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ABSTRACT. The paper considers the stability and strong convergence to equilibrium of solutions to the spa-
tially homogeneous Boltzmann equation for Fermi-Dirac particles. Under the usual cut-off condition on the col-
lision kernel, we prove a strong stability in L

1-topology at any finite time interval, and, for hard and Maxwellian
potentials, we prove that the solutions converge strongly in L

1 to equilibrium under a high temperature condi-
tion. The basic tools used are moment production estimates and the strong compactness of collision gain term.
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1. INTRODUCTION AND MAIN RESULTS

The classical Boltzmann equation, describes the evolution of a phase space density of particles, under
the assumption that they only interact by pairwise (elastic) collisions. Under suitable hypotheses it is then
possible to derive the following equation,

∂

∂t
f + v · ∇xf =

∫∫

R3×S2

B(v − v∗, ω){f ′f ′
∗ − ff∗}dωdv∗ . (1.1)

Here f = f(x, v, t) ≥ 0 is a density in phase space; normally x ∈ Ω ⊂ R3, and v ∈ R3. In the collision
integral in the right hand side, f ′ denotes f(x, v′, t), et.c. where (v′, v′∗) and (v, v∗) denote the velocities
of two particles before and after a collision. All this is described in more detail below.

From now on in this paper, only the spatially independent case is considered, and hence f = f(v, t),
and the term v · ∇xf disappears.

The right-hand side of (1.1), the collision operator, is quadratic, because the only interactions considered
are binary collisions, and the corresponding equilibrium distribution is the Boltzmann-Maxwell distribution
(centred around a mean velocity u; R is the gas constant),

M(v, t) =
ρ

(2πRT )3/2
e−|v−u|2/2RT

When quantum effects must be taken into account, then particles in equilibrium satisfy either Bose-Einstein
statistics or Fermi-Dirac statistics. In the latter case, which is the only one studied in this paper, the Pauli
exclusion principle holds. According to this, only one particle is allowed in each one of available quantum
states, and then the equilibrium distribution is either of the form

M(v) = Fε,a,b(v) :=
ae−b|v−v0|2

a+ εe−b|v−v0|2 , ε, a, b > 0 , (1.2)

or a characteristic function

M(v) =

{

c |v| < a
0 otherwise (1.3)

A modification of the Boltzmann equation that takes into account the Pauli exclusion principle is
∂

∂t
f(v, t) =

∫∫

R3×S2

B(v − v∗, ω) × {f ′f ′
∗(1 − εf)(1 − εf∗) − ff∗(1 − εf ′)(1 − εf ′

∗)}dωdv∗ . (1.4)

Here ε = (h/m)3/g, where h is the Planck constant, and m and g are the mass and “statistical weight”
of a particle. In equation (1.4), the factor (1−εf) is a ratio which decreases the probability that two Fermi-
Dirac particles share a small common velocity region. From a mathematical point of view, one can easily
normalise the equation in such a way that ε = 1, and most of the results of this paper are fully independent
of such a rescaling. However, one of our main results, Theorem 2, states that, when no rescaling is carried
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out, then the solutions of (1.4) converge to solutions of (1.1) as ε → 0, and hence we keep the factor ε in
most cases.

This modified Boltzmann equation is from now on called the Boltzmann-Fermi-Dirac equation (or
Boltzmann-FD equation).

The physical properties of equation (1.4), and its derivation, are discussed e.g. in [11], chapter 17. A
nice review of properties of quantum and relativistic versions of the Boltzmann equation, as well as new
results on for example equilibrium distributions et.c. is [16]. The classification of equilibria to (1.4) was
obtained in [20]; of course the importance of the Fermi-Dirac distribution was recognised much earlier (see
e.g. [26]).

In order to proceed, we define, in turn

M0(f(·, t)) =

∫

R3

f(v, t) dv , v0 =
1

M0

∫

R3

f(v, t)v dv ,

M2(f(·, t)) =

∫

R3

f(v, t)|v − v0|2 dv . (1.5)

and then the temperatureT of the gas, and the Fermi-temperature,TF (see [11] and [28], page 43–44):

T =
m

3kB
· M2(f0)

M0(f0)
, TF =

(

3M0(f0)

4πg

)2/3

· h2

2mkB
; (1.6)

here kB is the Boltzmann constant, and h, m and g are the Planck constant, the particle mass, and the
statistical weight, as above.

The temperature plays a different role in the quantum case as compared to the classical case: because
of the Pauli principle, the density is limited by 1/ε (this guarantees that the factor (1 − εf) remains non-
negative), and hence the temperature is bounded from below:

T ≥ 2

5
TF .

In summary, the main results of this paper are as follows. We assume the particles interact by hard cut-
off potentials or Maxwellian cut-off potentials. The norms used are ‖f‖L1

s
=
∫

R3 |f(v)|(1 + |v|2)s/2 dv

• Theorem 1 (strong stability with respect to initial data): Let f(v, t) and g(v, t) be solutions to the
Boltzmann-Fermi-Dirac equation (1.4) with initial data f0 and g0, and assume that these satisfy
bounds on mass and energy, as well as 0 ≤ f0, g0 ≤ 1/ε. There is an increasing function Φf0

:
R → R (depending only on the initial data f0), and a constant c such that

sup
t≥0

e−ct‖f(t) − g(t)‖L1
2
≤ Φf0

(‖f0 − g0‖L1
2
) .

• Theorem 2 (strong continuity with respect to ε): Let f (ε)(v, t) be the solution to (1.4), and f(v, t)
the solution to (1.1), with the same initial data. Then

sup
t≥0

e−ct‖f (ε)(t) − f(t)‖L1
2
→ 0 , (ε→ 0) .

• Theorem 3 (strong convergence to equilibrium for the Boltzmann-Fermi-Dirac equation): There
is a constant γ(1)(> 2/5), such that if the initial data f0 to (1.4) have a sufficiently large tem-
perature, T (f0) ≥ γ(1)TF , then the solution f(v, t) converges to the unique equilibrium state F
corresponding to M0(f0) and M2(f0):

‖f(t) − F‖L1
2
→ 0 (t→ ∞) .

With this “high temperature condition” we obtain to a large extent the same results on stability and
convergence for in this case as for the classical Boltzmann equation (se e.g. Wennberg [25], Carlen and
Carvalho [6], Toscani and Villani[23], Abrahamsson [1], or a detailed review by Villani [29] ), and with
Theorem 1 the earlier stability results for the classical Boltzmann equation are also improved.

We also prove prove for all temperatures that ‖f(t)−F‖L1
2

is in a sense non-expanding, and we believe
that the high temperature condition in Theorem 3 is only a technical condition, but it is needed in our
proof of convergence to equilibrium. The importance of a condition on temperature is observed in for
example [14], [15] and [21]. The non-expansitivity of ‖f(t)−F‖L1

2
bears resemblance with the use of the
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Csiszár-Kullback inequality in connection with the kinetic theory of gases (e.g. [27] or [9] and references
therein).

The details of Theorem 2, and its proof is given i Section 2, and Theorem 3 is treated in Section 3; the
remaining part of this section is devoted to some notation, and som background material on the Boltzmann
equation for Fermi-Dirac particles.

Though it is relevant to consider relativistic velocities in combination with the quantum versions of the
Boltzmann equation (see [16]), we consider only small velocities here, and hence the velocities before and
after a collision are related by

v′ + v′∗ = v + v∗, |v′|2 + |v∗|2 = |v|2 + |v∗|2 (1.7)

which are equivalent to a family of orthogonal linear transforms (v, v∗) 7→ (v′, v′∗):

v′ = v − 〈v − v∗, ω〉ω, v′∗ = v∗ + 〈v − v∗, ω〉ω, ω ∈ S2.

Here S2 and 〈·, ·〉 denote the unit sphere and the inner product in R
3.

In (1.1) as well as in (1.4), B(z, ω) is a non-negative Borel-function that depends on |z| and on |〈·, ·〉|
only. Its gives the rate at which a given combination of in-going velocities results in a given set of outgo-
ing velocities; for classical particles its exact form can be derived, at least in the case of repulsive forces
corresponding to inverse power laws. For Fermi-Dirac particles it is not quite so clear, and in particular
applications (for example semi-conductors), the velocity space is not R

3, but periodically repeated Bril-
louin zones. Letting the velocity vary over the full R3 as we do here, corresponds to the “parabolic band
approximation” used in semi-conductor theory. Here we assume exactly the same form forB in both cases:

B(z, ω) = b(θ)|z|β , z ∈ R
3, 0 ≤ β ≤ 1 , (1.8)

where cos(θ) = |〈·, ·〉|/|z|, and β is a constant, while b(θ) is strictly positive in 0 < β < π/2. For b(θ) we
also assume that

0 < A0 := 4π

∫ π/2

0

b(θ) sin(θ)dθ <∞ . (1.9)

This is Grad’s cutoff condition, which is not satisfied for the inverse potentials mentioned above. We refer
to [10] or [28] for the derivation of (1.8). The cutoff condition was introduced to simplify the mathemat-
ical treatment of (1.1), but now there is a theory also for the so-called non-cutoff case (see. Arkeryd [5],
Goudon [17] and Villani [31]). A recent article by Alexandre and Villani, [2], treats also the space depen-
dent case.

When (1.9) holds, the collision integral in (1.1) and in (1.4) (which we now denote by Q(f)) can be
decomposed as a difference of the “gain term” Q+(f) and the “loss term” Q−(f):

Q(f)(v) = Q+(f)(v) −Q−(f)(v),

Q+(f)(v) =

∫∫

R3×S2

B(v − v∗, ω)f ′f ′
∗(1 − εf)(1 − εf∗)ωdv∗,

Q−(f)(v) =

∫∫

R3×S2

B(v − v∗, ω)ff∗(1 − εf ′)(1 − εf ′
∗)dωdv∗.

A solution of the Boltzmann-Fermi-Dirac equation is defined as follows. As usual, we consider the
weighted L1-spaces

L1
s(R

3) =

{

f

∣

∣

∣

∣

‖f‖L1
s(R

3) :=

∫

R3

|f(v)|(1 + |v|2)s/2dv <∞
}

,

‖f‖L1
s(R

3) ≡ ‖f‖L1
s
.

