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Estimating Diffusion Coefficients in Colloidal Particle Systems
MaTs KVARNSTROM

Department of Mathematical Statistics

Chalmers University of Technology and G&teborg University

Abstract

This licentiate thesis deals with the estimation of the diffusion variance (or
equivalently, the diffusion coefficient) of colloidal particles. Particle positions
have been observed and estimated from a series of images recorded with a video
microscope, using more or less standard image processing algorithms and tools.
In particular, to estimate the position of the particles in each image we used a
modification of the Hough Transform.

The particles are assumed to perform independent Brownian motions in three
dimensions. A complicating fact is that some of the observed particles are not
moving, but are instead either particles adsorbed on the objective or cover glass
of the specimen, or correspond to defects in the optics of the microscope.

A model is introduced with two kinds of particles, diffusing and fixed. To
each particle position estimate we assume an additive measurement error. The
parameter of the model consists of the diffusion variance, the measurement error
variance, and the proportion of diffusing particles. The problem can now be
considered as an incomplete data problem since we do not know a priori which
particles are really diffusing. The maximum likelihood estimator is computed
via the EM algorithm and as a side-effect we also get the classification variables
of the particles, i.e. if they are diffusing or fixed. The estimator is shown to
be strongly consistent and asymptotically normal, as the number of particles
approaches infinity, under a reasonable restriction on the parameter space.

Key words: Discretely observed diffusion, measurement error, mixture dis-
tribution, asymptotic normality, strong consistency, curved exponential family,
EM algorithm, image processing, Hough Transform
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Chapter 1

Introduction

The understanding of the behaviour of colloidal suspensions are of crucial im-
portance in a vast number of different areas. Examples of common, everyday
life colloidal systems are milk and paint. In milk, various interactions between
the small (100 nm to 1 pm in diameter) colloidal milk fat particles and proteins
suspended in the fluid, decide whether it coagulates into cheese or yoghurt.
These interactions depend on how the milk was treated before the coagulation.
For the second example, the pigments in the paint must stay suspended in the
liquid in a can for years, yet, as they are spread on a wall, be able to coagulate
fast.

The goal of the ongoing project is to develop techniques for the quantitative
study of the diffusion and interaction of particles in a colloidal system, with
subsequent application to pharmacy. Here the possible modifications of the
colloidal particles have a large impact on modern therapies such as oral vaccines
and gene therapy.

The standard theory for the interactions of colloidal particles, the DLVO-theory
(see for example [5]), is merely an approximation and experiments have shown
that it fails to predict the behaviour of several important suspensions, see [1]
and [8]. Therefore, observations on the microscopic level are needed.

The idea is to make inference of particle diffusion and interaction from a series
of light microscope images of moving particles. Figure 1.1 illustrates an example
of what an image from such a sequence might look like. The particles in these
image are spherical, made of latex (polystyrene), and have all a diameter of 494
nm. The experiment is constructed in such a way, that we can assume that the
moving particles are performing a pure Brownian motion in three dimensions.
That is, no drift and no interaction between different particles.

The apparent differences in size and brightness variations of the particles is
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Figure 1.1: A single microscope image in the sequence.

due to off-focus placement. Particles in the focal plane are depicted as small,
distinct, black spots, while particles above or below the focal plane, are either
light or dark in middle, respectively. Also, the further away from the focal plane
a particle is, the larger and more blurred it appears. This effect will give us
a method to, at least in principle, estimate the third coordinate of a particle
position. It should be mentioned that the light is coherent, which is the reason
for this optical effect. If light would have been incoherent, particles off-focus
would simply be blurred.

This is the first, introductory, part of the project and as a first study we have
tracked some of the particles in 12 consecutive images like the one in Figure 1.1,
using basic image processing tools. The estimated trajectories can be found in
Figure 2.1. From the trajectories of the particles we then estimated the diffusion
coefficient. For this, we used a model which incorporated two kinds of particles,
diffusing and fixed. This was necessary since some of the particles we tracked
were essentially fixed in position. These seemed to be either particles adsorbed
by the surrounding glass surfaces, or not particles at all, but rather defects
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in the optics. We write “essentially fixed” since their estimated position was
still fluctuating a bit between different images. This observation also made
us introduce a a measurement error of the observed position versus the real
position.

We have not estimated the interaction potential between particles. To be able
to do that, we need position estimates in all three dimensions and the technique
for this has not been developed yet.

1.1 Related work

Crocker and Grier have written a number of articles where they use image
analysis tools to analyse the pairwise interaction and diffusion coefficients of
particles in colloid suspensions. In [2], they locate particles in face-centered
cubic colloid crystal of polystyrene spheres of diameter 326 nm. After suitable
pre-processing, candidates for particle positions are found using grey-scale di-
lation (a technique that identifies local brightness maxima in the image). They
refine these estimates in the plane by fitting a brightness-weighted centroid to
the pixels within a region around the first candidate. They also use a variant of
this idea for estimating the placement in depth. The linking of particle locations
in each of the images to trajectories are done by a nearest-neighbour technique,
like the one we used, see Chapter 3.

The major reason for the non-applicability of their image analysis methods
to our problem, is first of all that their depth of focus is comparable to the
diameters of the particles. This means that they do not have to deal with the
problem associated with particles looking different depending on their location
in depth. Secondly, since their particles have formed a crystal, they are not
moving very rapidly, which is typically the case in our problem.

1.2 Outline of the report

In Chapter 2, we introduce the model, with two types of particles and mea-
surement, error on the position estimates that we used for the observed particle
trajectories. Then we describe two common estimators of the diffusion variance,
and compare them with the maximum likelihood estimator, under our model
assumption. This chapter is rather sketchy and serves primarily as motivation
for our model and to the paper “Estimation of the diffusion coefficient in a
mizture model with diffusing and fized particles”, written by the author of this
thesis and supplemented to it.
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Chapter 3 deals with the image processing we used, to get the estimated trajec-
tories in Figure 2.1. A three stage approach was used for each image. First we
did appropriate pre-processing consisting of interpolation and smoothing. Then
we looked for circles in the images by using a modification of a method called
Circular Hough Transform. To actually get trajectories, we finally matched the
position estimates of the particles from the image sequence. For each particle in
one image, we looked for the nearest particle in the next image. Problem arises
in this step when we have different number of particle position estimates from
one image to another. This is typically the case in our application, first of all
since our method to find particle candidates is far from perfect, and secondly
because our particles are actually moving and may thus become occluded by
other particles, disappear out of the region covered by the image, come in again,
etc.

Here, we got around this problem by manually discarding the particles not found
in all the images in a sequence. Because this is a time-consuming task to do
manually, we only considered a subset of the image and just 12 images.

In Chapter 4 we present some of the subjects that need to be looked at further
in the continuation of the project.

The main part of the work can be found in the supplemented paper. We esti-
mated the parameters of the model of Section 2.1, using maximum likelihood
estimation. The EM algorithm (see [4] and [14]) was a natural choice of com-
putational procedure in this problem, since we can regard the classification
variables for each particle (indicating whether it is a diffusing or fixed parti-
cle) as missing, or unobserved, data. The estimated diffusion variance seems
reasonable when compared to the theoretical one. We also show that the esti-
mator exists for any fixed number of observed particles n, and that it is strongly
consistent and asymptotically normal as the number of particles goes to infinity.

We write [P], to denote this supplemented paper, which has been submitted for
journal publication.



Chapter 2

Estimating the diffusion
coefficient

Assume we have observed n particles diffusing over a time period corresponding
to N discrete increments, and that we want to estimate the diffusion variance.
Which is “the best” estimator depends obviously on the assumed underlying
diffusion model, but also on ease of computation. Here we compare two more or
less ad hoc estimators, commonly used and easy to compute, with the maximum
likelihood estimator dealt with in [P]. The entire chapter serves as a complement,
or rather a motivation, to this paper and in order not to repeat to much from
it here, we recommend that it is read in close conjunction.

In Figure 2.1 we can see the inspiration for the model with two kinds of particles,
that we are going to introduce. Clearly, some of the particles in the figure do
not seem to be diffusing.

2.1 The model

Denote the true and observed position of a generic particle at time k, where
k=0,...,N, by R and S}, respectively.

