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Abstract

The general coalescent process with simultaneous multiple mergers of ancestral lines
was initially characterized in [13] in terms of a sequence of measures defined on the
finite-dimensional simplices. A more compact characterization of the general coalescent
requiring a single probability measure = defined on the infinite simplex A was suggested
in [17].

This paper presents a simple criterium of weak convergence to the ZE-coalescent.
In contrast to the earlier criterium of [13] based on the moment conditions, the key
condition here is expressed in terms of the joint distribution of the ranked offspring
sizes. This criterium interprets a vector x € A as the ranked fractions of the total
population size assigned to sibling groups constituting a (rare) generation, where a
merger might occur.

An example of the general coalescent is developed on the basis of the Poisson-
Dirichlet distribution. It suggests a simple algorithm of simulating the Kingman coa-
lescent with occassional (simultaneous) multiple mergers.

AMS 1991 subject classifications: 92D25, 92D15, 60F17.
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1 Introduction

The well-known Kingman coalescent ([7], [8], [9]) is a continous time Markov chain { Ry (%) };>0
describing a robust asymptotic pattern for the genealogical tree of a large population. The
genealogical tree is build bottom up: starting with n leaves corresponding to a random sam-
ple of genes in the current generation and ending with the root of the tree corresponding
to the most recent common ancestor of the sampled genes. The hold-and-jump picture of
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the Markov chain {R(t)}+>0 is very simple: if n is the current number of branches, wait a
period proportional to (5), and then reduce the number of branches to (n — 1) by joining a
pair of branches picked up uniformly at random among (Z) available pairs.

The first robustness result [8] concerning the Kingman coalescent is stated in the frame-
work of the Cannings exchangeable population model [3] describing a haploid population of
constant population size N with non-overlapping generations. The assumptions of Cannings
model concern the vector of offspring sizes (vy,...,vy) for N individuals constituting one

generation. The constant population size condition
v+...+vy=N (1)

requires that the total offspring number equals to the number of parents. It is assumed also
that there is no dependence between vectors (vy,...,vy) for different generations and that
all generations share the same reproduction law, that is the joint distribution of (v4,...,vnN).
Finally, the Cannings model assumes that

(v1,...,vn) has an exchangeable joint distribution. (2)

Note that under these assumptions all the offspring sizes v; within one generation are equally
distributed and E(v;) = 1.

The genealogy of a population with non-overlapping generations is defined by Kingman
as a Markov chain {R(k)}k=0,1... with a finite number of states which are different partitions
of the set of labels {1,...,n} representing n individuals sampled in generation k = 0. The
initial state R(0) = {(1);...;(n)} says that the genealogical tree construction starts with
n leaves. For k > 1 the partition R(k) describes the tree state k generations back. The
number of parts forming the partition R(k) gives the number of branches in the tree at the
backward time k. Different parts of the partition R (k) label the branches in an informative
way showing the subsets of leaves stemming from different branches. For instance, if n = 5,
then partition R(6) = {(1, 3); (2,4, 5)} says that six generations ago there were two ancestors
to the five sampled individuals and that individuals (1,3) stem from one the ancestors while
individuals (4,5,6) stem from the other.

It turns out that the coalescent rate for the Cannings population model depends on the
asymptotics of the offspring size variance o% := Var(vy).

Proposition 1.1 (from [8]) Suppose conditions (1) and (2) hold and
o =02, N =00, 0< 0’ < 0. (3)

If furthermore,
supE(vF) < o0, k> 3, (4)
N

then the finite-dimensional distributions of {R([Nt])}+>0 converge to those of {Ro(0t)}i>0.

Conditions (3) and (4) introduce a wide class of reproduction laws falling into the do-
main of attraction of the Kingman coalescent. A key example here is the Wright-Fisher
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viously satisfying (2). In this case the marginal distribution of the offspring size is binomial

population model with the symmetric multinomial Mn(N ) reproduction law ob-

v € Bin(N, ;) with variance 0% = 1 — % and descending factorial moments

*)
E (1) = N N® = NN = 1)... (N =k +1).

Thus for the Wright-Fisher model conditions (3) and (4) are satisfied with o2 = 1.