Assume that B satisfies (1.8) and (1.9). Moreover, assume that the initial data f0(v) to eq.(1.4) satisfy

0 ≤ f0(v) ≤ 1/ε, f0 ∈ L1
2 .
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Then f(v, t) ∈ L∞
loc([0,∞);L1

2) is a solution to (1.4) if there is a null-set Z ⊂ R3 such that for all
v ∈ R3 \ Z , and all t ∈ [0,∞),

∫ t

0

Q+(f)(v, t)dτ <∞,

∫ t

0

Q−(f)(v, t)dτ <∞ ,

f(v, t) = f0(v) +

∫ t

0

Q(f)(v, τ)dτ . (1.10)

If in addition f conserves mass, momentum and energy, i.e. if
∫

R3

f(v, t)ψ(v)dv ≡
∫

R3

f0(v)ψ(v)dv, t ∈ [0,∞)

for ψ(v) = 1, v or |v|2, then we say that f is a conservative solution.
For Fermi-Dirac-particles, the entropy is defined by

S(f) =
1

ε

∫

R3

[−(1 − εf) log(1 − εf) − εf log(εf)]dv ;

it should be noted that −(1 − εf) log(1 − ε) and −εf log(εf) are both nonnegative for all f satisfying
0 ≤ f ≤ 1/ε. At least formally, the corresponding entropy dissipation identity is given by

S(f(t)) = S(f0) +

∫ t

0

e(f(τ))dτ, t ∈ [0,∞) , (1.11)

where

e(f) =
1

4

∫∫∫

R3×R3×S2

B(v − v∗, ω)Γ(f ′f ′
∗(1 − εf)(1 − εf∗), ff∗(1 − εf ′)(1 − εf ′

∗))dωdv∗dv ,

and where Γ(·, ·) is a nonnegative function defined on [0,∞) × [0,∞) by Γ(a, b) = (a − b) log
(

a
b

)

for
a > 0, b > 0, and Γ(a, b) = +∞ when a > b = 0 or when 0 = a < b; and finally Γ(a, b) = 0 for
a = b = 0. Here and below we always denote f(t) = f(·, t).

In a space-homogeneous setting, with no source terms, equilibrium solution is the same as a stationary
solution to Eq.(1.4), and this is equivalent to saying that it is a solution of the following equation,

F ′F ′
∗(1 − εF )(1 − εF∗) = FF∗(1 − εF ′)(1 − εF ′

∗) a.e. on R
3 × R

3 × S2 ,

combined with the conditions F ∈ L1(R3) ‖F‖L1 6= 0 and 0 ≤ F ≤ 1/ε on R3; as noted above, this
is either a Fermi-Dirac distribution (1.2) or a characteristic function, depending on the temperature (this is
established in [20]).

Some additional properties of the solutions to (1.4) are the following (taken from Lu [20], but see
also [16]). For the classical Boltzmann equation, a rather complete review of the state of the art is [33].

• When the temperature T > 2
5TF , the only equilibrium solution is given by (1.2). The coefficients

a and b are determined by the moments M0 and M2 as defined in (1.5). Moreover, T , TF and the
coefficient a are related by

T = γ(
1

εa
)TF (1.12)

where

γ(x) =
2

35/3

(
∫ ∞

0

r4

1 + xer2 dr

)(
∫ ∞

0

r2

1 + xer2 dr

)−5/3

, x > 0 . (1.13)

The function γ is strictly increasing on (0,∞) with the limits limx→0+ γ(x) = 2
5 , limx→∞ γ(x) =

∞.
• The Boltzmann Fermi-Dirac equation has a conservative solution which satisfies the entropy iden-

tity (1.11). Moreover, if β > 0 in (1.8), then for all s > 2,
‖f(t)‖L1

s
≤ Cs(1 + t−(s−2)/β), ∀ t > 0 , (1.14)

where the coefficient
0 < Cs = Cb(·),β,s(‖f0‖L1

0
, ‖f0‖L1

2
) <∞ (1.15)
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depends only on ‖f0‖L1
0
, ‖f0‖L1

2
, β, s and the angular function b(·), and for fixed b(·), β and s, the

function (x, y) 7→ Cb(·),β,s(x, y) is continuous on (0,∞) × (0,∞).
If β = 0 and if f0 ∈ L1

s(R
3) for some s > 2, then supt≥0 ‖f(t)‖L1

s
<∞.

• If T = 2
5TF , then the conservative solution of (1.4) is the second type of equilibrium, the charac-

teristic function (1.3).
If T > 2

5TF , and if β > 0, then

f(·, t) ⇀ F (t→ ∞) weakly in L1(R3). (1.16)

The weak convergence, (1.16), holds in general for the Boltzmann-FD equation for all β with −3 <
β ≤ 0, if for some t0 > 0,

sup
t≥t0

∫

|v|>R

f(v, t)|v|2dv → 0 as R → ∞ ,

i.e. if the the solution satisfies a ”tightness of energy”; however, in this paper only the case β ≥ 0 is
considered.

The L∞-bounds that hold automatically for solutions to the Boltzmann-FD equation makes it compa-
rably easy to prove the existence of solutions, also for spatially inhomogeneous solutions (Dolbeault [12],
P.L.Lions [19]). However due to this factor, the two equilibria at very low temperatures are hardly possible
to distinguished in L1-topology , because

∫

R3

|Fa,b(v) −
1

ε
11{|v−v0|≤R}|dv → 0 when 0 <

T

TF
− 2

5
→ 0 .

(Here and below 11A denotes the indicator function for a setA). Therefore the study of strong convergence
to equilibrium is more difficult than for the classical Boltzmann model Eq.(1.1), where the proof of conver-
gence to equilibrium does not depend on the temperature, or not necessarily even on the entropy (see [1],
[9], [27], or the review [32]).

The main components in the proofs of Theorems 1 and 2 are an efficient use of the collision invari-
ants 1.7, and the moment estimates (1.14) and (1.15), and in the proof of Theorem 3, we use a generalised
version of P.L. Lions’ result on regularity for the gain term of the Boltzmann equation.

2. STRONG STABILITY ESTIMATES

This section contains two stability results for the Boltzmann Fermi-Dirac equation. The first one states
that the solutions are stable with respect to perturbations of the initial data, and this implies at the same
time, of course, the uniqueness of solutions; the second deals with stability with respect to variations in
parameter ε.

Three rather technical lemmas are needed for the proofs of the theorems, and we begin by stating these
lemmas; the proofs are postponed until after the proofs of the main results.

Lemma 1. Let ε > 0 be a constant, let f = f(v), g = g(v) be real functions satisfying 0 ≤ f(v), g(v) ≤
1/ε. Let φ(v) = 1 + |v|2. Then

(

ff∗(1 − εf ′)(1 − εf ′
∗) − gg∗(1 − εg′)(1 − εg′∗)

)

×
(

φ′11{f ′>g′} + φ′∗11{f ′
∗>g′

∗} − φ11{f>g} − φ∗11{f∗>g∗}
)

≤ (fφ)|f∗ − g∗| + (fφ)∗|f − g| + εff∗
(

|f ′ − g′|φ′∗ + |f ′
∗ − g′∗|φ′

)

. (2.1)

This kind of expression appears naturally when differentiating norms of the collision operator.
The second lemma deals with certain transformations of the gain term in the collision operator. It is

taken from Lu [20], and we refer to that paper for the proof; it is in many ways similar to the “Cancellation
lemma” that can be found in [3].
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Lemma 2. Let w(t) and Ψ(r) be nonnegative Borel functions on [0, 1] and [0,∞) respectively. Let
W (z, ω) = w(|z|−1|〈z, ω〉|). Then for any nonnegative measurable function f on R3 and for all v ∈ R3

∫∫

R3×S2

W (v − v∗, ω)Ψ(|v − v∗|)f(v′)dv∗ dω

= 4π

∫ π/2

0

sin(θ)w(cos θ)

cos3 θ

{
∫

R3

Ψ

( |v − v∗|
cos θ

)

f(v∗)dv∗

}

dθ,

∫∫

R3×S2

W (v − v∗, ω)Ψ(|v − v∗|)f(v′∗)dv∗ dω

= 4π

∫ π/2

0

sin(θ)w(cos θ)

sin3 θ

{
∫

R3

Ψ

( |v − v∗|
sin θ

)

f(v∗)dv∗

}

dθ.

The third lemma, finally, is a point-wise estimate of moments of the gain term.
Lemma 3. Let 0 ≤ k ≤ 3 be a constant, and let 0 ≤ f ≤ 1/ε and f ∈ L1

k+β(R3) with 0 ≤ β ≤ 1. Then
for all v ∈ R3

ε

∫∫

R3×S2

B(v − v∗, ω)f ′f ′
∗(1 + |v∗|2)k/2dωdv∗ ≤ 215A0‖f‖L1

k+β
(1 + |v|2)α/2 (2.2)

where α = max{β, (k + β)(3 − k)/3}.

For the class of collision operators studied here, hard cut-off potentials, the main difficulty when study-
ing stability is to control the behaviour at high velocities. To this end we introduce a “control function”
Φf0

(r), defined for all non-negative functions f0 ∈ L1
2(R

3) (see [23]):

Φf0
(r) = r +

√
r +

∫

|v|> 1√
r

f0(v)(1 + |v|2)dv, r > 0; Φ(0) = 0 . (2.3)

Theorem 1. Let the kernel B(z, ω) be given by (1.8)-(1.4) with 0 ≤ β ≤ 1. Let ε ≥ 0 be a constant. For
any given 0 ≤ f0, g0 ∈ L1

2(R
3) satisfying εf0 ≤ 1, εg0 ≤ 1, and ‖f0‖L1

0
> 0, let f, g both be conservative

solutions of Eq.(1.4) (ε > 0) or Eq.(1.1) (ε = 0) with initial data f |t=0 = f0, and g|t=0 = g0 respectively.
Then for β > 0

sup
t≥0

e−c t‖f(t) − g(t)‖L1
2
≤ CΦf0

(‖f0 − g0‖L1
2
), (2.4)

and for β = 0

sup
t≥0

e−c t‖f(t) − g(t)‖L1
0
≤ C‖f0 − g0‖L1

0
, (2.5)

where Φf0
(·) is defined by (2.3); the constants

0 < c = cb(·),β(‖f0‖L1
0
, ‖f0‖L1

2
), C = Cb(·),β(‖f0‖L1

0
, ‖f0‖L1

2
) <∞

depend only on ‖f0‖L1
0
, ‖f0‖L1

2
, β, and the angular function b(·). Especially, c and C do not depend

on ε. Moreover for fixed b(·) and β, the functions cb(·),β(x, y), Cb(·),β(x, y) are continuous on (x, y) ∈
(0,∞) × (0,∞).

Remarks.

• For soft potentials (−3 < β < 0), and under the same condition as in Theorem 1 for ε > 0 (BFD
model), it is easily proved that the estimate (2.5) still holds but in that case, the constants c and C
depend on ε.

• In the proof of Theorem 1, the exponent (s − 2)/β is essential. This was first written explicitly
in [22], but it is implicit also in [25].