For diffusing particles we assume the following state-space model:

Ry = Rp1 + wy,
St = Ry + e,
for k = 1,...,N, where the increments {wy} are ii.d. normally distributed

random variables with variance o®. The measurement errors {ej} are i.i.d. zero
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Figure 2.1: The 26 trajectories estimated in a sequence of 12 images together
with the first image in the sequence. Notice that three of the particles seem to
be fixed.

2

2, and independent of the increments

mean normal variables with variance o
{’U)k}.

We allow for some particles to be fixed in position. For these we have the same
state-space model as above but with w, = 0, for all k. We can also think of
them as being degenerate zero mean random variables with 2 = 0.

We let each particle be diffusing with probability p independently of each other.
We associate a classification variable Z; for 4 = 1,...,n, to be one if the i:th
particle is diffusing and zero otherwise. A particle is either diffusing or fixed for
the entire sequence of N +1 observations.

This full model, with two kinds of particles, and imperfect position measure-
ment, is denoted M. The unknown parameters are

e ¢2: the diffusion variance, i.e. the variance of an increment
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e 02: the variance of the measurement error

e p: the proportion of particles which are diffusing

For ease of notation we only consider the 1-dimensional case. Everything ex-
tends naturally to the general d-dimensional case if we assume the measurement
error to be i.i.d. in all dimensions. Note however, that this assumption is prob-
ably a rather coarse simplification of what the truth might be. At least one
would think that the estimates of the depth relative to the focal plane (the z
coordinate) are more uncertain than the estimates in the plane (the z and y co-
ordinates). It is also reasonable to believe that the degree of uncertainty in the
z coordinate estimates might depend on the true position in depth. However,
in two dimensions, and with the image processing tools used, we believe that
the assumption of independent and identically distributed measurement error
is plausible.

2.2 Notation

The index ¢, ¢ = 1,...,n, is used to distinguish between the n particles and a
subindex ¢ as in Z;, means that the entity belongs to the i:th particle. If the
index is neglected, we mean a generic particle. The index k, k =1,...,N, is

used for a generic particle only, and correspond to the discrete time k in the
state-space model.

We are going to work with the observed increments Y, = S — Sp for k =
1,...,N. The observed increment vector is defined as Y = [¥3,...,Yn]T.
The covariance matrix of the observed increment vector is denoted ¥; = ¥; (02, 02

for a diffusing particle, and £o = £ (02) for a fixed. See Section 2.1 in [P].

Since the covariance matrices are non-diagonal, we work with the transformed
increment vector Y = UTY instead for easier notation, where U is the matrix of
eigenvectors to X1 as columns. Tt turns out that Var{Y} = diag{o? + A\zo2,1 <
k < N}, where \;, are the eigenvalues to a tri-diagonal matrix 7. See Section
2.2in [P].

We classify data into two categories, observed and complete. The observed
data is simply the observed increment vectors Y;, ¢ = 1,...,n, of the n par-
ticles. The complete data consists of the observed data together with the the
the corresponding classification variables Z;. The latter are unobserved and is
therefore called the unobserved data. The complete data is of curved exponen-
tial type (see Section 3 and the Appendix in [P]) and the observed data is a
mixture distribution g, consisting of two N-variate normal components, both
with zero mean but with different covariance matrices, ¥; and Xg:

9(y;0%,02,p) =pf(y;%1) + (1-p) f(y;Z0)
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where f(-;X) is a N-variate normal density with mean zero and variance X.

2.3 Comparing three estimators

In the analysis of this Section, we assume that p = 1 and that the measurement
error o2 is known, but different from zero.

The sum of squares estimator

Given a increment vector Y from an observed Brownian motion, the first esti-
mator of o2 one would come to think of would probably be

1 & 1 Y
~2 2 2
SRS PP PR

This is the maximum likelihood estimator of ¢? under the assumption that

p=1and 62 = 0, i.e. if we have perfect observation of diffusing particles only.

Under our more complicated model assumption from Section 2.1, this will how-
ever be a biased estimator of o2:

N
1
E{6%} = ~ > EY? =0’ + 207
k=1

where we used that EY;? = 02 + 202. For the example in [P], this corresponds
to a relative bias of roughly 25 percent.

The variance of this estimator is
1 & 1 &
Var{6%} = Var{ﬁ Z Ykz} =3 Z 2(0? 4+ Apo?)? (2.1)
k=1 k=1
due to the independence of the components of the transformed increment vector.
To get a closed form expression for (2.1), one can use the identities Y A\ =
trace{T'} = 2N, and " A2 = trace{T?} = 6N —2.
Mean square displacement
The second estimator is based on the “mean-square-displacement” quantity; for

each 7, 7 = 1,..., N, take the mean of the squared displacement up to time 7
over all particles. For one particle this becomes

MSD(7) = (i Yk)2
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Since Y ;_, Y} is a zero mean normal variable with variance 7o? + 202, the
expected value of this is

E{MSD(r)} = Var{i Yk} = 70% + 202 (2.2)
k=1

This quantity is usually plotted for increasing values of 7 and mainly used as a
graphical method for detecting a drift in the diffusion. If there is a drift present
in the diffusion, the bias in (2.2) will then be, in addition to the 202 term above,
the square of the expected drift up to 7.

Define the estimator of o® based on mean square displacement, 63,4, as
2 MSD( )
UMSD = (Z Yk) =" N

When used as an estimator for o2, this has very poor properties. If we take a
look at the variance of the estimator

2 .
Var{63;sp} = W(NU2 +202)? = 2(6%)? + o(1)

we see that this does not go to zero as N increases, which typically is a property
that we would like our estimator to have. In fact, the only good thing about it,
is that the bias induced by o2 decreases as we increase N:

2
E{6Ysp} =0"+ N"?

which is a rather small comfort.

Maximum likelihood estimation

The density for the increment Y is (see Section 3 in [P])

1 yTyty
2\ _ 1
fl(:l/|0' ) - (27T)N/2|21|1/2 exp{ 2
N

1 { 1 Ui }
(2m)N/2 Hiv:1(‘72 + Apo2)1/2 2 ; 02 + A\po?

Hence, disregarding an additive constant, the log-likelihood for ¢ can be writ-
ten

2)
I(c?) ——Zloga + Apo?) 22024‘)\1902
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and the score equation becomes

LN LN 7
=13
2 1a+)‘k0 24

1 02 + )\k02

where the dot indicates the derivative with respect to o2. This equation has no
closed form solution, except for case NV = 1.

The expected information of o2 is

1 1 N V2
E(-i(c?)) = -E(= - k
(=U(c")) (2 ; (02 + A\po2)2 ; (02 + )\kgz)s)
N N N

This estimator is consistent and asymptotically normal as n — c0. The asymp-
totic variance of \/n(6%;; — ) becomes

N 1
Var{y/n(63 —0°)} = T—=x - (2.3)
3 Lk=1 Tl

which can be compared with the variance of \/né? from (2.1) for different N
and “signal-to-noise”, 02 /02, ratios. Since (2.3) is the asymptotical variance of
the maximum likelihood estimator, we should have that the variance of 6%,
is smaller than the variance of 6%, because maximum likelihood estimators are
asymptotically efficient. This is also verified by the Cauchy-Schwarz inequality:

Var{&%/mas} _ N2 < N? _1
~2 - N N — 2
Vertosh (S w2) (S k) (i )

where ¢ = 0?/0? and by Var{é?,;,.} we mean the asymptotical variance as
shown to right in (2.3). It is a fact that the maximal element of the eigenvalues
Ak is less than 4, so we see that the ratio goes to one when ¢ grows large, and
N is kept fixed. This is what we should expect, since then the measurement
error o2 can be neglected.

2.4 The proposed estimator

If we look at the 26 trajectories in Figure 2.1 we notice that three of them
seem to correspond to fixed particles. The fact that the trajectories are not just

10
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a single point was our motivation for introducing the measurement error; the
apparent movement is probably due to that error.

The first idea would be to discard the three fixed particles manually as outliers
and then estimate o2 and o2 using the maximum likelihood estimator under the
assumption of p=1 for the remaining 23 particle trajectories. Since the fixed
particle “trajectories” contain information about o2, this seems like a slightly
wasteful approach, though.