However, this class fails to encompass the important Moran population model with the
ordered offspring sizes being equal v(1) = 2,v(2) = y(n_1) = 1,¥(n) = 0 with probability one.
Due to the exchangeability assumption the marginal offspring distribution for the Moran
population is

2 1
P(l/lzl):l—ﬁ, P(V1:0):P(V1:2):N,
which implies that o% = % converges to zero as N — o0, so that (3) does not hold.

Nevertheless, as it was shown in [7], the Moran population model does belong to the domain
of attraction of the Kingman coalescent, though under a different time scaling Ty = N?2/2,
so that {R([N?t/2])}+>0 converges to {Ro(t)}s>0 as N — oo.

The cited convergence results by Kingman suggest a general formula

Tn = N/ok (5)

for the time scaling in the ancestral process. This relation has a simple explanation in terms

of
1 = o) oN
ey =E N(z);Vi = N_T’ (6)

the probability that a randomly chosen pair of individuals have the same parent. Since

the Cannings model of non-overlapping generations treats the reproduction process as a
sequence of i.i.d. trials, the time untill the most recent common ancestor for two individuals
has a geometric distribution with mean 1/cy ~ Ty as N — oo.

The minimal convergence conditions for the Kingman coalescent are established in [12]
under assumptions (1) and (2).

Proposition 1.2 (from [12]) Suppose conditions (1) and (2) hold. The time-scaled ge-
nealogical process {R([Tnt]) }+>0 weakly converges to {Ro(t)}+>o0 if and only if the time scale
T is defined by (5),

0% =o(N), N = oo, (7

and
E((vz1 —1)®) = o(No%), N — oo. (8)

From now on the time scale T is tacitly assumed to be defined by (5). In Section 4 we
give an alternative proof of Proposition 1.2 as a corollary of the main result of this paper
Theorem 2.1. In particular, we show that under conditions of Proposition 1.2 the asymptotic
relation (8) is equivalent to

2

P(u1>Ne)=o(%),N—)oo,e>O. (9)



Condition (7) stipulates that the mergers of ancestor lines are rare events, which results in a
continuous time limit coalescent. Since (3) entails (7) and Ty ~ £ as N — oo, Proposition
1.2 implies the following improvement of Proposition 1.1.

Corollary 1.1 Under assumptions (1), (2), and (8) the time-scaled genealogical process
{R(INt])) }+>0 weakly converges to {Ro(to?)}1>0 if and only if E(v3) = o(N) as N — oo.

In contrast to the pairwise merger a multiple merger is a coalscent event where three or
more branches join at one point. The number of branches joining together will be called the
merger size. Condition (8) effectively prohibits multiple mergers of ancestral lines in a large
population, which is necessary for convergence to the Kingman coalescent process of pairwise
mergers. A situation where condition (8) does not hold was first considered in [15]. It was
shown that in the case of increased offspring size variability a new coalescent pattern arises,
which is described by a probability measure F' on the unit interval [0,1]. Given that (8) is
not valid, the measure F' has a positive mass outside zero and the coalescent with positive
probability has multiple mergers (see Corollary 2.1). This coalescent model is called here
an asynchronous coalescent { Rr(t)}:+>0, since it prohibits simultaneous mergers of ancestral
lines.

The measure F' will be called the coalescent rate measure, since it determines the tran-
sition rates of the coalescent Markov chain {Rp(t)};>0. The fact that F' is a proba-
bility measure reflects the special choice (5) of the time scale T). Observe that a lin-
ear time acceleration by factor A transforms the coalescent rate measure to a finite mea-
sure A(dz1) := AF(dw1), so that {Rp(t/A)}i>0 = {Ra(t)}t>0. The Kingman coalescent
(with unit coalescent rate) {Ro(t)}+>0 is a special asynchronous coalescent corresponding to
F = §g, the probability measure concentrated at zero.

The asynchronous A-coalescent was first introduced in [14] (paper [15] is written later
though independently from [14]) in the spirit of the theory of exchangeable random partitions
[9] using a Poisson process construction. Such a construction makes it possible to model a
stochastic tree starting from infinitely many leaves. In [14] special attention is paid to the
case of the uniform coalescent rate measure, first discussed in [2]. The important question of
whether the asynchronous coalescent comes down from infinity (discussed earlier in [14] and
[15]) is fully answered in [16]. An alternative way of introducing the asynchronous coalescent
is suggested in Section 5.1 of [4].