Proof of Theorem 1. The case β = 0 is easy. Now suppose β > 0. Let f, g be the conservative
solutions given in the theorem. We first assume that f satisfies the moment production estimate (1.14)-
(1.15) (including the case ε = 0). Since in our proof the moment estimate (1.14) is used only for s = 2+β,
the letter C below always denotes different constants that have the property mentioned in this theorem.
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To prove (2.4) we can assume ‖f0 − g0‖L1
2
< 1. Let

Uκ(t) = ‖f(t) − g(t)‖L1
κ
, 0 ≤ κ ≤ 2.

Then following the same argument as given in [22, sect. 5], we need only to check the following estimates:
for any 0 < r ≤ 1

U2(t) ≤ U2(0) +
4√
r
U1(t) + C Φf0

(r), t ∈ [0, r]; (2.6)

U1(t) ≤ U1(0) + C

∫ t

0

U2(τ)dτ, t ∈ [0,∞); (2.7)

U2(t) ≤ U2(r) + C

∫ t

r

(1 +
1

τ
)U1(τ)dτ, t ∈ [r,∞). (2.8)

Very briefly, Theorem 1 follows by the steps below (see [22] for details). U1(·) ≤ U2(·), and hence (2.8)
and the Gronwall inequality imply that, for some constant c

U2(t) ≤ U2(1)ec(t−1), t > 1 .

Next, from (2.7) and (2.8) one sees that, if U2(0) < r,

U2(t) ≤ sup
0≤τ≤r

U2(τ) + Cr| log(r)| + C

∫ t

0

U2(τ)| log(τ)| dτ , t ∈ [r, 1] .

The same holds in the interval 0 ≤ t < r, and hence, by Gronwall again

U2(t) ≤
(

sup
0≤τ≤r

U2(τ) + Cr| log(r)|
)

eCt .

Finally, the inequalities (2.6) and (2.7) combine to
sup

0≤τ≤r
U2(τ) ≤ C

(

r +
√
r + Φf (r)

)

,

and once can easily conclude from this.

Proof of (2.6): Let φ(v) = 1 + |v|2. By the integral equation (1.10), we have for a null set Z ⊂ R3,

f(v, t) ≥ f0(v) −
∫ t

0

dτ

∫∫

R3×S2

B(v − v∗, ω)ff∗dωdv∗, v ∈ R
3 \ Z, t ≥ 0.

This together with the conservation of mass and energy implies that
∫

|v|>1/
√

r

f(v, t)φ(v)dv =

∫

R3

f(v, t)φ(v)dv −
∫

|v|≤1/
√

r

f(v, t)φ(v)dv

≤
∫

R3

f0(v)φ(v)dv −
∫

|v|≤1/
√

r

f0(v)φ(v)dv

+A0

∫ t

0

dτ

∫

|v|≤1/
√

r

∫

R3

f(v, τ)φ(v)f(v∗ , τ)|v − v∗|βdv∗dv

≤
∫

|v|>1/
√

r

f0(v)φ(v)dv +
2A0√
r

∫ t

0

‖f(τ)‖L1
1+β

‖f(τ)‖L1
β
dτ

≤
∫

|v|>1/
√

r

f0(v)(1 + |v|2)dv +
2A0√
r
‖f0‖2

L1
2

t ≤ CΦf0
(r), t ∈ [0, r].

Therefore by identity |f − g| = g − f + 2(f − g)+ ( here (x)+ = max{x, 0} ) we obtain (2.6):

U2(t) =

∫

R3

(g0(v) − f0(v))φ(v)dv + 2

∫

R3

(f(v, t) − g(v, t))+φ(v)dv

≤ U2(0) +
4√
r
U1(t) + 2

∫

|v|>1/
√

r

f(v, t)φ(v)dv

≤ U2(0) +
4√
r
U1(t) + CΦf0

(r), t ∈ [0, r].
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Proof of (2.7): Denote

Πε(f, f∗) = (1 − εf)(1 − εf∗) and dµ = dω dv∗dv.

It follows from the three inequalities

|ff∗Πε(f
′, f ′

∗) − gg∗Πε(g
′, g′∗)| ≤ f |f∗ − g∗| + g∗|f − g| + εff∗(|f ′ − g′| + |f ′

∗ − g′∗|),
φ′ ≤ φ+ φ∗ and

B ≤ 2b(θ)
√

φ+ φ∗ ,

and Lemma 3 with k = 0 and k = 1 that

U1(t) − U1(0) ≤ 2

∫ t

0

dτ

∫∫∫

R3×R3×S2

B|ff∗Πε(f
′, f ′

∗) − gg∗Πε(g
′, g′∗)|

√

φ+ φ∗dµ

≤ 4A0

∫ t

0

dτ

∫∫

R3×R3

(f + g)|f∗ − g∗|(φ + φ∗)dv∗dv

+ 4

∫ t

0

dτ

∫

R3

|f − g|
√

φ

(

ε

∫∫

R3×S2

Bf ′f ′
∗dωdv∗

)

dv

+ 4

∫ t

0

dτ

∫

R3

|f − g|
(

ε

∫∫

R3×S2

Bf ′f ′
∗
√

φ∗dωdv∗

)

dv

≤C

∫ t

0

U2(τ)dτ, t ≥ 0.

This proves (2.7).

Proof of (2.8): We first prove an integrability result for the gain and the loss terms in the collision operator:

∫ t

r

dτ

∫

R3

Q±(g)(v, τ)φ(v)11{f(v,τ)>g(v,τ)}dv <∞, t ≥ r > 0. (2.9)

Using the integral representation of solution s to the Boltzmann equation (1.10), we find that

(f(v, t) − g(v, t))+ = (f(v, r)) − g(v, r))+

+

∫ t

r

(Q(f)(v, τ) −Q(g)(v, τ)) 11{f(v,τ)>g(v,τ)}dτ . (2.10)

This implies that for all t > r > 0,
∫ t

r

Q+(g)(v, τ)11{f(v,τ)>g(v,τ)}dτ

≤ (f(v, r)) − g(v, r))+ +

∫ t

r

(

Q+(f)(v, τ) +Q−(g)(v, τ)
)

11{f(v,τ)>g(v,τ)}dτ.

Since 0 ≤ 1 − εf, 1 − εg ≤ 1 and φ′ + φ′∗ = φ+ φ∗, it follows that
∫ t

r

dτ

∫

R3

(

Q+(f)(v, τ) +Q−(g)(v, τ)
)

11{f(v,τ)>g(v,τ)}φ(v)dv

≤
∫ t

r

dτ

∫∫∫

R3×R3×S2

B (f ′f ′
∗ + gg∗) 11{f>g}φdωdv∗dv

≤
∫ t

r

dτ

∫∫∫

R3×R3×S2

B (f ′f ′
∗ + fg∗)φdωdv∗dv

=

∫ t

r

dτ

∫∫∫

R3×R3×S2

Bf(f∗ + g∗)φdωdv∗dv

≤ A0

∫ t

r

‖f(τ)‖L1
2+β

‖f(τ) + g(τ)‖L1
β
dτ ≤ C

∫ t

r

(1 +
1

τ
)dτ <∞.



BOLTZMANN EQUATION FOR FERMI DIRAC PARTICLES 9

In the last inequality, we have used (1.14). This proves (2.9). Together with (2.10), Lemma 1 and Lemma 3
(for k = 2), we obtain

U2(t) − U2(r) =

∫ t

r

dτ

∫∫∫

R3×R3×S2

B (ff∗Πε(f
′, f ′

∗) − gg∗Πε(g
′, g′∗))

×
(

φ′11{f ′>g′} + φ′∗11{f ′
∗>g′

∗} − φ11{f>g} − φ∗11{f∗>g∗}
)

dµ

≤ 2

∫ t

r

dτ

∫∫∫

R3×R3×S2

Bfφ|f∗ − g∗|dµ+ 2ε

∫ t

r

dτ

∫∫∫

R3×R3×S2

Bff∗|f ′ − g′|φ′∗dµ

≤ 2A0

∫ t

r

dτ

∫∫

R3×R3

f(φ)(2+β)/2|f∗ − g∗|(φ∗)β/2dv∗dv

+ 2

∫ t

r

dτ

∫

R3

|f − g|
(

ε

∫∫

R3×S2

Bf ′f ′
∗φ∗dωdv∗

)

dv

≤ C

∫ t

r

‖f(τ)‖L1
2+β

‖f(τ) − g(τ)‖L1
1
dτ ≤ C

∫ t

r

(1 +
1

τ
)U1(τ)dτ, t ≥ r.

This proves (2.8). As mentioned above, the three inequalities (2.6)-(2.8) imply the stability estimate (2.4).
Since the stability estimate (2.4) implies the uniqueness, the proof is complete once the existence of an

energy conserving solution which satisfies the estimates (1.14) and (1.15).
But for ε > 0, the Eq.(1.4) does have a conservation solution f which satisfies the moment estimate

(1.14)-(1.15). So the theorem holds for ε > 0. For the classical case, the same estimates are implicit in
e.g. [25] (see also [24]) and references there in, but to be complete, we give some details here. As usual,
one constructs a sequence of solutions, fn, which are obtained by a suitable truncation of initial data and
of the equation. By inequality |v − v∗|β ≥ (1 + |v|2)β/2 − (1 + |v∗|2)β/2 and the conservation of mass
and energy, we have

∫∫

R3×R3

fn(v, t)(1 + |v|2)s/2fn(v∗, t)|v − v∗|βdv∗dv

≥ ‖fn
0 ‖L1

0
‖fn(t)‖L1

s+β
− ‖fn

0 ‖L1
2
‖fn(t)‖L1

s
. (2.11)

This can now be used to prove that there are constantsCn,s such that

‖fn(t)‖L1
s
≤ Cn,s(1 + t−(s−2)/β), t > 0, s > 2. (2.12)

What is essential is that the constants Cn,s depend only on initial data, and actually only on the mass and
energy; moreover the constants are continuous as functions of ‖fn

0 ‖1
2 and ‖fn

0 ‖1
2.

Applying the estimate (2.4) to the solutions fn, fm of the truncated Eq.(1.1), we have
sup
t≥0

e−cn t‖fn(t) − fm(t)‖L1
2
≤ CnΦf0

(‖fn
0 − fm

0 ‖L1
2
, )

where the coefficients cn and Cn are uniformly bounded in n (because of their continuous dependence of
the norms of the initial data). It follows that if the sequence of initial data is a Cauchy sequence in L1

2, then
so is the sequence fn(·, t), for all t. The limiting function f is a solution to the Boltzmann equation, and
by applying Fatou’s lemma, (2.12) holds also for f . �

Our next result is about the strong stability (continuity) with respective to the parameter ε ∈ [0,∞).
The most interesting case is the continuity at ε = 0 which in particular shows that the classical Boltzmann
equation Eq.(1.1) is a strong limit of the quantum Boltzmann equation Eq.(1.4). A weak stability result
of this kind has been obtained by Dolbeault [12]; his result is not restricted to the spatially homogeneous
case.