Our next alternative would be to, rather than just discard the particles we
manually labelled as fixed above, incorporate these into the analysis by using
that the corresponding observed increment vectors come from an N-variate
normal density with covariance matrix Xo. This is the full model assumption
M but with complete data.

The last alternative is to use the observed data only, that is, the observed
increment vectors from the 26 particles. Since we do not classify the data, the
classification variables can be thought of as missing, or unobserved, data. So,
we still assume the full model, but in this case the data comes from a mixture
model with two N-variate normal components.

In [P], we mainly consider the last alternative of maximum likelihood estimation
using observed data. The EM algorithm [4] is then a natural method to use when
maximizing the likelihood, since it also gives us estimates of the classification
variables as a side-effect.

11
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Chapter 3

Image processing

In this chapter we describe the method we used to get the estimated trajectories
of the 26 particles in Figure 2.1. The method consists of three parts. First is a
pre-processing stage of interpolating and smoothing. Then we find the locations
of the particles by looking for circles in the image. After the particle positions
have been estimated, we link these to form the actual trajectories.

3.1 Instrumentation setup

Latex particles made of polystyrene with a diameter of 494nm were placed
between an objective and a cover glass and sealed. The illumination consisted
of coherent light. The sample was studied in a Zeiss Axiovert 135 TV microscope
equipped with a Newicon video camera.

The video signal was then digitized and stored as TIF files of size 512 times 512
pixels. The digitized sequence consists of 50 images (or frames) per second. In
practice however, only half of them are useful. The camera records only half of
the rows at each scan, alternating between the even and odd rows (also called
the even and the odd fields) and duplicates this information to the rows which
were not scanned.

In other words, if we decide to use the frames corresponding to the even fields
we get 25 pictures every second consisting of either the even or the odd rows
only. Another possibility is to interlace two consecutive frames (one even plus
one odd) into a single frame, using the even rows from the even frame and
the odd from the odd frame. Since there is an interval of a 1/50 of a second
between the even and the odd frame, this will cause problems when observing
rapidly moving particles. This is the case in this study, so this method does not

13
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Figure 3.1: Left: Part of an even frame. Note that the pixels look rectangu-
lar due to the duplication of rows. Right: The same part of the image after
reconstruction by interpolation.

work very well here. We use the first method, where we use the even frames in
combination with interpolation (see section 3.2).

The domain in which the particles are confined, and are available for our in-
spection through the images, is a box with equal length of the sides of about 90
pm, and a depth of 26 um. The focal plane is set to a depth of 13 pm.

3.2 Estimation of the location of particles

Determining the location of the particles in an image is a somewhat tricky issue
due to the fact of the range of the focus. The method proposed by Crocker
and Grier [2] is not applicable to our problem, the main reason being that our
particles are both dark and bright depending on the z-coordinate of the current
particle; we cannot simply search for black objects standing out of an brighter
background.

If we are unable to search with respect to brightness, we search with respect
to shape. The method described below involves a Circular Hough Transform
(CHT) applied to an gradient image. The problem with the ordinary CHT [7] is
that the parameter space becomes three dimensional (and it is computationally
heavier to search in three dimensions) if we are searching for circles of different
radii. This is the case here because the particles are depicted as concentric
circles of different radii. Instead, we use the idea of coherent CHT [10], where
the image (see below) is convolved with a single, but complex valued mask.

14
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Pre-processing

The raw data from the digitizer is a sequence of even field images. Since each
image consists of the even rows only, with the odd rows as a duplicate of the
even row above, we interpolated the pixel values of the even rows to the odd to
get a smoother image. For each odd row, we simply took the mean of the two
neighbouring even rows.

To get rid of spurious errors due to digitization and other imperfections caused
in the image formation process, we smoothed the interpolated image 1" by
convolving this with square gaussian mask H of sidelength 2w + 1

1 k> +1?
Hir = oms? P (_ 252 )

where —w < k,] < w and s? is a smoothing parameter. We used w = 3 and
2
s*=1.

Denote the pre-processed image by IP"¢ and the individual pixels in IP"¢ by
If;e. Then

pre _ int
Ii,j = § , Hy i Lk, j1
—3<k,I<3

Finding estimates of the x and y coordinates

To get candidates for the position of particles, we first estimated the modulus of
the gradient at each point in the image IP"¢. Then we used the coherent Circle
Hough Transform to this gradient image to find the centers of the circles in the
image. These centers correspond (hopefully) to the z and y coordinates of the
particles.

Prewitt’s gradient filter

A simple way of detecting edges in an image is to calculate the modulus of the
discrete gradient at each pixel in an image. This method is called Prewitt’s
gradient filter, see Glasbey and Horgan [6]. First we estimate the derivative in
the x direction by

Efyj= ) Hudlu (3.1)
C1<kI<1
where
1 -1 0 1
H*==-| -1 0 1
61101
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Figure 3.2: The gradient image using Prewitt’s filter.

The derivative in the y direction EY is estimated similarly using

1 1 1
0 0 0
-1 -1 -1

gy =1

in (3.1) instead of H*. The modulus of the gradient, E, was calculated according
to

Eij=/(Ef;)? + (E};)? (3-2)

Figure 3.2 shows the output for the image in Figure 1.1.

The Coherent Circle Hough Transform

The Hough Transform is used to find circles in an image. This is done by
convolving the edge image by a mask W containing a discrete approximation

16
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Figure 3.3: The phase coded annulus with R,,;, = 0 and R,,,; = 5. The grey
scale represent the phase in radians with zero as black and 27 as white.

to a circle. The maxima of the output of this convolution is an estimate of the
centers of the circles in the image. For example, the mask

000111000
0010007100
010000010
100000001
W=|100000001
100000001
010000010
001000100
000111000,

could be used to find the center of circles of radius 4 in an image. The problem
with this standard CHT is that, if the task is to find circles of radii between
3 and 6, then the resulting parameter space is three dimensional (the z and
y coordinates and the radius), making the search for maxima harder. In our
problem we are searching for particles which are “smeared out” differently ac-
cording to the distance from the focal plane of the camera, so we have to look
for circles of different radii.

The Coherent Circle Hough Transform [10] uses the concept of Phase Coded
Annulus. This is a mask consisting of complex numbers, all with magnitude
unity, but with the phase coded according to the distance away from the center
of the mask. When convolved with a gradient image of a circle, the mask
will integrate coherently (with equal phase), resulting in an output of large

17
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Figure 3.4: The coherent CHT with a chirp coded phase applied to the gradient
image in Figure 3.2. Notice how the white dots correspond to centres of the
circles in the same image.

magnitude when located right “above” the center of the circle.
The mask WP is defined as

(3.3)

i o P2 2, 72 2
Wwrea — ert if Rmin <k +1E< Rma:v
kil 0 otherwise

where R, and R, specify the range in which to detect circles. There are
two proposed ways of coding the phase ¢} ;; a linear or a ramped. For a linear
coding, ¢y is given by

lin _ o vVk2 +12
Rmax - Rmin

18
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whereas for the ramped (chirp) coding,

VEZ ¥ 12 ) ( Ronin . (1 = Bain) (VB2 + 12 — Rnin)

mawz

Rmaw Rma:c - Rmin

ehim =2m( = ) G

max ~ Rmin

The phase of a linearly coded mask with R, = 0 and R4, = 5 is illustrated
in Figure 3.3.

In our application, we used the ramped coding style, so from now on, WP
means the mask specified by (3.3) together with (3.4).

Let @ be the result after convolving WP with the gradient image E,
Q=WPr%xE

where * denotes the convolution operator. In Figure 3.4 we can see the result
after applying the WP to the gradient image shown in Figure 3.2.

Finding candidates

By locating local maxima in Q, we find suitable candidates for particle locations
in the image. A location (i, j) is set as a candidate if the center pixel @); ; is the
maximum of all the pixels within a pre-determined distance of m from (3, j). In
practice, this gives too many candidates so we require furthermore that @); ; is
above a pre-specified threshold value T'.