The most general case of simultaneous multiple mergers was first addressed in [13],
where the moment conditions of [15] concerning the joint distribution of offspring sizes
are relaxed allowing for stronger dependence between offspring sizes. The coalescent with
simultaneous multiple mergers was further investigated in [17] by extending the Poisson
process construction of [14]. It is shown that the general coalescent is characterized by
a finite measure = (which will be also called the coalescent rate measure) defined on the

infinite simplex

oo
A ={(z1,22,...) 121 > 22> ... >0, ingl}.
i=1

In Section 2 we give necessary and sufficient conditions for convergence to the Z-coalescent
with the coalescent rate measure = being a probability measure. The main results of this



paper are stated as Theorem 2.1 and Theorem 2.2. Theorem 2.1 is a general convergence
result without the assumption (2) of exchangeability (cf. [11] dealing with the Kingman
coalescent). It suggests to interpret the components of a vector (z1,z2,...) € A as the
population size fractions assigned to the ranked offspring sizes in a rare generation, where a
multiple merger has occured. Theorem 2.2 is a counterpart of Theorem 2.1 concerning the
discrete-time =-coalescent. Theorem 2.1 is proven in Section 4, the proof of Theorem 2.2 is
similar and therefore omitted.

Section 3 is devoted to a simple example of an exchangeable population, whose genealog-
ical process is approximated by a =-coalescent with = being closely related to the Poisson-
Dirichlet distribution. We call this particular coalescent process the Poisson-Dirichlet coa-
lescent. The transition probabilities of the Poisson-Dirichlet coalescent are explicitely com-
puted, and it is worth to notice that the Ewens distribution probabilities show up in the
formula for the total collision rate. In Section 5 we return to the exchangeable case and
state convergence results in terms of the raw moment conditions (in contrast to the central

moment conditions of [15] and [13]).

2 Summary of convergence results

Concider a certain type of r simultaneous mergers transforming b ancestral lines to a smaller
number (r + s) of lines, where it is assumed that s lines remain unchanged and r new
lines are formed by simultaneously coalescing groups of size ki,...,k. > 2, so that b =
k1+...+k-+s. Following [17] we call this change in a tree a (b; k1, ..., kr; 8)-collision. Note
that a permutation of indices (ki,- .., k,) does not change the collision type (b; k1, .., k:; s)
producing only another label for the same collision type. The full set of possible collision
types is given by

Ky :={(b;k1,.- . kr;8): ki +...+kr+s=b k1 >...>2k>2,8>0, r>1}

Observe also that given b distinct ancestral lines and a collision type (b; k1, - .., k.;s) with
r > 1, there are several ways of suitable partitions of the b lines into the (r + s) clusters,
and the number of possible (b; k1, . .., ky; s)-collisions for
(kiy..., kry8)=(by...;0b—1,...,b—1,...,2,...,2,11). (10)
—_— —— ——
lb lb—l l2
is ) )
Mb;kl,...,kr;s = ( )bi (11)
kl: LAY kr,S Hj:Z lJ‘

Let Py, ... k,;s be the probability that a certain collision of type (b; k1, . .., kr; s) occurs,
when b ancestral lines are traced one generation back. According to [8] given an exchangeable
reproduction law (vq,...,vy) this probability equals

N(r+s) - ( (k1)

Poky,.okis = N(b) LS --Vﬁkr)”r—i-l s VT+5) : (12)



Proposition 2.1 (from [13]) If (1), (2), and (7) hold, the time-scaled genealogical process
{R([Tnt])}t>0 weakly converges to some limit coalescent process {R(t)}i>o if and only if
there exist

Agyyky = lim NTPTE ((p — D L (1, = 1)F) (13)