Theorem 2. Let the kernel B(z, ω) be given by (1.8)-(1.4) with 0 ≤ β ≤ 1. Let f0, f ε
0 ∈ L1

2(R
3)

satisfying f0 ≥ 0, 0 ≤ fε
0 ≤ 1/ε. Let f, f ε be conservative solutions of Eq.(1.1) and Eq.(1.4) respectively

with initial data f |t=0 = f0, f ε|t=0 = fε
0 . Suppose that ‖fε

0 − f0‖L1
2
→ 0 as ε→ 0. Then

sup
t≥0

e−c t‖f ε(t) − f(t)‖L1
2
→ 0 (ε→ 0) , (2.13)

where the constant 0 < c <∞ depends only on ‖f0‖L1
0
, ‖f0‖L1

2
, β, and on the angular function b(·).
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Proof: Let

Uε
κ(t) = ‖fε(t) − f(t)‖L1

κ
, 0 ≤ κ ≤ 2 .

We shall prove the following estimate, which implies (2.13):

sup
t≥0

e−c tUε
2 (t) ≤ CΦf0

(Λ(ε)), ∀ 0 < ε ≤ ε0 (2.14)

where

Λ(ε) := U ε
2 (0) + ε

1
6 +A(ε

1
6 ) +

∫ ∞

0

1√
t(1 + t2)

‖f(t)11{f(t)φ>ε− 1
6 }‖L1

2
dt,

A(δ) := 4π

(

∫ δ

0

b(θ) sin(θ)dθ +

∫ π/2

π/2−δ

b(θ) sin(θ)dθ

)

, 0 < δ ≤ π/4 .

As before φ(v) = 1 + |v|2, and the constant 0 < ε0 ≤ (π
4 )6 is to be taken so small that

Λ(ε) < 1 ∀ ε ∈ (0, ε0] .

The constants 0 < c, C < ∞ depend only on ‖f0‖L1
0
, ‖f0‖L1

2
, β, and on the angular function b(·). It is

easily seen that Λ(ε) → 0 as ε→ 0.
We first prove (2.14) for 0 < β ≤ 1. In this case, the solution f satisfies the moment estimate (1.14)-

(1.15). Let Πε(g, g∗) = (1 − εg′)(1 − εg∗), dµ = dωdv∗dv, and

g = f ε, g0 = f ε
0

and denote by c, C the (different) constants mentioned above. Suppose ε ∈ (0, ε0]. Our proof consists of
several steps:

Step 1: Prove that for all r ∈ [Λ(ε), 1]

U ε
2 (t) ≤ CΦf0

(r) +
4√
r
Uε

1 (t), t ≥ 0. (2.15)

This can be proven in the same way as (2.6) provided one notices that Uε
2 (0) ≤ Λ(ε) ≤ r ≤ Φf0

(r),
etc.

Step 2: Prove that

U ε
1 (t) ≤Uε

1 (0) + C

∫ t

0

Uε
2 (τ)dτ

+ C

∫ t

0

‖f(τ)11{f(τ)φ>ε− 1
6 }‖L1

2
dτ + C[ε

1
6 +A(ε

1
6 )] t, t ≥ 0. (2.16)

Because φ, φ′ ≤ φφ∗, and because of the inequality
∣

∣f ′f ′
∗ − g′g′∗Πε(g, g∗)

∣

∣ ≤
∣

∣f ′f ′
∗ − g′g′∗

∣

∣Πε(g, g∗) +

f ′f ′
∗
(

1 − Πε(g, g∗)
)

, and a similar inequality in the “un-primed” variables, it follows that

Uε
1 (t)−Uε

1 (0) ≤

≤
∫ t

0

dτ

∫∫∫

R3×R3×S2

B
∣

∣

(

f ′f ′
∗ − g′g′∗Πε(g, g∗)

)

−
(

ff∗ − gg∗Πε(g
′, g′∗)

)∣

∣

√

φdµ

≤ 2

∫ t

0

dτ

∫∫∫

R3×R3×S2

B|ff∗ − gg∗|
√

φφ∗ dµ

+ 2

∫ t

0

dτ

∫∫∫

R3×R3×S2

Bff∗[1 − Πε(g
′, g′∗)]

√

φφ∗ dµ. (2.17)
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Using |v − v∗|β ≤
√

φ(v)φ(v∗) one can estimate the first of the terms in the right hand side by
∫ t

0

dτ

∫∫∫

R3×R3×S2

B{f |f∗ − g∗| + g∗|f − g|}
√

φφ∗ dµ

≤ A0

∫ t

0

dτ

∫∫

R3×R3

(f + g)|f∗ − g∗|φφ∗dv∗dv

≤ C

∫ t

0

Uε
2 (τ)dτ.

In the second term in the right-hand side of (2.17), we let δ = ε
1
6 and R = ε−

1
6 ; as before, θ =

arccos(|〈v − v∗, ω〉|/|v − v∗|). We look separately at three parts of the domain of integration:

Ω1 = {f∗
√

φ∗ > R} ,
Ω2 = {f∗

√

φ∗ ≤ R} ∩
(

{0 ≤ θ ≤ δ} ∪ {π/2 − δ ≤ θ ≤ π/2}
)

and

Ω3 = {f∗
√

φ∗ ≤ R} ∩ {δ ≤ θ ≤ π/2 − δ} .

Integration over the set Ω1, using the fact that
∫

S2 B
√
φφ∗dω ≤ φφ∗ gives a term bounded by

A0‖f0‖L1
2

∫ t

0

‖f(τ) 11{f(τ)φ>R}‖L1
2
dτ . (2.18)

For the set Ω2, we similarly get a bound of the form

A(δ)‖f0‖L1
2
t where A(δ) = C

∫ δ

0

b(θ) sin(θ) dθ . (2.19)

Finally, for the third part, involving the domain Ω3, Lemma 2 can be used to obtain a bound of the form

εR4π

∫ π/2−δ

δ

{ b(θ) sin(θ)

(cos(θ))3+β
+
b(θ) sin(θ)

(sin(θ))3+β

}

dθ ·
∫ t

0

∫∫

R3×R3

f
√

φ g∗|v − v∗|βdv∗dv dτ

≤ CεRδ−4‖f0‖L1
2
‖g0‖L1

2
t . (2.20)

The terms (2.18), (2.19) and (2.20) together add up to the upper bound

C

∫ t

0

‖f(τ) 11{f(τ)φ>R}‖L1
2
dτ + C[A(ε

1
6 ) + ε

1
6 ] t, t ≥ 0 ,

which completes the proof of (2.16).

Step 3: Prove that

U ε
2 (t) ≤Uε

2 (r) + C

∫ t

r

(1 +
1

τ
)Uε

1 (τ) dτ

+ C

∫ t

r

(1 +
1

τ
)‖f(τ)11{f(τ)>R}‖L1

1
dτ + C

(

ε
1
6 +A(ε

1
6 )
)

∫ t

r

(1 +
1

τ
)dτ, t ≥ r. (2.21)

The calculation is similar to that of Step 2. We have

U2
ε(t) − Uε

2 (r)

=2

∫ t

r

dτ

∫∫∫

R3×R3×S2

B
(

(

f ′f ′
∗ − g′g′∗Πε(g, g∗)

)

−
(

ff∗ − gg∗Πε(g
′, g′∗)

)

)

φ 11{f>g} dµ

≤ 2

∫ t

r

dτ

∫∫∫

R3×R3×S2

B
(

(f ′f ′
∗ − g′g′∗)Πε(g, g∗) − (ff∗ − gg∗)Πε(g

′, g′∗)
)

φ 11{f>g} dµ

+ 2

∫ t

r

dτ

∫∫∫

R3×R3×S2

Bf ′f ′
∗ (1 − Πε(g, g∗)) φdµ, t ≥ r. (2.22)
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For the first term, the identity φ′ +φ′∗ = φ+φ∗ and the inequality (ff∗ − gg∗)+ − (ff∗ − gg∗)11{f>g} ≤
f |f∗ − g∗| can be used together with the moment estimates (1.14)-(1.15) to get

2

∫ t

r

dτ

∫∫∫

R3×R3×S2

B
(

(ff∗ − gg∗)
+ − (ff∗ − gg∗)11{f>g}

)

Πε(g
′, g′∗)φdµ

≤ 2

∫ t

r

dτ

∫∫∫

R3×R3×S2

B fφ |f∗ − g∗| dµ

≤ 2A0

∫ t

r

‖f(τ)‖L112+β
Uε

1 (τ)dτ ≤ C

∫ t

r

(1 +
1

τ
)Uε

1 (τ)dτ, t ≥ r.

To conclude the proof of (2.21), one can proceed as in Step 2 to see that the second term in (2.22) is smaller
than

C

∫ t

r

(1 +
1

τ
)‖f(τ) 11{f(τ)>R}‖L1

1
dτ + C

(

ε
1
6 +A(ε

1
6 )
)

∫ t

r

(1 +
1

τ
)dτ, t ≥ r.

Step 4: This concerns the interval t ∈ [0, 1], and the purpose is to prove that
U ε

2 (t) ≤ CΦf0
(Λ(ε)), t ∈ [0, 1]. (2.23)

Let r = Λ(ε). Then the estimates (2.16) and 2.21) together show that, for r ≤ t ≤ 1,
U ε

2 (t) ≤ Uε
2 (r) + CU ε

1 (0)| log r|

+ C

∫ t

r

1

τ

(
∫ τ

0

Uε
2 (σ)dσ +

∫ τ

0

‖f(σ)11{f(σ)φ>R}‖L1
2
dσ

)

dτ

+ C

∫ t

r

1

τ

(

ε
1
6 +A(ε

1
6 )
)

τdτ

+ C

∫ t

r

1

τ
‖f(τ)11{f(τ)>R}‖L1

1
dτ + C

(

ε
1
6 +A(ε

1
6 )
)

| log r|.

Let
λ(ε) =

∫ ∞

0

1√
t(1 + t2)

‖f(t)11{f(t)φ>R}‖L1
2
dt, R = ε−

1
6 .

By the Fubini theorem, we have
∫ t

r

1

τ

(

∫ τ

0

Uε
2 (σ)dσ +

∫ τ

0

‖f(σ)11{f(σ)φ>R}‖L1
2
dσ
)

dτ

≤
∫ t

0

(

Uε
2 (σ) + ‖f(σ)11{f(σ)φ>R}‖L1

2

)

| log σ| dσ

≤
∫ t

0

Uε
2 (σ)| log σ|dσ + Cλ(ε), t ∈ [r, 1]

and
∫ t

r

1

τ
‖f(τ)11{f(τ)>R}‖L1

1
dτ ≤ C

1√
r
λ(ε), t ∈ [r, 1].