Let C be the matrix of candidates. For every pixel (,7) in @ do the following;:

1. If Q;; < T, then C;; = 0 and go to step 3, otherwise proceed.

2. Let S;; = {k,l: (k—19)*+ (I —j)* <m?}.
If Qi,j = krlrlaSX Qk,l then C,'yj =1.1If IlOt, then Cz"j =0.
e

i,

3. Move to the next pixel and go to 1.

The position estimates in the image corresponds to the locations (¢,j) where
Qi,; = 1. In Figure 3.5, the result of the procedure is displayed with crosses at
the positions where we have a particle candidate.

Comments regarding the estimation of location
We see that we tend to get candidates on the surge of the particles which are

located largely off-focus. In order to get the very faint particles (which actually
correspond to particles located in the focal plane!) accepted as candidates
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Figure 3.5: The resulting 127 candidate positions, marked with crosses, using
the approach proposed in Section 3.2.

the only thing we could do was to lower the threshold, resulting in even more
candidates on the surges.

A problem with the algorithm described above, is the quite large number of
parameters (Rmin, Rmaz,m and T). In the example above they have been
chosen on a trial and error basis. For another image sequence, we probably
have to choose different parameters, again by trial and error. The algorithm
is fast though, and the result for our image sequence must be considered as
satisfactory.

Since our goal is to estimate all three coordinates of the particles, we probably
have to refine our method, from just looking for circles in the edge image, to a
more elaborate shape search. One method is to use template matching where
one has one template for what a particle looks like at each depth with respect
to the focal plane. This is discussed further in Chapter 4.

20



CHAPTER 3. IMAGE PROCESSING

3.3 Linking the estimates

To actually get trajectories, we have to link the position estimates from all the
images in the sequence. The main problem of this step is that the number of
particle candidates vary quite a lot between the images in the sequence. This
is due to the fact that the image processing step described above is far from
perfect; some particles are not found at all and some of the candidates do not
correspond to real particles. New particles may also come in from the sides of
the image (the image just covers a subset of the volume in which the particles
are confined). So, generally, we have a matching problem with different number
of points in each image. This is something which will be exploited in the future,
see Chapter 4.

To get the trajectories shown in Figure 2.1, we manually removed particles in
each of the 12 images which were not considered as real particles. Since this is
quite a time-consuming task, we only looked at a subset of the images. Also,
we just looked at 12 consecutive images.

Assume that we have observed n non-interacting particles, all performing a
Brownian motion, in two consecutive images. Denote the distance between the
i:th particle in the first image and the j:th particle in the consecutive image by
R; ;. The maximum likelihood estimator of the matching, when just considering

two subsequent images, then becomes the permutation J of {1,...,n} that
minimizes
n
> R (3.5)
i=1

where the minimum is over all permutations J.

This is a classical problem in integer optimization called the Assignment Prob-
lem. Solving the problem directly, without modification, would involve n! eval-
uations of the sum (3.5). However, there exists an algorithm which has com-
plexity O(n*), see for example [16]. In the first step of this algorithm, we do
what probably would be considered to be the “natural” thing: for each particle
in one image look for the nearest particle in the consecutive image. Now, if
this establishes a 1-1 correspondence between the particles in the two images,
this must be the minimizer J of (3.5), and we are done. Otherwise proceed as
in [16].

For the particles in Figure 2.1 we used this method and as one almost might
expect from the figure, we could stop the algorithm after the first step for all
eleven consecutive image pairs in the sequence.
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Chapter 4

Future work

In this chapter we present a small selection of future research topics within this
project.

4.1 Template matching

In the example illustrated in Figure 2.1, we only had particle position estimates
in two dimensions. By using the fact that particles look different depending on
their depth relative to the focal plane, we should in principle be able to estimate
the depth, or z, coordinate. One way to do this is by template matching,
where one, for a known prototype, or template, look for its best agreement,
or matching, in an image (see for example [7]). Here we would need several
templates, each corresponding to the appearance of a particle at certain depth
of focus. Then the goodness-of-fit of each template is then evaluated at all
possible positions in the image. A common matching criterion is the mean
square difference between the pixel values of the image and the template.

The construction of templates will probably be based on empirical data. We
have images of particles at different depths relative the focal plane so we know
what a particle “looks like” at a certain distance away from the focal plane.
An alternative is to build the templates mathematically. However, attempts in
this direction has so far been fruitless since the optics involved in the image
formation seems to be hard to handle. The reason is that the wavelength of
light is of the same size as the diameters of the particles, so neither of the two
standard approximations of optics, geometric and fourier optics (see for example
the standard reference [9]), work for our situation.

Examples of where template matching successfully have been used are, Young
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et al. [17] who used it to automatically identify and measure yeast cells in DIC
microscopy, and Larsen and Rudemo [12] who used it to estimate the position
of trees from aerial photographs.

4.2 Matching position estimates

The general solution to the matching of the position estimates in the images
to trajectories, have to be able to handle the situation of different number
of candidate particles in each step. What we saw in Chapter 3, is that it is
unrealistic to think that an automatic image processing algorithm can find all
our particles in all of the images. And even if this would be the case, we still
have that particles can move “in and out of the image” or be occluded by other
particles.

One approach is to follow the work of Walker [15] who used an idea based on
Cross and Hancock [3]. They matched a point set in one image, to points in
another, under the assumption that the relevant points where the same up to
an affine transformation and a Gaussian i.i.d. measurement error term. The
irrelevant points (the “noise”) were assumed to distributed according to a two-
dimensional Poisson process. Which points that where relevant or not was
considered as unobserved data and they used the EM algorithm to find the
maximum likelihood estimate of the affine transform parameters and the Gaus-
sian noise variance.

Lund and Rudemo used a similar, but more advanced model in [13], where they
matched tree-top position estimates from one image, with the a set of “true”
positions.

Common for both methods is the fact that they match points from two images.
In full generality, our matching procedure should work with the N +1 point
sets, one from each image. Also, as we do it now, we consider the linking as
a procedure separated from the analysis of the diffusion; we first estimate the
trajectories, and then analyse these. At least in theory, we should be able to
work with everything in one single step, taking care of the matching of the
trajectories of the diffusing and fixed particle, while at the same time estimat-
ing the diffusion model parameters (since these are needed in the matching),
together with ability to take into account the possibility for spurious particles
(“noise particles”) due to the imperfect image processing.
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4.3 Diffusion coefficients from a distribution

One way to generalize the model in Chapter 2, would be to allow the diffusion
coefficients of the moving particles to come from an arbitrary distribution as
mentioned in Section 5.4 in [P]. Instead of assuming that the diffusing particles
all have the same diffusion variance, we just assume that they have random
diffusion variances, taken from the same distribution. Our goal then becomes
to estimate this distribution.

Kiefer and Wolfowitz [11] show that under certain assumptions on this distri-
bution of coefficients, the maximum likelihood estimate of the distribution, is
consistent for all continuity points, as the number of observed particles goes to
infinity.

Apart from being a more theoretically advanced model, it also lies closer to
the truth in applications, where one usually works with so called poly-disperse
solutions. That is, solutions with particles of different sizes, as opposed to
mono-disperse, where they all have the same size.
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Abstract

Particle positions have been observed and estimated in a series of images. The
particles are assumed to perform a Brownian motion, however some of them
seem to be fixed. A model is introduced with two kinds of particles, diffusing
and fixed. To each particle position estimate we assume an additive normal mea-
surement error. The parameter of the model consists of the diffusion variance,
the measurement error variance, and the proportion of diffusing particles. The
problem can be considered as an incomplete data problem since we do not know
a priori which particles are really diffusing. The complete data is of curved
exponential type and the observed data is a mixture of two normal components.
The maximum likelihood estimator is computed via the EM algorithm. The
estimator is shown to be strongly consistent and asymptotically normal, as the
number of particles approaches infinity, under a reasonable restriction on the
parameter space.

Key words: asymptotic normality, curved exponential family, discretely ob-
served diffusion, EM algorithm, measurement error, mixture distribution, strong
consistency

1 Introduction

This article deals with the estimation of the diffusion variance (or equivalently,
the diffusion coefficient) of colloidal particles. Particle positions have been ob-
served and estimated in a series of images (frames) recorded on a video micro-
scope using more or less standard image processing algorithms and tools. The
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Figure 1: The 26 trajectories estimated in a sequence of 12 images together with
the first image in the sequence. Notice that three of the particles seem to be
fixed.

position estimates of the particles are then linked so that we get a trajectory for
each particle in the sequence.