N—oo
for all ky,...,k. > 2 and r > 1, where b := ky + ... + k.. The (b;k1,...,ky;s)-collision
rates of the Markov chain {R(t)}i>0 for s =0 are Apky,... k0 = Aky,..k, and for s > 1 can

be computed from the recursion

T

Abt13k1,eenskristl = Abiky,knis — § AB4Lik1 peveskom = 1 ko A1 R 15eeo ks
m=1
- 3)‘b+1;k1,...,kr,2;s—1; kl) .. -7k’r‘ Z 23 T Z 17 § Z 0. (14)

The set of rates {Apk,,... k.;s } Provides with the following hold-and-jump description of
the general coalescent { R(t)}¢>0. It holds on a state with b ancestral lines for an exponential
time with mean X\, = ZK,, Abskr,eokr;s Mbsky .. ks, Where My, k. .5 is given by (11). When
the holding time is over, a collision of type (b; k1, ..., kr; s) (one among My, .. k..s possible)
occurs with probability 3-Apk,,... k.s-

It follows from [13] that if Ag,,. . = O for some ki,...,k, > 2, then automatically
Apy,.kr, = 0 for all ' >rand K > ki,...,k. > kp, k. > 2,..., k., > 2. In particular,

Proposition 2.1 entails the following improved version of the convergence result of [15].

Corollary 2.1 (cf. [15]) Suppose conditions (1), (2), (7) hold while condition (8) does not.

If
E((r1 —1)*(vr2 — 1)) = o(No%), N — oo, (15)

then the time-scaled genealogical process {R([Tnt])}i>0 weakly converges if and only if
B((v1 — D¥) ~ AN 203, N = 00, k>3, (16)

where 1 > Az > Ay > ... > 0. In this case the limit process is an asynchronous coalescent
{Rr(t)}s>0, whose collision rates are specified in terms of a probability measure F. The
coalescent rate measure F is uniquely defined on the unit interval [0,1] via its moments
fol P F(dz) = Ajto, k > 0, where As := 1. The collision rates of {Rr(t)}1>0 satisfy

1
Mot oss = 1{T:1}/ 21— 2) F(da), 1> 1, by ke >2, 820, (17)
0

and \p = 01

1=(=a)—be(=0)""" p(ga), b > 2.

This result excludes convergence to the Kingman coalescent and by condition (15) pro-
hibits simultaneous mergers of ancestral lines. The asynchronous coalescent {Rr(t)}:>0 is
characterised by positive tree collapse rates Ay, = Agk;0, £ > 3 (a tree collapse is a single
merger involving all branches of the tree). It follows that the limit coalescent can not have
bounded merger sizes k;: if A3 > 0, then A > 0 for all k£ > 3.



According to [17] there is a unique probability measure E defined on the simplex A
determining the collision rates of the limit coalescent {R(t)}:>0 in Proposition 2.1 by

)\b;kl,...,kr;s = al{r:l,k1:2} (18)

s
s i\ -
3 R DD S (S ) ECoae
A \JS0 it vy
where (z,z) := 32, 22, 1o := 1 — )2, =;, and a is the mass assigned by E to the zero
point (0,0,...) of the infinite simplex A. Notice that in the last integral the integrand has
no sigularity at zero since

e
S k1 knr s—j
0< E E ()a:“ O S TR Y. /(z, )

=0 v ey

o0 Ll
S _a
<ray ()xo PN Y w i, | @) =1
=1 j=o M i i
for any nonzero z € A given r > 1.
The set of rates

A2;2:0 = 15 by, krs0 :/ Z gt ... | E(dz)/ (2, )
A\ #ir
for all k, > 3, r =1 and ky,...,k- > 2, 7 > 2, uniquely determines the coalescent rate
measure 2. If 2 is concentrated on the set {(21,0,0,...) : z1 € [0, 1]}, then it is essentially a
probability measure F' on [0,1], and the collision rates of the coalescent process {Rr(t)}:>0
obtained in Corollary 2.1 can be deduced from (18).

So far we have assumed that the joint distribution of the offspring sizes is exchangeable.
This excludes for example the so-called generalized Wright-Fisher model [11] based on the not
necessarily symmetric multinomial Mn(N; py, ..., py) distribution for the vector of offspring
sizes (v1,...,vyN). Next we present the main result of this paper, Theorem 2.1, which states
necessary and sufficient conditions for the weak convergence to the =Z-coalescent in terms of
the ordered offspring sizes v(1) > ... > y(n) without the exchangeability assumption (2).