Since λ(ε) ≤ Λ(ε) = r and | log r| ≤ 1√
r

, it follows from definition of Λ(ε) that

U ε
2 (t) ≤ Uε

2 (r) + C
√
r + C

∫ t

0

Uε
2 (τ)| log τ |dτ, t ∈ [r, 1].

On the other hand, combining (2.15) with (2.16), gives
U ε

2 (t) ≤ CΦf0
(r) = CΦf0

(Λ(ε)), t ∈ [0, r].

Thus

U ε
2 (t) ≤ CΦf0

(Λ(ε)) + C

∫ t

0

Uε
2 (τ)| log τ |dτ, t ∈ [0, 1] .

and the Gronwall lemma implies (2.23).
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Step 5: Estimate on [0,∞):

Uε
2 (t) ≤ CΦf0

(Λ(ε)) ec t, t ∈ [0,∞). (2.24)

We first prove this estimate on [1,∞): Taking r = 1 in (2.21) and using the Gronwall lemma together with
U ε

2 (1) ≤ CΦf0
(Λ(ε)) ( this comes from (2.23) ) and the inequality tα ≤ eα t (α > 0 ), we obtain

U ε
2 (t) ≤

(

Uε
2 (1) + C

∫ t

1

‖f(τ)11{f(τ)>R}‖L1
2
dτ + C

(
1
6 +A(ε

1
6 )
)

,

)

ec(t−1)

≤ C{Uε
2 (1) + Λ(ε)}ec t ≤ CΦf0

(Λ(ε))ec t, t ∈ [1,∞).

This together with Step 4 (2.23) implies (2.24), and the proof of theorem is completed. �

The remaining part of this section is devoted to the proofs of Lemma 1 and of 3; Lemma 2.

Proof of Lemma 1: The calculations carried out here are fully independent of the value ofε, and hence we
set ε = 1. We then prove (2.1) by separately checking the following eight different cases, which together
cover all possibilities:

(1) f ′ > g′, f ′
∗ > g′∗;

(2) f ′ ≤ g′, f ′
∗ ≤ g′∗;

(3) f > g, f∗ > g∗;
(4) f ≤ g, f∗ ≤ g∗;

(5) f ′ > g′, f ′
∗ ≤ g′∗, f > g, f∗ ≤ g∗;

(6) f ′ ≤ g′, f ′
∗ > g′∗, f > g, f∗ ≤ g∗;

(7) f ′ > g′, f ′
∗ ≤ g′∗, f ≤ g, f∗ > g∗;

(8) f ′ ≤ g′, f ′
∗ > g′∗, f ≤ g, f∗ > g∗.

The proof for cases (1)-(4) and (5)-(8) have many points in common. Here we only give the case (1)
and case (5). Let ∆(f, g;φ) be the left-hand side of the above inequality:

∆(f, g;φ) =
(

(1 − f ′)(1 − f ′
∗) − gg∗(1 − g′)(1 − g′∗)

)

×
(′

11{f ′>g′} + φ′∗11{f ′
∗>g′

∗} − φ11{f>g} − φ∗11{f∗>g∗}
)

.

Case (1): Here f ′ > g′ and f ′
∗ > g′∗. Because φ′ + φ′∗ = φ+ φ∗, we can deduce that

φ′11{f ′>g′} + φ′∗11{f ′
∗>g′

∗} − φ11{f>g} + φ∗11{f∗>g∗} = φ11{f≤g} + φ∗11{f∗≤g∗}.

Again because 0 ≤ 1 − f ′ ≤ 1 − g′, 0 ≤ 1 − f ′
∗ ≤ 1 − g′∗, and because f and g are non-negative,

∆(f, g, ;φ) =
(

ff∗(1 − f ′)(1 − f ′
∗) − gg∗(1 − g′)(1 − g′∗)

)(

φ11{f≤g} + φ∗11{f∗≤g∗}
)

≤ (ff∗ − gg∗)(1 − g′)(1 − g′∗)
(

φ11{f≤g} + φ∗11{f∗≤g∗}
)

= (ff∗ − gg∗)(1 − g′)(1 − g′∗)φ11{f≤g} + (ff∗ − gg∗)(1 − g′)(1 − g′∗)φ∗11{f∗≤g∗}

≤ f(f∗ − g∗)(1 − g′)(1 − g′∗)φ11{f≤g} + f∗(f − g)(1 − g′)(1 − g′∗)φ∗11{f∗≤g∗}

≤ f |f∗ − g∗|φ+ f∗|f − g|φ∗ = (fφ)|f∗ − g∗| + (fφ)∗|f − g|,

which concludes this case.

Case (5): Here f ′ > g′, f ′
∗ ≤ g′∗, f > g and f∗ ≤ g∗. We have

φ′11{f ′>g′} + φ′∗11{f ′
∗>g′

∗} − φ11{f>g} + φ∗11{f∗>g∗} = φ′ − φ ,

and

∆(f, g, ;φ) =
(

ff∗(1 − f ′)(1 − f ′
∗) − gg∗(1 − g′)(1 − g′∗)

)(

φ′ − φ
)

.
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Here it is convenient to treat separately the cases φ′ > φ and φ′ ≤ φ. In the first case,

∆(f, g, ;φ) = ff∗
(

(1 − f ′)(1 − f ′
∗) − (1 − g′)(1 − g′∗)

)(

φ′ − φ
)

+(ff∗ − gg∗)(1 − g′)(1 − g′∗)(φ
′ − φ)

≤ ff∗(1 − g′)
(

(1 − f ′
∗) − (1 − g′∗)

)

(φ′ − φ) (because 0 ≤ 1 − f ′ ≤ 1 − g′ )

+(f − g)f∗(1 − g′)(1 − g′∗)(φ
′ − φ) (because gg∗ ≥ gf∗ )

≤ ff∗|f ′
∗ − g′∗|(φ′ − φ) + |f − g|f∗(φ′ − φ)

≤ ff∗|f ′
∗ − g′∗|φ′ + |f − g|f∗φ∗ (because φ′ − φ ≤ φ∗ )

= (fφ)∗|f − g| + ff∗|f ′
∗ − g′∗|φ′.

On the other hand, when φ′ − φ ≤ 0, we have

∆(f, g, ;φ) =
(

gg∗(1 − g′)(1 − g′∗) − ff∗(1 − f ′)(1 − f ′
∗)
)

(φ− φ′)

= (gg∗ − ff∗)(1 − g′)(1 − g′∗)(φ − φ′) + ff∗
(

(1 − g′)(1 − g′∗) − (1 − f ′)(1 − f ′
∗)
)

(φ− φ′)

≤ f(g∗ − f∗)(1 − g′)(1 − g′∗)(φ− φ′) (because g < f )

+ff∗(1 − f ′
∗)
(

(1 − g′) − (1 − f ′)
)

(φ− φ′) ( because 0 ≤ 1 − g′∗ ≤ 1 − f ′
∗ )

≤ f |g∗ − f∗|φ+ ff∗|g′ − f ′|(φ′∗ − φ∗) ( because 0 ≤ φ− φ′ = φ′∗ − φ∗ ≤ φ′∗ )

≤ (fφ)|f∗ − g∗| + ff∗|f ′ − g′|φ′∗.
In a similar way analysing the cases (2) – (4) and (6) – (8) gives the desired estimate for all cases. �

Proof of Lemma 2: We need to estimate ε
∫∫

R3×S2 B(v− v∗, ω)f ′f ′
∗(1 + |v∗|2)k/2dωdv∗. We can assume

that 0 < k < 3; in fact, the case k = 0 is contained in the proof for k > 0, and the case k = 3 can proven
by taking the limit k → 3. It is clear that the integral is bounded by 2k/2

(

I(v) + J(v)
)

, where

I(v) = ε

∫∫

R3×S2

B(v − v∗, ω)f ′f ′
∗dωdv∗,

J(v) = ε

∫∫

R3×S2

B(v − v∗, ω)f ′f ′
∗|v∗|kdωdv∗.

Let B = B1 +B2, whereB1(v − v∗, ω) = b(θ)11[0,π/4](θ)|v − v∗|β and (on the complementary set)
B2(v−v∗, ω) = b(θ)|v−v∗|β11(π/4,π/2](θ). Similarly, b1(θ) = b(θ)11[0,π/4](θ), and b2(θ) = b(θ)−b1(θ).
By assumption, 0 ≤ f ≤ 1/ε and then using Lemma 2, we can deduce

I(v) ≤
∫∫

R3×S2

B1(v − v∗, ω)f(v′)dωdv∗ +

∫∫

R3×S2

B2(v − v∗, ω)f(v′∗)dωdv∗

= 4π

{

∫ π/2

0

b1(θ) sin(θ)

(cos(θ))3+β
dθ +

∫ π/2

0

b2(θ) sin(θ)

(sin(θ))3+β
dθ

}

∫

R3

f(v∗)|v − v∗|βdv∗

= 4π

{

∫ π/4

0

b(θ) sin(θ)

(cos(θ))3+β
dθ +

∫ π/2

π/4

b(θ) sin(θ)

(sin(θ))3+β
dθ

}

∫

R3

f(v∗)|v − v∗|βdv∗ ,

and finally see that I(v) ≤ 22A0‖f‖L1
β
(1 + |v|2)β/2.

Next split J(v) = J1(v) + J2(v) + J3(v) + J4(v), where

J1(v) = ε

∫∫

R3×S2

B1(v − v∗, ω)f ′f ′
∗|v∗|k 1{|v∗|≤2|v′|}dωdv∗,

J2(v) = ε

∫∫

R3×S2

B2(v − v∗, ω)f ′f ′
∗|v∗|k 1{|v∗|≤2|v′

∗|}dωdv∗,

J3(v) = ε

∫∫

R3×S2

B1(v − v∗, ω)f ′f ′
∗|v∗|k 1{|v∗|>2|v′|}dωdv∗,

J4(v) = ε

∫∫

R3×S2

B2(v − v∗, ω)f ′f ′
∗|v∗|k 1{|v∗|>2|v′

∗|}dωdv∗.
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For J1(v) and J2(v) we can again use Lemma 2 to find the inequalities

J1(v) + J2(v)

≤ 2k

∫∫

R3×S2

{B1(v − v∗, ω)f(v′)|v′|k +B2(v − v∗, ω)f(v′∗)|v′∗|k}dωdv∗

= 2k · 4π
{

∫ π/4

0

b(θ) sin(θ)

(cos(θ))3+β
dθ +

∫ π/2

π/4

b(θ) sin(θ)

(sin(θ))3+β
dθ

}

∫

R3

f(v∗)|v∗|k|v − v∗|βdv∗

≤ 25A0‖f‖L1
k+β

(1 + |v|2)β/2.

Next, to estimate J3(v) and J4(v), we first note that

|v∗| > 2|v′| implies |v∗| ≤ 2|v − v∗| sin(θ),

|v∗| > 2|v′∗| implies |v∗| ≤ 2|v − v∗| cos(θ).