The particles are performing a Brownian motion in three dimensions and they
move independently of each other. The naive estimate of the diffusion variance
is the mean of the squared increments. If we, however, assume that the position
estimates of the particles are imperfect, i.e. if we assume a measurement error,
this estimate of the diffusion variance will be biased.

Another complicating fact is that some of the observed particles are not moving
but are instead either particles adsorbed on the objective or cover glass of the
specimen, or “false” particles which are due to for example defects in the optics
of the microscope. One solution to this problem is of course to remove these
false particles manually. This is not satisfactory from a statistical point of view,
first because we should be able to do it using statistical methods, second because



these particles actually gives us information on the measurement error.

The proposed method takes care of both of these problems by assuming a mix-
ture distribution of diffusing and fixed particles and then estimate the relevant
parameters using maximum likelihood estimation. For fixed number of observed
increments the estimator is shown to be strongly consistent and asymptotically
normally distributed, as we let the number of particles go to infinity.

An example of what the situation may look like, can be seen in Figure 1. The
figure shows the initial image in a sequence of 12 images, together with the po-
sition estimates of a major part of the particles in the subsequent 11 images,
thereby forming the estimated trajectories of the particles. By manual inspec-
tion, we made sure that no change of the identities of the particles occurred
in the process of converting the position estimates in the images into trajecto-
ries. The time interval between two images is 40 milliseconds. The particles are
spherical, made of polystyrene and are all equal in size, 494 nm in diameter. The
apparent difference in size and brightness are due to an out-of-focus effect and
depend on their placement in depth relative to the focal plane. Particles above
the focal plane are bright in the middle and dark on the circumference and vice
versa for the particles below the focal plane. The depicted size of a particle is
also increased the further away from the focus plane it is. Here three of particles
seem to be fixed; one adsorbed on the cover glass, one on the objective glass,
and one which probably correspond to a defect in the optics.

1.1 Outline of the paper

The article is organized as follows.

In Section 2 we introduce a model with two kinds of particles, diffusing and
fixed, both observed with additive measurement error on the position estimates.
The observation length is N+1 frames. We have three parameters in the model,
o? is the diffusion variance, o2 is the variance of the measurement error on the
position estimates, and p is the proportion of diffusing particles. The problem
can now be considered as a missing data problem since the only way to infer
whether a particle is diffusing or not is by the observed movement of the particle.
In this section we also look at the structure of the covariance matrices for the
two kinds of particles.

In Section 3 we introduce two concepts of data, observed and complete data.
The observed data is the observed increments of each particle and the complete
data is the observed data together with the classification variable of each particle
(indicating whether it is diffusing or fixed). We also look at the different densities
these two kinds of data correspond to. In particular, the observed data is of finite
mixture type.

The likelihood is discussed in Section 4 together with the EM algorithm (see



Dempster et al. (1977) and McLachlan and Krishnan (1997)) in Section 4.1
and some basic theory regarding this method of finding the maximum likelihood
estimate.

In Section 5 we study the asymptotic properties of the estimator when we keep
the observation length and and let the number of particles go to infinity. We show
that the estimator of the triple (6,02, p) using only the observed increments is
strongly consistent and asymptotically normally distributed under a small but
reasonable restriction on the parameter space.

Finally, in Section 6, we use the model assumption and estimate the diffusion
variance for the data corresponding to the trajectories seen in Figure 1.

2 The model

Denote the true and the observed position of a particle at time £k =0,..., N by
Ry, and Sy, respectively, where Sy, is the true position with measurement noise
added to it. We arrive at the following state-space model

Ry, = Rp1 + wy (1)

Sk = Ry + ek
where w is the position increment of the motion of the particle and e the mea-
surement error of the position.

The particle is performing a Brownian motion so the wy:s are i.i.d. zero mean
normally distributed random variables with variance 2. For a fixed particle,
wy, is zero for all k (an alternative is to think about this as o2 being equal to
zero for fixed particles). The errors e are also assumed to be i.i.d. zero mean
normally distributed random variables with variance o2, independent of the true

position of the particle, of other particles, and of the increments wy,.
The initial value, Ry is assumed to be a constant.

Let n be the number of observed particles and introduce an indicator Z; to each
particle to be one if the i:th particle is diffusing (performing a Brownian motion,
0? > 0) and zero if fixed (02 = 0). Let {Z;}", be i.i.d. and introduce a third
parameter p, defined as

The model can easily be extended to noisy observations of a Brownian motion
in d dimensions if we assume the measurement error in each dimension to be
distributed as wy, above and independent of each other. Then a particle follows
same the state-space model (1) in each dimension independently of each other.



For ease of notation, we will assume that d is one. The only exception from
this is in Section 6, which deals with the analysis on the trajectories plotted in
Figure 1.

2.1 Covariance matrix of the observed increment vector

We define the observed increments for a particle as Y, = S, —Sp_1, k=1,...,N.
The covariance matrix of the increment vector, Y = [V1,...,Yn]7, is

Y =T+ 02T (2)

for a diffusing particle and
Yo =0T

for a fixed particle, where I is the N times N identity matrix and T is the
tri-diagonal matrix defined as

2 -1 0 0
-1 2 -1 0
r—| 0 -1 2 0
0 0 0 2

We see from the covariance matrix above that the measurement noise in the
position induces a dependence between the increments, which originally, by def-
inition of a Brownian motion, were independent.

2.2 Transformation of the increment vector

To make our formulas look cleaner in the subsequent sections, we use some basic
linear algebra to transform the increment vector so that the transformed vectors
become uncorrelated.

In (2), ¥; has the same eigenvectors as T since every vector is an eigenvector to
1. Tf we denote the eigenvalues of T as A\, k = 1,..., N, the eigenvalues of ¥;
are

Y =0+ 02 A, k=1,...,N.

Let U have the eigenvectors of T' as columns. Then we can write, by the spectral
decomposition theorem, T = UAUT, where A = diag{)1,...,An}. Soif

Y =U"Y (3)



is the transformed increment vector, its covariance matrix will be diagonal:

Var{YV} = UTVar{Y}U

UT(0®I + c2UAUT)U 4
= %I +02A )
= diag{m,..., v}

for a diffusing particle and likewise, with ¢ = 0, for a fixed particle. The
dependence between the increments is now “hidden” in U and A, which do not
depend on ¢ or o2, but only on the length of the increment vector N, which of
course is known.

3 Data and densities

The observed data consists of the vectors of noise corrupted increments Y; while
the classification variables Z; are unobserved. Together, they make up the com-
plete data, denoted X; = (Y;,Z;),i=1,...,n.

The probability density function of the complete data X is
9e(x;50%02,p) = [pfi(y;0% ) (1 - p) foly;00)]'* (5)

where fi and fy are the pdf of a zeros mean N-variate normally distributed
random variable with covariance matrices ¥ and X, respectively. Using the
transformed increment vector Y, we write

1 1 g2
;0% 02) = ex {—— 7’“} 6
hly ) (2m)N/2 H;V:l (02 + Ago2)1/2 P12 ; 02 + o2 ©)
and
N
1 1 g2
folwio?) = {52 L @
(2m)N/2 H119V=1 (Apo2)1/2 2 ; Apo2
N
_ 1 1 g],%

= G 7 | a5 2%, j ®)

where § = UTy from (3). The second equality in the last expression, comes from
the fact that [[Ay =|A| = |T|=N+1.

In the d dimensional case, f; will be a dN-variate normal density with d inde-
pendent parts, one in each in each dimension, since each coordinate process is
independent of the others.



The probability density of the observed data, Y, we get by integrating (5) over
Z

9(y;0%02,p) = pfiy;0%02) + (1=p) foly;0?). (9)
Our observed data is a finite mixture of two normal components. For a thorough

account on finite mixture models and their applications, we refer to McLachlan
and Peel (2000).

4 Likelihood

Denote our parameter 6 = [02, 02, p]T.

