
of a d-rigid subgraph of G containing B(z, N + d); such an M can be found due to the
assumption that G is d-rigid. Furthermore, we can (again due to quasi-transitivity of
G) take M to be such that this holds uniformly in € V. Let us fix such an M.

Fix a vertex z € V. For each d-rigid component C of {X, (e)}ecr containing
z, we pick a number I, € {1,...,A} at random, uniformly. This is done without
replacement, so that for no two d-rigid components C,C’ containing = we have I, ¢ #
I cr. We then go on to do this sort of assignment for all vertices z € V' (independently
for different vertices).
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For each edge e = ((z,4), (y,7)) € E} y, we set

1 if there exists a d-rigid component C of {X,,, (e) }ccr such that
(a) C contains the edge (z,y)
X*(e) = (b) Iy¢ =1, and

(C) vac = j'
0 otherwise.

It is obvious that the distribution of {X™(e)}ec By 18 Aut(G? y)-invariant. Further-
more, note that if we forget about isolated vertices in {X,, (e)}ccr and {X*(e)}eEEZ,N’
then there is a natural one-to-one correspondence between on one hand d-rigid compo-
nents in {Xp, (€)}ecr, and on the other hand connected components in {X*(€)}eep, , -

So far, no edge e = ((z,0), (y,7)) € E} y take value 1 in {X*(e)}eeEz,N, but now
we shall go on to define a modified edge configuration {X*(e)}ec By where some of
these edges are turned on.

Fix z € V, and let £, and &,, be two {0, 1}F-valued configurations such that

(i) &p,(e) <&p,(e) foralle € E, and

(ii) B(z,N) is intersected by (at least) three infinite d-rigid components Cy,Cs,Cs of
&p,, that are contained in three distinct d-rigid components of &,.

Then obtain &, from &,, by setting

0 if both endopints of e are within distance N + d from z,
f;,l(e) = and e is not part of any of Cy, Cy or Cs,
&p.(e) otherwise,

and set £, (e) = &, (e) for all e € E. By applying the simultaneous LM-coupling and
(12) to this choice of (&p,,&p,,&p,5&p,), and by our choice of N, we can deduce that

¥(D;) >0 (15)
where the event D, is defined as

D, = {B(z,N) is intersected by exactly three infinite d-rigid components in {Xp, (¢)}ccE,
and these are all in different d-rigid components of {X,,(e)}ecr} -

Call z € V a trifurcator if

(a) B(z,N) is intersected by exactly three infinite d-rigid components in {X,,, (€) }ecE,
and

(b) Xp,(e) =1 for all edges e that have both endpoints within distance M from z.

Next enlarge the probability space ([0, 1]¥, ¥) by including an independent fair coin toss
for each £ € V. Call x € V a lucky trifurcator if it is a trifurcator whose coin toss
comes up heads. Finally, call z € V' an exclusive lucky trifurcator if it is the only
lucky trifurcator in B(z,2M).

We now obtain {X’*(e)}eeEz,N from {X*(e)}eEEZ,N by turning on edges of the form
((2,0),(y,4)) € E} y as follows. If z € V is an exclusive lucky trifurcator, we write
C1,Cs,Cs for its three defining infinite d-rigid components of {X), (e)}ccr. For each
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i € {1,2,3}, a vertex y; in C; is chosen at random (uniformly) among those that minimize
the distance to z, and we set

X*(«LE,O), (yiaIyi,C¢)>) =1.

For all other edges e € £ v, we set X*(e) = X*(e).

Now assume, for a given vertex z € V, that {X,, (e)}ecr and {X,,(€)}ccr are such
that the event D, happens, and write C1,Cs,Cs for the three infinite d-rigid components
of {X,,(€e)}eckr intersecting B(z, N). We noted above that each rigid component in

{Xp,(€)}ecr forms a distinct rigid component in {X*(e)}ecr , , and we now make the
stronger claim regarding C1,Co,Cs that ’
C1,C2,C3 are in three distinct connected components of {)Z'*(e)}ee,zgj4 N (16)

To see this, note first that if an exclusive lucky trifurcator connects up two connected
components C and C' of {X*(e)}eem, , , then the corresponding d-rigid components in
{Xp,(€)}ecr will merge in {Xm(e)}eé g; this follows from the definition of trifurcators
in conjunction with our choice of M. So if, for some {7,j} C {1,2,3}, we have that C;
and C; are in the same connected component of {X*(e)}ec B - then the alternating
chain of exclusive lucky trifurcators and connected component,s of {X*(e)}ec B n that
connect C; and C; in {X*(e)}eeE;;Na will cause the d-rigid components C; and C; to
merge in {Xp,(e)}ecr. But this would contradict the assumption that the event D,
happens, so we have established the claim that D, implies (16).

Now imagine again that {X,, (e)}ecr and {X),(e)}ccr are such that the event D,
happens (so that in particular (16) holds), but then modify {X,,(€)}ecr by turning on
all edges within distance M from x. If furthermore the coin tosses introduced in the
definition of a lucky trifurcator yield “heads” at x but “tails” at all other vertices in
B(z,2M) (an event of positive conditional probability given everything else), then z is
an exclusive lucky trifurcator, and furthermore the only difference that this modification
makes to {X*(e)}ec B o is the inclusion of the three edges incident to (z,0) € V]  that
connect up Cq, C2 and C3. This causes (z,0) to be an encounter point for {X*(e)}eEE‘z .
Hence, using (15) and the property (12) of the simultaneous LM-coupling, we get that
(z,0) has positive probability of being such an encounter point. This contradicts Propo-
sition 6.3, and the proof is complete. O
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