Beginning with J3(v) (the calculations for J4(v) are essentially the same), we split this term once more:

J3(v) ≤ 2kε

∫∫

R3×S2

B1(v − v∗, ω)f ′f ′
∗|v − v∗|k sink(θ)dωdv∗

= 2kε

∫∫

R3×S2

b1(θ) sink(θ)f ′f ′
∗|v − v∗|k+βdωdv∗

= J31(v) + J32(v) ,

where

J31(v) = 2kε

∫∫

R3×S2

b1(θ) sink(θ)f ′f ′
∗|v − v∗|k+β11{|v′

∗|≤|v′|}dωdv∗, and

J32(v) = 2kε

∫∫

R3×S2

b1(θ) sink(θ)f ′f ′
∗|v − v∗|k+β11{|v′

∗|>|v′|}dωdv∗.

Because |v − v∗| = |v′ − v′∗|, Lemma 2 can again and this gives

J31(v) ≤ 2k · 2k+β

∫∫

R3×S2

b1(θ) sink(θ)f(v′)|v′|k+βdωdv∗

= 22k+β · 4π
∫ π/4

0

b(θ) sink+1(θ)

cos3(θ)
dθ

∫

R3

f(v∗)|v∗|k+βdv∗

≤ 29A0‖f‖L1
k+β

,

and for J32(v), finally, we use Hölder’s inequality which leads to the estimate

J32(v) ≤ 2kε

(
∫∫

R3×S2

b1(θ)|v − v∗|k+β(f(v′))pdωdv∗

)1/p

×
(
∫∫

R3×S2

b1(θ) sinkq(θ)|v − v∗|k+β(f(v′∗))
q11{|v′

∗|>|v′|}dωdv∗

)1/q

.

In the integrals, we replace ε by 1/f , which shows that J32(v) is bounded by

2k

(
∫∫

R3×S2

b1∗(θ)|v − v∗|k+βf(v′)dωdv∗

)1/p

×
(

2k+β

∫∫

R3×S2

b1(θ) sinkq(θ)f(v′∗)|v′∗|k+βdωdv∗

)1/q

.
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By choosing 1
p = 1 − k

3 and 1
q = k

3 , and once more referring to Lemma 2 gives the following bound for
J32(v):

2k

(

4π

∫ π/4

0

b(θ) sin(θ)

cos3+k+β(θ)
dθ

∫

R3

f(v∗)|v − v∗|k+βdv∗

)(3−k)/3

×
(

2k+β4π

∫ π/4

0

b(θ) sin(θ)

sin3(θ)
sin3(θ)dθ

∫

R3

f(v∗)|v∗|k+βdv∗

)k/3

≤2k ·
(

2(3+k+β)/2A0‖f‖L1
k+β

(1 + |v|2)(k+β)/2
)(3−k)/3 (

2k+βA0‖f‖L1
k+β

)k/3

≤27A0‖f‖L1
k+β

(1 + |v|2)α/2.

This gives

J3(v) ≤ 210A0‖f‖L1
k+β

(1 + |v|2)α/2 ,

and in the same way

J4(v) ≤ 210A0‖f‖L1
k+β

(1 + |v|2)α/2

Combining the estimates of the different terms gives the estimate in the lemma. �

3. STRONG CONVERGENCE TO EQUILIBRIUM

The main result of this section, is that the solutions to the spatially homogeneous Boltzmann equation
for Fermi-Dirac particles converge strongly to equilibrium, at least under the “high temperature” condition
mentioned in the introduction. The weak convergence inL1 has already been established in [20]. As for the
classical Boltzmann equation, the strong convergence is related to regularity properties of the gain term; it
is close to being strongly compact in L1.

We begin by stating the main theorem, and then, before entering into the details of the proof, we state
and prove some lemmas that are the main ingredients of the proof.
Theorem 3. Suppose the collision kernel B(z, ω) is given by (1.8)-(1.9). Let f0 ∈ L1

2(R
3) satisfy 0 ≤

f0 ≤ 1/ε on R3, and M0 := ‖f0‖L1 > 0. Let T , TF be the corresponding temperature and the Fermi
temperature respectively, and suppose that T > 2

5TF . Let f be the unique conservative solution of Eq.(1.4)
with f |t=0 = f0, and let F = Fa,b be the Fermi-Dirac distribution having the same mass, mean velocity
and temperature. Then

‖f(t) − F‖2
L1 ≤ 2‖f0‖L1 [S(F ) − S(f(t))] ≤ C‖f(t) − F‖L1

2
, t ≥ 0 , (3.1)

where C <∞ depends only on ‖f0‖L1 , ‖f0‖L1
2

and ε. Furthermore, if β > 0 and T ≥ γ(1)TF , then

‖f(t) − F‖L1
2
→ 0 (t → ∞) (3.2)

where γ(x) is the function defined in (1.13). Ifβ = 0 and f0 ∈ L1
s(R

3) for some s > 2, then with same
condition T ≥ γ(1)TF , the strong convergence (3.2) still holds.

For this section, one can change from one value of ε to another, simply by rescaling the equation,
and hence it is convenient to set ε = 1, and in the same way there is no restriction in assuming that
∫

R3 f0(v)v dv = 0.
The first inequality in (3.1) has been established in [20]; it is really a kind of Csiszár-Kullback inequality.

The second inequality follows by an elementary inequality,

(1 − y) log(1−y) + y log y − (1 − x) log(1 − x) − x log x

≤ (y − x) log(
x

1 − x
) + |y − x|

(

1 + log(
1

x
) +

1

1 − x

)

, (0 < x < 1, 0 ≤ y ≤ 1)

(3.3)
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which can be proven by using
(1 − y) log(1 − y) + y log y − (1 − x) log(1 − x) − x log x

= (y − x) log(
x

1 − x
) + (1 − y) log(

1 − y

1 − x
) + y log(

y

x
) and

y log(
y

x
) = (y − x) log(

y

x
) + x log(

y

x
) ≤ (y − x) log(

1

x
) + y − x , (y > x) .

Then (3.1) follows by choosing x = F (v) = ae−b|v|2/(1 + ae−b|v|2), and y = f(v, t), and then using the
conservation properties of the solutions.

The proof of (3.2) is much more complicated, and relies a number of auxiliary results. The most im-
portant of these is a version of Lions’ compactness result for the gain term of the collision operator (see
P.L. Lions [18], but also Lu [23], or [8] and [30] for related results).

Let C be the set of all complex numbers. For any s ∈ R, let L1
s(R

3 × R3) be the weighted L1-space as
introduced before, i.e.

L1
s(R

3 × R
3) :=

{

Ψ : R
3 × R

3 7→ C
∣

∣Ψ is measurable on R
3 × R

3 and

‖Ψ‖L1
s(R

3×R3) =

∫∫

R3×R3

|Ψ(v, v∗)|(1 + |v|2 + |v∗|2)s/2dv <∞
}

.

The gain term (and in the same way, the loss term) in the collision operator, corresponds in a natural
way to linear operator Q+ : L1

s(R
3 × R3) → L1

s′(R3), and in the Fermi-Dirac case it is also natural to
consider a modified operator Q+(Ψ |F ):

Q+(Ψ)(v) =

∫∫

R3×S2

B(v − v∗, ω)Ψ(v′, v′∗)dω dv∗,

Q+(Ψ |F )(v) =

∫∫

R3×S2

B(v − v∗, ω)Ψ(v′, v′∗)F (v∗)dω dv∗.

For our main result, F will be chosen a Fermi-Dirac distribution (1.2).
Lemma 4. Let B(z, ω) be given by (1.8)-(1.9) with 0 ≤ β ≤ 1. Let K be a subset of L1

2β(R3 × R3) ∩
L2(R3 × R3) satisfying the following conditions:

sup
Ψ∈K

{‖Ψ‖L1,∞
β

+ ‖Ψ‖L1
2β

+ ‖Ψ‖L2} <∞, (3.4)

sup
Ψ∈K

∫∫

|v|+|v∗|>R

|Ψ(v, v∗)|(1 + |v|2 + |v∗|2)β dvdv∗ → 0 (R → ∞). (3.5)

Here

‖Ψ‖L1,∞
β

:=

∫

R3

(

‖Ψ(v, ·)‖L∞ + ‖Ψ(·, v)‖L∞

)

(1 + |v|2)β/2dv. (3.6)

Let F be any given smooth function such that F ∈ L1(R3) ∩ L∞(R3) and F̂ ∈ L1(R3). ( F̂ (ξ) =
∫

R3 F (v∗)e−i〈ξ,v∗〉dv∗ denotes the Fourier transform of F .) Then

• the sets {Q+(Ψ)}Ψ∈K and {Q+(Ψ|F )}Ψ∈K are both relatively compact in L2(R3), and
• the operators Q+(·) and Q+(·|F ) are continuous in the sense that for any sequence {Ψn}n≥1 ⊂
K, which is converging weakly to 0 in L1(R3 × R3),

lim
n→∞

‖Q+(Ψn)‖L2 = 0 and lim
n→∞

‖Q+(Ψn |F )‖L2 = 0 .

This way of treating the gain term as a linear operator acting in both v and v∗ was used independently
in [23] and in [8]. To prove Lemma 4, we first prove 5:
Lemma 5. Let B(z, ω) and β be given as in Lemma 4, and let Ψ be measurable on R

3 × R
3 and satisfy

‖Ψ‖L1,∞
β

<∞ where ‖Ψ‖L1,∞
β

is defined in (3.6). Then

|Q+(Ψ)(v)| ≤ 8A0‖Ψ‖L1,∞
β

(1 + |v|2)β/2 a.e. v ∈ R
3. (3.7)
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Proof: Let ψ1(v) = ‖Ψ(v, ·)‖L∞, ψ2(v) = ‖Ψ(·, v)‖L∞ . Then by the Fubini theorem, |Ψ(v, v∗)| ≤
min{ψ1(v), ψ2(v∗)} a.e. (v, v∗) ∈ R3 × R3. Therefore by applying Lemma 2, (or more directly by
Lemma 2 in ref. [22]), for allϕ ∈ L1(R3),

‖Q+(Ψ)ϕ‖L1
−β

≤ 8A0(‖ψ1‖L1
β

+ ‖ψ2‖L1
β
)‖ϕ‖L1 = 8A0‖Ψ‖L1,∞

β
‖ϕ‖L1.