The complete likelihood L. induced by the complete data (increments and clas-
sification variables) from n observed particles is

Le(6) = _H[Pfl(yz- ;0% 00)[#[(1=p) folyi; 02)]' ™ (10)

However, our observed data consists of only the increments so the observed
likelihood becomes

L(6) = [[ pf1(yi ;0% 02) + (1—p) fo(yi; 07) (11)
i=1

4.1 The EM algorithm

A intuitive method to get the maximum likelihood estimate from our observed
data is to use a method whose name, the EM algorithm, comes from the article by
Dempster et al. (1977), but whose essence actually was introduced and used, for
the special case of finite mixtures of distributions from the exponential family, by
Hasselblad (1969). Further examples of its use, before it was actually called the
EM algorithm, can be found in Day (1969), Behboodian (1970) and Sundberg
(1976). For an overview of the theory and applications of the method we refer
to McLachlan and Krishnan (1997).

The method uses the simple structure of the complete likelihood together with
estimates of the unobserved data in a iterative scheme.

4.1.1 Notation

Let k be the conditional density of the unobserved data Z, given the observed
Y. Then
9ge(z;0)

(el s6) = 25



Taking the logarithm and re-arranging, we get

log g(y; 0) = log gc(x;6) — log k(2| y; 6) (12)
Denote by L(#) and L.(#), the observed and the complete data likelihoods
L(0) = g(y;6)

Lc(0) = ge(=;0)
and take the conditional expectation of (12) given Y, at the parameter 6’
log L(0) = Eg:{log g.(z; 0)|y} — Eg-{log k(2| y;0)|y}
and denote the first term Q(#|6') and the second H(6|6").

Let furthermore
S(y;6) = dlog L(#)/06
and
Sc(z;0) = dlog L.(6)/06

be the score functions.

4.1.2 Method

The EM algorithm consists of two steps at each iteration. Assume ) is the
estimate of @ from the k:th iteration step. Then we do:

e E-step: Compute Q(8|6))
e M-step: Choose 8%+1) € argmax Q(6|6F)

Since H(A|6®)) < H(#*)|6*)) for all § by Jensen’s inequality, the rule of choos-
ing 8(F+1) as a maximizer of Q(A|6®)) gives us that

LO*) > L(W)

guaranteeing that we approach a local maximum of the likelihood. In practice,
we iterate until some sort of convergence criterion is met.

Notice that there is no guarantee that we converge to the global maximum of
the likelihood function, and thus at the actual maximum likelihood estimate.

The EM algorithm should simply be thought of a numerical method for max-
imizing the likelihood. Often, it suffers from painstakingly slow convergence,
and then a Newton-Raphson approach usually does better. However, when the
data is considered to have missing values, it is very appealing to use it since we
also get estimates of the missing values. We write “is considered” because the
missing values may be a theoretical construction only. In our problem, though,
it is natural to think of the classification variables as being missing data.



4.1.3 Finite mixtures

When the data comes from a mixture, the E-step consists of estimating the
unobserved data, i.e. the classification variables. In the M-step we maximize the
complete likelihood (10) using the estimated classification variables, Z;, from
the E-step together with our data Y;:

e E-step: For each i = 1,...,n, compute

p®) £ (ys; 24)

Zi= Eyw{Z;|Y:} =
p® f1(yi; =) + 1=p®) fo (i =)

e M-step: Maximize Eyw {log L.(8)|y} =

ZZ log{pf1(yi3 0% 02)} + (1= Z3) log{(1—p) fo(ys s 02)}

=1

%,02,p)-

with respect to 6 = (o
In this application of the EM algorithm, each of the two steps has a probabilistic
meaning; in the E-step we classify each particle using a quadratic discriminant
rule, and in the M-step we use these classifications as if we had the complete
data. Note however that the classifications are not just zero or one, but any
number in between.

A fast, Newton-Raphson based, computational method for the M-step can be
found in (30) of Appendix C.

4.1.4 Information matrix

Now we are going to explore how the information matrix from our observed data
relates to the information matrix from the complete data. This will also give us a
computationally efficient way of calculating the observed information when using
the EM algorithm. Appropriate regularity conditions allowing us to differentiate
under the integral are assumed in the following. In our application this is true
since we are dealing with exponential families, see for example van der Vaart
(1999).

Let
I(6;y) = —0°log L(0) / 0606™

and
I.(0;z) = —9*log L.(0)/0606™



Using the following version of (12)
log L(#) = log Lc(6) — log k(zy; 9),
and differentiating twice and taking conditional expectation of z given y, we get

I(6;y) = Z.(6;y) — Zm(0;y) (13)
where
T(6;y) = Eo{I.(0; z)|y}

and
Im(0;y) = —Ep{0°log k(z|y; 6)/0606™ |y}

corresponding to the conditional expectation of the information matrix of the
complete data given y, and the missing information, respectively.

In Louis (1982), it is shown that Z,, can be expressed as
I (6;y) = Eo{Sc(X;6)S7 (X;0)[y)} — S(y;6)S™ (y;6).- (14)

This is nice, first since S(y;0) = 0 at the MLE 6 and secondly because now the
observed information matrix at 6 is

1(8;y) = T.(6;y) — [Eo{S.(X;0)ST (X;0)|y)Hy—s (15)

where both terms easily can be computed in the last M-step in the EM algorithm
since the first term is actually the negative of the Hessian of the function to
maximize in the M-step, and this is often used in the actual maximization.

Denote the expected information matrix by Z(#) which can be expressed as
Z(0) = Zc(6) — Eg{Zm(6;Y)} (16)

by taking expectation of (13) over the distribution of Y.

5 Asymptotics

Is this section we are going to study the asymptotic properties of the estimator
as the number of particles n grows large. As it turns out, our maximum likeli-
hood estimator is both strongly consistent and asymptotically normal. First we
address some important issues regarding the data and the parameter space.

The complete data comes from the exponential family of distributions, see for
example Lindsey (1996). If N # 1 however, it is non-regular or curved, since the
parameter space is 3-dimensional and the dimension of the sufficient statistics is
N + 2 (see the Appendix for a derivation of this). The case N =1 is not very

10



interesting though since we think of our problem as studying a video sequence
of images of particles.

Let Q be the parameter space consisting of those 6 defining valid finite mixture
densities (9). Q@ = {# = [02%,0%,p]T: p € [0,1],0% > 0,02 > 0}. The true
parameter point 6y is assumed to lie in the interior of 2, denoted int(2).

Often when one deals with finite mixtures, there is a problem of identifiability, i.e.
that a permutation of the parameters in the model yields the same distribution.
In our model, and as long as the true parameter g, lies in the interior of {2,
we do not have this problem since the two distributions in the mixture are not
interchangable.

The asymptotics when using complete data is covered in Appendix D.

5.1 Existence of a maximum likelihood estimator

To guarantee that the likelihood has a global maximizer of for each n, we restrict
the parameter space 2, by using an idea from Hathaway (1985). For fixed
€ (0,1), define Q. to be the subset of 2 such that

o2
0<c<—5<c'<oo (17)
Ue
This restriction means that we do not allow the “signal-to-noise” ratio to be too
small, neither too big.

Lemma 1. Let {Y1,...,Y,} be a set of observations from the finite mizture
specified by the density (9). Then, with probability one, there exists a global
constrained mazimizer of L(0) in Q..

Proof. The idea is to show that

sup L(#) = sup L(9)
e feK

for some appropriate, compact K C €.

With probability one, the increment vectors will all be different from zero. There-
fore all the terms in the likelihood will stay bounded. Also, it will go to zero if
both o2 and o2 either go to zero or to infinity. By condition (17) above however,
it is enough that one of the two variances goes to zero or infinity; the other
variance “will follow”.

So, there exists constants a; and b; such that K ={# € Q.: a1 <02 <ay, by <
02 < by} gives the desired result. O

Remark. Without the condition (17), our trouble spots are
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o L —[liey folyi;02) as o® =0
o Lo p"[[i, fi(yi|0%0) as 07 =0

o L— (1-p)"[Iiz; fo(yi;0?) as 0® = oo

A maximum hence exists, but it does not necessarily have to be unique for finite
n: If p = 0, we see that o2 is “free”. Likewise, if p =1 and N = 1, all values of
o? and o? satisfying 0 + 202 = ¢ for some constant ¢, are maximum likelihood
estimators.