This implies (3.7). �

Proof of Lemma 4: We first extend the set K to a larger one, which still is denoted K, with the property
that if |χ| = 1 and Ψ ∈ K then χΨ ∈ K, where χ is any complex valued measurable function on R

3 × R3.
It is obvious that this extension does not change the L∞-bounds in (3.4)-(3.5). It is easy to check that the
sets {Q+(Ψ)}Ψ∈K and {Q+(Ψ |F )}Ψ∈K are bounded both in L1

β(R3) and L2(R3) (compare also with
estimates below; there one can setR = 0):

‖Q+(Ψ)‖L1
β

≤ 2A0‖Ψ‖L1
2β
,

‖Q+(Ψ |F )‖L1
β

≤ 2A0‖F‖L∞‖Ψ‖L1
2β
,

‖Q+(Ψ)‖2
L2 ≤ 16A0‖Ψ‖L1,∞

β
‖Ψ‖L1

2β
,

‖Q+(Ψ |F )‖2
L2 ≤ 16A0‖F‖2

L∞‖Ψ‖L1,∞
β

‖Ψ‖L1
2β
.

Now we prove the L2-compactness of {Q+(Ψ)}Ψ∈K and {Q+(Ψ |F )}Ψ∈K. For any R ≥ 0, Lemma 5
gives

∫

|v|>R

|Q+(Ψ)(v)|2dv ≤ C

∫

R3

|Q+(Ψ)(v)|(1 + |v|2)β/21{|v|>R}dv , (3.8)

where C = 8A0 supΨ∈K ‖Ψ‖L1,∞
β

<∞, and (3.8) is in turn bounded by

C

∫∫∫

R3×R3×S2

B(v − v∗, ω)|Ψ(v, v∗)|(1 + |v′|2)β/21{|v′|>R}dωdv∗dv

≤ C

∫∫∫

R3×R3×S2

B(v − v∗, ω)|Ψ(v, v∗)|(1 + |v|2 + |v∗|2)β/21{|v|+|v∗|>R}dωdv∗dv

≤ 2C

∫∫

|v|+|v∗|>R

|Ψ(v, v∗)|(1 + |v|2 + |v∗|2)βdωdv∗dv.

Thus by the condition (3.5) we have

sup
Ψ∈K

∫

|v|>R

|Q+(Ψ)(v)|2dv → 0 (R → ∞). (3.9)

Next we prove that

sup
Ψ∈K

‖Q+(Ψ)(· + h) −Q+(Ψ)‖L2 → 0 (h→ 0). (3.10)

Let

BR(z, ω) = B(z, ω)1{|z|≤R} = b(θ)|z|β1{|z|≤R}

and let Q+
R(·) be the gain operator corresponding to the smaller kernelBR(z, ω). Since

∫

S2 BR(·, ω)dω ∈
L2(R3), it follows from the regularity property of Boltzmann gain operator Q+(·) that there is a positive
measurable function ξ 7→ KR(|ξ|), which is determined only by the kernelBR(·, ·), such that

∫

R3

KR(|ξ|)|Q+
R(Ψ)∧(ξ)|2dξ ≤ ‖Ψ‖2

L2. (3.11)

and

KR(|ξ|) → ∞ as |ξ| → ∞ . (3.12)
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This is essentially Lions’ compactness result, (see [8], [18], [23] and [23]). Now (3.11) and (3.12) together
with the identity

‖Q+
R(Ψ)(· + h) −Q+

R(Ψ)‖2
L2 = (2π)−3

∫

R3

|Q+
R(Ψ)∧(ξ)|2|ei〈ξ,h〉 − 1|2dξ

and

sup
Ψ∈K, ξ∈R3

|Q+
R(Ψ)∧(ξ)| ≤ sup

Ψ∈K
‖Q+(Ψ)‖L1 <∞ (3.13)

imply

sup
Ψ∈K

‖Q+
R(Ψ)(· + h) −Q+

R(Ψ)‖L2 → 0 (h→ 0) ∀R > 0. (3.14)

On the other hand, because |v′−v′∗| = |v−v∗|, we have Q+(Ψ)−Q+
R(Ψ) = Q+(ΨR), where ΨR(v, v∗) =

11{|v−v∗|>R}Ψ(v, v∗). Thus by the L2-estimate and the condition (3.5),

sup
Ψ∈K

‖Q+(Ψ) −Q+
R(Ψ)‖2

L2 = sup
Ψ∈K

‖Q+(ΨR)‖2
L2

≤ 2C sup
Ψ∈K

∫

|v|+|v∗|>R

|Ψ(v, v∗)|(1 + |v|2 + |v∗|2)βdvdv∗ → 0 (R → ∞). (3.15)

Thus the triangle inequality

‖Q+(Ψ)(· + h) −Q+(Ψ)‖L2 ≤ ‖Q+
R(Ψ)(· + h) −Q+

R(Ψ)‖L2 + 2‖Q+(Ψ) −Q+
R(Ψ)‖L2

together with (3.14) and (3.15) implies (3.10) which together with (3.9) implies the compactness of {Q+(Ψ)}Ψ∈K
in L2(R3 × R3).

To prove the L2-compactness of {Q+(Ψ |F )}Ψ∈K, we consider the inverse Fourier transform ofF :

F (v∗) = (2π)−3

∫

R3

F̂ (ξ)ei〈ξ,v∗〉dξ .

By assumption F̂ ∈ L1(R3). Since ei〈ξ,v∗〉 = e−i〈ξ,v〉ei〈ξ,v′〉ei〈ξ,v′
∗〉, it follows by Fubini’s theorem, that

Q+(Ψ |F )(v) = (2π)−3

∫

R3

F̂ (ξ)e−i〈ξ,v〉Q+(χξΨ)(v)dξ (3.16)

where

χξ(v, v∗) = ei〈ξ,v〉ei〈ξ,v∗〉 .

By definition, χξΨ ∈ K, and so the Minkovski inequality can be applied to (3.16), and this gives

‖Q+(Ψ |F )(· + h) −Q+(Ψ |F )‖L2

≤ (2π)−3

∫

R3

|F̂ (ξ)| ‖Q+(χξΨ)(· + h)e−i〈ξ,h〉 −Q+(χξΨ)‖L2dξ

≤ (2π)−3 sup
Ψ∈K

‖Q+(Ψ)‖L2

∫

R3

|F̂ (ξ)| |e−i〈ξ,h〉 − 1|dξ

+ (2π)−3

∫

R3

|F̂ (ξ)|dξ sup
Ψ∈K

‖Q+(Ψ)(· + h) −Q+(Ψ)‖L2 .

This implies that

sup
Ψ∈K

‖Q+(Ψ |F )(· + h) −Q+(Ψ |F )‖L2 → 0 (h→ 0).

because of the assumedL2-bounds on F̂ , and the already obtained estimate on ‖Q+(Ψ)(·+h)−Q+(Ψ)‖L2

(the inequality (3.10)). And equation (3.9) leads to the estimate

sup
Ψ∈K

∫

|v|>R

|Q+(Ψ|F )(v)|2dv ≤ ‖F‖2
L∞ sup

Ψ∈K

∫

|v|>R

|Q+(Ψ)(v)|2dv → 0 (R → ∞).

Thus the set {Q+(Ψt |F )}Ψ∈K is also relatively compact inL2(R3). This proves the first part of Lemma 4.
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To prove the second part of the Lemma, let Ψn be a sequence in K that is weakly converging to zero in
L1(R3 × R3). We have to prove that limn→∞ ‖Q+(Ψn)‖L2 = 0 and that limn→∞ ‖Q+(Ψn |F )‖L2 = 0.
For anyR > 0 we have

Q+
R(Ψn)∧(ξ)

=

∫∫

R3×R3

Ψn(v, v∗)

(
∫

S2

BR(v − v∗, ω)ei〈ξ,v′〉dω

)

dvdv∗ → 0 (n → ∞).

Also (3.13) we can deduce L∞-bounds on supn≥1 supξ∈R3 |Q+
R(Ψn)∧(ξ)| < ∞. Combining this with

(3.11), (3.12) and using the dominated convergence theorem gives

‖Q+
R(Ψn)‖2

L2 = (2π)3
∫

R3

|Q+
R(Ψn)∧(ξ)|2dξ → 0 (n → ∞) ∀R > 0.

Therefore in the inequality
‖Q+(Ψn)‖L2 ≤ ‖Q+

R(Ψn)‖L2 + sup
Ψ∈K

‖Q+(Ψ) −Q+
R(Ψ)‖L2

first letting n → ∞ then letting R → ∞ (using (3.15)) we obtain that limn→∞ ‖Q+(Ψn)‖L2 = 0. Next
by (3.16) and the Minkovski inequality,

‖Q+(Ψn |F )‖L2 ≤ (2π)−3/2

∫

R3

|F̂ (ξ)|‖Q+(χξΨn)‖L2 dξ. (3.17)

It is obvious that for any ξ ∈ R3, {χξΨn}n≥1 ⊂ K and that χξΨn ⇀ 0 weakly in L1(R3 × R3). Thus
limn→∞ ‖Q+(χξΨn)‖L2 = 0, ∀ ξ ∈ R3. Since

sup
n≥1,ξ∈R3

‖Q+(χξΨn)‖L2 ≤ sup
Ψ∈K

‖Q+(Ψ)‖L2 <∞ (3.18)

and F̂ ∈ L1(R3), it follows from the dominated convergence theorem that the right hand side of (3.17)
tends to 0 as n→ ∞. This completes the proof of Lemma 4. �

The next lemma is a general result about weak convergence of products. It is naturally used in the study
of kinetic equations, and one version can be found for example in [6]. The proof is short, and we present it
here for completeness.
Lemma 6. Let {Pt}t≥t0 , {Qt}t≥t0 be two families of complex-valued measurable functions defined on
R

N which satisfy one of the following two conditions (∗), (∗∗) :

∗ {Pt}t≥t0 is relatively weakly compact in L1(RN ), supt≥t0 ‖Qt‖L∞(RN ) <∞,
and limt→∞Qt(v) = 0 a.e. v ∈ R

N ;
∗∗ {Pt}t≥t0 , {Qt}t≥t0 ⊂ L2(RN ), Pt ⇀ 0 (t→ ∞) weakly inL2(RN ), and {Qt}t≥t0 is relatively

compact in L2(RN).

Then

lim
t→∞

∫

RN

Pt(v)Qt(v)dv = 0.

Proof: The proof for the condition (∗) is easy: in fact in this case we have ‖PtQt‖L1 → 0 (t → ∞). Now
suppose the condition (∗∗) is satisfied. Choose a sequence tn → ∞ (n → ∞) such that

lim sup
t→∞

∣

∣

∣

∣

∫

RN

Pt(v)Qt(v)dv

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

∫

RN

Ptn
(v)Qtn

(v)dv

∣

∣

∣

∣

=: A.

By the compactness of {Qt}t≥t0 , there exist a subsequence {tnk
}∞k=1 of {tn}∞n=1 and a function Q∞ ∈

L2(RN ) such that ‖Qtnk
−Q∞‖L2 → 0 (k → ∞). Since {Ptn

}∞n=1 is weakly convergent, it is bounded:
C = supn≥1 ‖Ptn

‖L2 <∞. Therefore, because Ptn
⇀ 0 (n → ∞) weakly in L2, we obtain

A = lim
k→∞

∣

∣

∣

∣

∫

RN

Ptnk
(v)Qtnk

(v)dv

∣

∣

∣

∣

≤C lim
k→∞

‖Qtnk
−Q∞‖L2 + lim

k→∞

∣

∣

∣

∣

∫

RN

Ptnk
(v)Q∞(v)dv

∣

∣

∣

∣

= 0 ,
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which ends the proof. �

All that remains in this paper, is the Proof of Theorem 3. Actually, the proof of the first part is given just
after the statement, and the full theorem is proven when it has been established that

‖f(t) − F‖L2 → 0 (t→ ∞). (3.19)

In fact, using the identity |f − F | = f − F + 2(F − f)+ we find that for any R > 0 and for CR =
2(1 +R2)(4π

3 R
3)1/2,

‖f(t) − F‖L1
2
≤ CR‖f(t) − F‖L2 + 2

∫

|v|>R

F (v)(1 + |v|2)dv ,

which means that the convergence (3.19) implies (3.2).
To prove (3.19), we first prove that

1

2

d

dt
‖f(t)−F‖2

L2

≤ −
∫

R3

(f − F )2
(
∫∫

R3×S2

BF∗(1 − F ′ − F ′
∗)dωdv∗

)

dv +W (t) , (3.20)

for some functionW (t) satisfying W (t) → 0 (t→ ∞). The proof is now carried out in several steps.

Step 1: The function t 7→ ‖f(t) − F‖2
L2 is in C1[0,∞) and

1

2

d

dt
‖f(t) − F‖2

L2 =

∫

R3

Q(f)(v, t)
(

f(v, t) − F (v)
)

dv, t ≥ 0. (3.21)

This is easy, however, the it requires some steps of calculation to verify that the right-hand side of (3.21) is
continuous.

Step 2: Here we expand the right-hand side of (3.21). Using the identities
f ′f ′

∗(1 − f)(1 − f∗) − ff∗(1 − f ′)(1 − f ′
∗) = f ′f ′

∗(1 − f − f∗) − ff∗(1 − f ′ − f ′
∗) ,

and
F ′F ′

∗(1 − F − F∗) − FF∗(1 − F ′ − F ′
∗) = 0 ,

we find that
(

f ′f ′
∗(1 − f)(1 − f∗) − ff∗(1 − f ′)(1 − f ′

∗)
)(

f − F
)

=(f ′f ′
∗ − F ′F ′

∗)(1 − F − F∗)(f − F ) − f ′f ′
∗(f + f∗ − F − F∗)(f − F )

− f(f∗ − F∗)(1 − F ′ − F ′
∗)(f − F ) − F∗(f − F )2(1 − F ′ − F ′

∗)

+ ff∗(f
′ + f ′

∗ − F ′ − F ′
∗)(f − F ) . (3.22)

Then we can compute the integrals of each of the five terms in the right hand side separately. The first term
becomes

∫∫∫

R3×R3×S2

B(f ′f ′
∗ − F ′F ′

∗)(1 − F − F∗)(f − F )dωdv∗dv

=

∫

R3

(1 − F )(f − F )

(
∫∫

R3×S2

B(f ′f ′
∗ − F ′F ′

∗)dωdv∗

)

dv

−
∫

R3

(f − F )

(
∫∫

R3×S2

B(f ′f ′
∗ − F ′F ′

∗)F∗dωdv∗

)

dv ,

and the third and fourth are
∫∫∫

R3×R3×S2

B
(

− f(f∗ − F∗)(1 − F ′ − F ′
∗)(f − F )

)

dωdv∗dv

= −
∫

R3

f(f − F )

(
∫

R3

(f∗ − F∗)

(
∫

S2

B(1 − F ′ − F ′
∗)dω

)

dv∗

)

dv,
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and
∫∫∫

R3×R3×S2

B
(

− F∗(f − F )2(1 − F ′ − F ′
∗)
)

dωdv∗dv

= −
∫

R3

(f − F )2
(
∫∫

R3×S2

BF∗(1 − F ′ − F ′
∗)dωdv∗

)

dv,

respectively. In the second and last term of (3.22) we change variables (v, v∗) 7→ (v∗, v) and (v, v∗) 7→
(v′, v′∗) , which gives

∫∫∫

R3×R3×S2

B
(

− f ′f ′
∗(f + f∗ − F − F∗)(f − F )

)

dωdv∗dv

= −1

2

∫∫∫

R3×R3×S2

Bf ′f ′
∗(f + f∗ − F − F∗)

2dωdv∗dv ≤ 0 . (3.23)

Finally,
∫∫∫

R3×R3×S2

Bff∗(f
′ + f ′

∗ − F ′ − F ′
∗)(f − F )dωdv∗dv

=

∫∫∫

R3×R3×S2

Bf ′f ′
∗(f + f∗ − F − F∗)(f

′ − F ′)dωdv∗dv

=

∫∫∫

R3×R3×S2

B(f − F )f ′f ′
∗(f

′ − F ′)dωdv∗dv

+

∫∫∫

R3×R3×S2

B(f∗ − F∗)f
′f ′

∗(f
′ − F ′)dωdv∗dv

=

∫

R3

(f − F )

(
∫∫

R3×S2

Bf ′f ′
∗(f

′ + f ′
∗ − F ′ − F ′

∗)dωdv∗

)

dv.

Now let
Ψt(v, v∗) = f(v, t)f(v∗, t) − F (v)F (v∗),

Ψ̃t(v, v∗) = f(v, t)f(v∗, t)[f(v, t) + f(v∗, t) − F (v) − F (v∗)],

ψ(v, v∗) =

∫

S2

B(v − v∗, ω)(1 − F ′ − F ′
∗)dω,

and let

W (t) =

∫

R3

(1 − F )(f − F )Q+(Ψt)(v)dv −
∫

R3

(f − F )Q+(Ψt|F )(v)dv

+

∫

R3

(f − F )Q+(Ψ̃t)(v)dv −
∫

R3

f(f − F )

(
∫

R3

(f∗ − F∗)ψ(v, v∗)dv∗

)

dv . (3.24)

Then, omitting the negative term (3.23), we obtain
∫

R3

Q(f)(v, t)[f(v, t) − F (v)]dv

≤ −
∫

R3

(f − F )2
(
∫∫

R3×S2

BF∗(1 − F ′ − F ′
∗)dωdv

)

dv +W (t).

This gives the inequality (3.20).

Step 3: Here we prove that W (t) converges to zero. For this it is enough to check the conditions in
Lemma 6 and Lemma 4. First of all we have

(

f(·, t) − F
)

⇀ 0 weakly in both L1(R3) and L2(R3). (3.25)

The weak L1-convergence is a known result, and the weak L2-convergence follows directly from this and
the L∞-bounds.

Note now that the sets K = {Ψt}t≥1 and K = {Ψ̃t}t≥1 all satisfy the conditions (3.4)-(3.5) in Lemma 4.
That follows from the fact that 0 ≤ f, F ≤ 1, that 0 ≤ β ≤ 1, and from the moment estimates which
implies that supt≥1 ‖f(t)‖L1

s
<∞ for some s > 2.
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Also, since F is a Fermi-Dirac distribution (1.2), it is obvious that its Fourier transform F̂ belongs to
L1(R3). Thus by Lemma 4, the sets {Q+(Ψt)}t≥1, {Q+(Ψt|F )}t≥1, and {Q+(Ψ̃t)}t≥1 are all relatively
compact in L2(R3), and therefore by Lemma 6 the first three integrals in the right hand side of (3.24) tend
to 0 as t→ ∞. For the last integral in (3.24), we choose

Pt(v) = f(v, t)(f(v, t) − F (v))
√

1 + |v|2,

Qt(v) =

∫

R3

(f(v∗, t) − F (v∗))
ψ(v, v∗)
√

1 + |v|2
dv∗.

Since f and F are bounded, and ‖f(t)‖L1
2
≡ ‖f0‖L1

2
< ∞, it follows that {Pt}t≥0 is relatively weakly

compact in L1(R3). Also, by definition of ψ(v, v∗) and 0 ≤ β ≤ 1, we have

|ψ(v, v∗)|
√

1 + |v|2
≤ A0(1 + |v∗|2)1/2

and so by L1-weak convergence in (3.25) we have Qt(v) → 0 (t → ∞) for almost every v ∈ R3. Also
it is obvious that supt≥0 ‖Qt‖L∞ < ∞. Thus by Lemma 6, the last integral in (3.24) also tends to 0 as
t→ ∞. This proves limt→∞W (t) = 0.

The final step is where the high temperature condition comes into play. The game is to prove that there
is a constant c such that

∫∫

R3×S2

BF∗(1 − F ′ − F ′
∗)dωdv∗ ≥ c ∀ v ∈ R

3. (3.26)

This would conclude the proof of Theorem 3, because then (3.20) and (3.26) together give the estimate

1

2

d

dt
‖f(t) − F‖2

L2 ≤ −c‖f(t) − F‖2
L2 +W (t), t ≥ 0

and therefore

‖f(t) − F‖2
L2 ≤ ‖f0 − F‖2

L2 e−2ct + 2e−2ct

∫ t

0

e2cτ W (τ)dτ → 0 ,

as t→ ∞, because W (t) converges to 0 as time goes to infinity.
This completes the proof of the strong convergence (3.2), once (3.26) has been established. Now, since

the function γ(x) is strictly increasing, the formula (1.12) implies that the temperature condition T ≥
γ(1)TF is equivalent to the condition a ≤ 1 where a > 0 is the coefficient in the Fermi-Dirac distribution
F for the rescaled number ε = 1. Let F̄ (r) = a/(ebr2

+ a). Then, since the mean velocity is zero and
a ≤ 1, we have F (v∗) = F̄ (|v∗|) ≤ 1/2. Because the collisions conserve energy, |v′|2 + |v′∗|2 ≥ |v∗|2,
and it follows that

F (v∗)[1 − F (v′) − F (v′∗)] ≥ F̄ (|v∗|)
(

1

2
− F̄ (

1√
2
|v∗|)

)

:= G(|v∗|).

And G(r) > 0 for all r > 0. Thus by β ≥ 0 we obtain that for all v ∈ R3

∫∫

R3×S2

BF∗(1 − F ′ − F ′
∗)dωdv∗

≥ A0

∫

R3

G(|v∗|)|v − v∗|βdv∗ ≥ 1

2
A0

∫

R3

G(|v∗|)|v∗|βdv∗ := c > 0 ,

and hence the the proof of Theorem 3 is complete. �
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