5.2 Consistency
5.2.1 Special case, N =1

When N = 1, the complete data is of regular exponential type. Sundberg (1974)
gives the consistency and asymptotic normality of the maximum likelihood esti-
mator 6, under the single condition that the information matrix Z(#) is positive
definite at the true parameter point fy. Since Lemma 2 below says that this is
true for all 6y € int(Q2), we are actually done for N = 1, both with the consistency
and the asymptotic normality.

5.2.2 Generally, N >1

To prove consistency of the maximum likelihood estimator for general N, we
verify that Wald’s classical conditions for the mixture density g in (9) are satisfied
when the true parameter is in .. In the process, we use results from Redner
(1981).

Theorem 1. Let the true parameter point 8y be in Q. and let 6,, be the global
mazimizer of L(0) over Q., for each n. Then

P{0, — 0y asn — oo} =1

Proof. Wald’s conditions are enumerated as in Redner (1981) to 1 through 6.
We refer the reader to that article.

Conditions 1,2,4’ and 5 are satisfied for 2 and the mixture component densities
f1 and fy. The proof of Redner’s Theorem 5 shows that Conditions 2 and 4
are satisfied for the mixture density g = pfi + (1—p) fo. If we restrict Q to Q.
as defined above (17), then also Conditions 3 and 6 are satisfied, giving us the
result by applying Theorems 1 and 2 from Wald (1949). O
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Remark 1. The extra condition (17) helps us in the process of first to prove
that an maximum likelihood estimator exists for all n and second, to prove that
Condition 8 of Redner (1981), L(6;) — 0 if d(6¢,6;) — oo, where d means
FEuclidean distance.

Remark 2. The restriction (17) of the parameter space also gives us consis-
tency under an expanded model with o drift term in the diffusion together with
systematic position measurement errors, that is, if the mixture components have
non-zero expected value and we need to estimate these as well. Also, the conclu-
sion of Lemma 1 holds if the number of observations n is larger than three (one
more than the number of mizture components).

5.3 Asymptotic normality

Sufficient conditions for the asymptotic normality of the maximum likelihood
estimate 6,, can be found in for example Theorem 5.23 in van der Vaart (1999).
Since we have consistency and that logg(y; ) is smooth, what remains is to
be proven is that the map 6 — Eg, logg(Y;0) admits a second order Taylor
expansion around 6y € int(Q) with non-singular second derivative matrix. In
other words, what we have to prove is that the expected information matrix
Z(6y) is positive definite.

Theorem 2. Let 0g € int(Q.) be the true parameter point. Then the mazimum
likelihood estimator 6, is asymptotically normal, i.e.

V(B = 60) 25 N(0,Z(60) 1) (18)

as n — 00.

By the discussion above, the result follows from the next lemma.

Lemma 2. The information matriz Z(6) is positive definite for all 0 € int(Q).

Proof. Positive definiteness means that a?Z(6)a > 0, for all a € R?® \ 0.

Now, since Z(f) is the variance of the score function dlogg(Y;6)/00, a*Z(6)a
is the variance of the linear combination a”dlog g(Y';6)/06.

So, what we have to prove is that

g(Y;0)

1
Var{aTa Og(%? }>0

for all a € R3 \ 0.
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Assume the opposite. Then we have, with probability one, that

aT6logg(Y;0)

o5 =0 (19)

for some a € R® \ 0 since the mean of the score is zero.

Writing out the components of the score function, we have

Odlogyg _ p%’;—é
do? pfi+(1=p)fo

8
Ologyg _Paffé +(1 —P)%

do2  pfi+(1-p)fo
dlogg _ fi—Jfo
Op pfi+(1=p)fo

where

0h _ 1y i L o2 0?)
60'2 - 2 ;((02 +)\k0'3)2 0_2 +)\k0'g fl(y7a 506) - kl(y)fl(yya )Ue)
5f1_1N AT Ak L2 oy L2 9
do? 2 ;((02 + Aeo2)? T2 + Apo? Hiy;0%,02) = ka(y) 1y 507 07)
of 1 L N1
5.3 = (2(02)2 D= g5z )Pl = ks foly;or)

e e/ p—1 e

We write (19) as
dfo

2
Oo?

of1 of1
G1pw + a2 I:pao_Q

€

+(1-p) ]+a3[f1—f0] =0

Re-arranging and noticing that fi(y) > 0 and fo(y) > 0 for all y, we see that
this is equivalent to saying that

{ alpkl(Y) + a2pk2(Y) + asz = 0

a2(1 —p)]{,’g(Y) —as = 0 (20)

Since k1 (Y), k2(Y), and k3(Y) are non-zero with probability one, we have a
contradiction because (20) is satisfied only if a is zero. O

Remark. Notice that (20) is satisfied for non-zero a if p = 0. This is also what
we would expect since then we have no information on o2. Also, if N =1, then
k2 (Y) = Mk (Y), so if p =1, (20) is satisfied as long as a; + Ajaz = 0 and
as = 0.
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5.4 Note on a further generalization

An interesting article with relevance to our problem, is Kiefer and Wolfowitz
(1956). It deals with the consistency of a maximum likelihood estimator when
there are infinitely many incidental parameters present. These incidental param-
eters could be, in a generalization of our problem, the variance of the Brownian
motion o2 if all diffusing particle have different diffusion coefficients. This corre-
sponds to a so called poly-disperse solution in contrast to our present problem,
which is mono-disperse (every particle has the same diffusion coefficient).

Assume that for each 4 = 1,...,n, we have that Y; is N-variate normally dis-
tributed random variable with mean zero and covariance matrix ¥; = Io? +To?2.
Then, in the language of Kiefer and Wolfowitz (1956), the o7:s are the incidental
parameters and o2 the parameter (even though, in our context, these names are
misleading since we consider it to be the other way around). Notice that if the
o?:s are constants and different for each i we only observe one increment vector
Y; for each o?. Obviously the estimates of the o?:s can not be consistent. It
turns out however, that if we consider 0?, i = 1,...,n to independent random
variables with common (but unknown) distribution function F', and under cer-
tain assumption on F', the maximum likelihood estimator of F' converges to F'
at every point of continuity of F', almost surely. Also, the maximum likelihood
estimator of o2 is strongly consistent.

The case discussed in this section is of course a special case of these o7 coming
from an unknown distribution function with only two values: let

0 when 2 < 0
F(z)=< 1-p when0<z<o?
1 when ¢2 <

6 Application

The data from the example in the introduction were analysed with the EM
algorithm. The positions of the 26 particles were estimated in two dimensions
in each image using a circle detection algorithm. The total number of frames
were 12, so N = 11.

By manual inspection, we concluded that three particles in Figure 1 seem to be
fixed, and refer to them as particle 1 to 3, where 1 is the big white in the middle,
2 the big black to the left, and 3 the seemingly “false” particle, probably due
to an optics defect, in the lower left corner. The remaining 23 are considered as
diffusing particles.
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6.1 Results

We applied the EM algorithm to the observed data with initial value 6° =
[1,1,0.5]T. We stopped when the change of the Z;:s between two consecu-
tive E-steps was smaller than 107¢. This criterion was satisfied after 3 steps
with the resulting estimates

62 = 2.2058
62 =0.3172 (21)
P = 0.8847

vyhere the unit for the first two is pixel2. The estimated classification variables
Z; were
Zy=1.049-107°
Zy =1.528-107°
Z5 =2.473-1073

~

Z; =1.000 for i=4,...26

in good correspondence with our manual classification.

6.2 Observed information matrix

Using the result (15) to compute the observed information matrix at the MLE

[33.75 5275 0 ] 0.034  0.153 —0.090
I(6%,6%,p;Y) = | 52.75 4766 0 —| 0.153 0.691 —0.405
0 0 2549 | —0.090 —0.405 0.240

33.72 52.59 0.090 |
= | 52.59 4759 0.405
| 0.090 0.405 254.7 |

were the second term of the upper row corresponds to the missing information
due to lack of the unobserved classification variables.

The inverse of this is

0.0358  —0.0040 0.0000
I7Y(62,62,p;Y) = | —0.0040 0.0025 0.0000 (23)
0.0000  0.0000 0.0039

which gives us an approximate variance of the estimate of 62 to

Var{s?} ~ 0.0358 (24)
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6.3 Comparison with the theoretical diffusion coefficient

The estimated 2 above corresponds to an estimated diffusion coefficient of
D =0.893 ym?/s

using the relationship between diffusion variance and diffusion coefficient, o2 =
2Dt and scaling to um. Here, 7=0.040 s is the time interval between observa-
tions, and each pixel corresponds to a square with side M=180um.

The asymptotic normality result from Section 5.3 can be used to give an ap-
proximate 95%-confidence interval of D:

~ M?2
D=D+1.96- ?\/.0358 = .893 + .150 um?/s (25)

The theoretical diffusion coefficient is given by Stoke-Einstein’s relation (see for
example Evans and Wennerstrom (1999) pages 370-372)

kBT

- 6mRy

where kp is Bolzmann’s constant, i the viscosity of the solution, T the temper-
ature and Rp the hydrological radius of the particle.

The appropriate values for the viscosity and temperature are n=0.9 mPa and
T=298 K. The geometric radius of the particles are 247 nm and we used this as
the hydrological radius, even if the latter is often a bit larger than the former.
Plugging this into (6.3) gives us

D =0.982 ym?/s

Comparing with the confidence interval in (25), we see that the theoretical dif-
fusion coefficient is within this interval.

6.4 Simulation of the approximate distribution of the es-
timates

We simulated 1000 time series with 26 particles, of which 3 were fixed, over
12 frames in two dimension, using the estimated values of 02 = 2.2058 and
02 = 0.3172 from (21) as the true diffusion variance and error variance. For
each time series, we used the EM algorithm to estimate o2 and o2.

The histograms of the estimated values are displayed in Figure 2. The mean
and empirical covariance of the 1000 estimates of 0 and o2 were

52 =2.2054
52 =0.3185
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2

Figure 2: The histograms of the estimated 62 and 62 using the EM algorithm

from 1000 simulations using 2.2058 and 0.3172 as true values.

and
.0348  —.0040
—.0040 .0027

in good agreement with the true values of 0? = 2.2058 and o2 = 0.3172 and the
inverse of the observed information matrix in (23).
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Appendix A: Sufficient statistics

Consider the complete data density (5). Take the logarithm and use the trans-
formed increment vectors Y (see section 2.2) for easier notation

~2

N N

z 2 i

logge = zlogp = 5 3 log(0”" +0u0) = 3 > 5 iy
k=1 k=1 kC¢

1- 2 & Ui
2 — Og)\k

N
1—-2
(1= 2)log(1 - p) — —= 3 log(o? M) -
k=1

k=1 k=1
N 2 2 N
p 1 0%+ A\xo 1 N
L y_ = log(——Z%"ey) _ [ = 1 —log(1—
+z(10g( - p) 2 2 og( o2 )) (2 k§:1 og(Ako) —log(1—p)
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and we see that a minimal sufficient statistic can be chosen to be

tl = Zﬂ%
tN = 20
N b
1—2)§?
N1 = Z ( N )i
k=1 k
tNy2 =2

with the corresponding canonical parameter o

1 1
o =—c—5—v—
! 202+ Mo?
1 1
QN = —s—5—F
N 202+ Ayo?
1
ONFL= 93
e
N 2 2
P 1 0° + M\yo
AN+2 = IOg(lTp) ) Zlog(Tze)
k=1 €

which is a function of our parameter 6. Since this is 3-dimensional and the
sufficient statistics is (IV +2)-dimensional, we say that the complete data belongs
to a curved exponential family or, with the terminology of Barndorff-Nielsen and
Cox (1994), a (N +2, 3)-exponential model.

Solving for p in the expression for anx42 above, we get

1/2 1/2
N [ o%+Arpo2 N (an~n

QN 42 e QN +2 +1

e Hk:l( Apo? € Hk:l Ak Ok

1/2 — 1/2
N 24\, 02 N
1 eamsa [TV, (5272) 7 1o [T, (22

p:

and we can write the complete data density as
logg. = o™t — k(a) (26)
where a = a(f) and k is
N

1 N QN1 1/2
= - +1)— — — QN +42
k(a) 3 log(N + 1) 2 log(—2an41) + log(l +e kI Il()\k . ) ) (27)
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From standard theory of exponential families, we get the cumulants of the suf-

ficient statistics by differentiating k(«). In particular, we have ET = g—z and

Var{T} = %, which we denote p and V, respectively.

The expectation of the sufficient statistics

p(o? + M\o?)

ET = p(o? + Ano?)
(1-p)No?
b

Appendix B: Geometry of the complete data

Differentiating the complete data likelihood once, we get the score function

Odlog g, Oa ok 15e"
50~ = (5g7)"T 55 = (5g7)" (T —ET)

where we used
Ok _ (6_0‘)T%
08 96T’ da
and 0k/0a = ET.

Hence at the MLE (5, the difference vector T' — p is orthogonal to the derivative
of the canonical parameter o with respect to the parameter §. This relation
and other geometrical interpretations of the maximum likelihood estimate in
a curved exponential family, were, to the author’s knowledge, first made by
Efron in two groundbreaking articles, Efron (1975, 1978). Since then a lot of
research has been made in this area with fruitful connections between statistics
and differential geometry, see for example Amari et al. (1987), McCullagh (1987)
and Barndorff-Nielsen and Cox (1994)

Appendix C: Iterative scheme for complete data MLE

Exploring the geometrical relations of the curved exponential further, brings us
to a Newton-Raphson style of iterative method of finding the maximum likeli-
hood estimate of 8, given the complete data. Even if the unobserved classification
variables Z; are not available to us, the M-step in the EM algorithm gsee sec-
tion 4.1.3) maximizes the complete data likelihood using the estimated Z;:s from
the E-step. The idea comes from Wei (1998).
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We adopt the notation of Wei:

w(@) =E, T
V(8) = Varg{T'}
Oa
Do = 5g7
_ on
D= 5t

and derive the following identity

ou ou Oa
D -_—— = — = Da
00T  daT 96T v

Write I, = log L. and let ic and [. denote the first and second derivative of [,
with respect to 6.

Expressing the score function i, as

dle _ (0Tl _ (BanT
=36 = (%) da (ao) T = (28)
= Do(T —p) = DTV T — p)

and the score equation at 6 can be written

0=DTVYT - p)
where D, V', and p are evaluated at 6.

Differentiate [, once again and we get

2
= (52) logagr] -~ PEV P
A

(29)
_nT
aeaeT] DaV Da

Now, Newton’s classical iterative scheme can be written

Oi1 = 0; + [—1.(0:)] "1 (6))

Using the expressions in (28) for I. together with Eg{—i.} = DTV D, instead
of [, we get

0i11 = 6; + [DIVD,] ™ Du(T — 1)

1 (30)
=0;+ [D'VID]” vV ID(T —p)
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We find V by differentiating k twice with respect to . The matrix turns out to
be quite complicated with all its elements different from zero. In the iteration
scheme (30), it is the inverse V~! we need, and since this is in fact much less
complicated, we present it here

1 0 0 -1
2p(02+A102)? 2p(o2+A102)
-1 _ 1 i _ 1
4 0 2p(c2+Ana2)2 0 2p(a'21+)\N0'g)
0 o 0 NCANGD® AL g
_ 1 _ 1 1 24N
2p(c2+A102) Tt 2p(c2+AnNo2) 2(1—p)o? 2p(1—p)

Appendix D: Complete data asymptotics

In applications it may happen that you label the particles manually as diffusing
or fixed or defect particles and want to estimate the parameters. Then our
problem becomes easier, mainly because the likelihood is composed of a product.

From (29), we get the expected information matrix to the complete data

7.(6) = D"Vv~'D = DD,

N A
5 im 2+,\W) 52 k= 1W 0
=] 3 Ek 1 2+>\k¢72)2 3 Zk 1 (02+,\k02)2 + 2((a2)2) 0
0 0 -
p(1-p)

which is positive definite for all § € int(Q2). To see this, apply the Cauchy-
Schwarz inequality on the upperleft 2 by 2 matrix elements.

For 6y € int(f2.) we get strong consistency from Wald (1949), and since also
Z.(6o) is positive definite, all conditions for asymptotic normality are satisfied.
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