The proper time scale Ty in this more general case might be again defined by (5), now
with o3 being the variance of the offspring size v of a randomly chosen individual. This
follows from the next counterpart of relation (6): since E(v) = 1, the coalescence probability
¢y in the non-exchangeable case equals

N N
_ 1 @) _ _1 (1 > _ Var(y)

Theorem 2.1 Let ®n(dz) be the joint distribution of the vector (“,...,"%2) of the

ranked relative frequences for sizes of N sibling groups constituting a generation. If (1)

and (7) hold, then the time-scaled genealogical process {R([ITnt])}t>0 weakly converges to
the Z-coalescent if and only if the weak convergence condition

Tn®n(dz) — E(dx)/(z,z), N = 00 (19)



holds on AN {x1 > €} for any € > 0, where Z is some probability measure on A.

Following Section 4 of [1] we treat A as a subset of the metric space R with the
topology of coordinatewise convergence. The weak convergence (19) holds if and only if the
weak convergence of the tail distribution functions

TnP(v) > Nz1, ..., v > Nzp) = /A Liyi>er,yn>2.32(dy) /(¥,4), N = 00 (20)

holds over z; > ... >z, > 0 for all r > 1.
Next two corollaries of Theorem 2.1 address the cases of the asyncronous coalescent and
the Kingman coalescent.

Corollary 2.2 Under assumptions (1) and (7) the process {R([Tnt])}+>0 weakly converges
to the asyncronous F-coalescent if and only if

1
TnP(v) > Nx) —>/ y ?F(dy), N = oo (21)

for all points x > 0 of continuity of a probability measure F defined on the unit interval
[0,1], and
TNP(V(2) > NE) —+0, N —>o00, €e>0. (22)

Condition (22) excludes simultaneous mergers by prohibiting two large sibling groups
(of size > Ne) in the same generation among Ty consecutive generations. Relation (21)
illuminates the role of the largest offspring size in determining the merger size distribution
(17). This result implies in turn that if F' is concentrated at zero, then only pairwise mergers
are possible.

Corollary 2.3 Suppose that (1) and (7) hold. Condition
TnP(va) > Ne) -0, N = 00, €>0 (23)

is necessary and sufficient for the weak convergence of {R([Tnt])}+>0 to the Kingman coa-
lescent.

If instead of (7) it is assumed that
o ~Ne, N= o0, 0<c<1 (24)

(constant ¢ can not exceed one since 0% < N — 1), then there might exist a discrete-time
limit for the unscaled genealogical process. Condition (24) means that with probability ¢ a
pair of randomly chosen individuals in a large population are siblings.

Proposition 2.2 (from [13]) If (1), (2), and (24) hold, the discrete-time genealogical pro-
cess {R (k) } x>0 weakly converges to some discrete-time Markov chain {R(k)}r>o if and only
if there exist
Ay, = lim NTPE((r = DB (v = D)
N—o0

forall ky,....k. >2 andr >1, whereb=Fk + ...+ k,.



The one-step transition probabilities of the discrete-time coalescent {R(k)}r>o0 corre-

sponding to (byki,. .., ky;s)-collisions are computed from the recursion
T
pb+1§k1’---7kr§3+1 = pb;"’la---vkﬁs - E :pb“l‘l;kl7~~~akm—17km+likm+17~~~7k7‘§3
m=1

—  SPb+15k1,....kr,2;8—15 kla .. '7k7‘ > 23 r> ]-7 s> 07
where Pk, ... k0 = Aky,.oikn s

A characterization of the discrete-time coalescent in terms of a single measure defined
on the infinite simplex A is proposed in [17]. Let ® be an arbitrary probability measure on
the simplex A. The Markov chain with transition probabilities

S

S 4

Phikrye.skinis = / Z Z () xfll ...mf:xiﬂrl Ty Ty | @(dx)
A N\iZ0 it iy N

forr >1,k >2,...,k. >2,5s>0,b=kFk +...4+ k. + s is called here a discrete-time

®-coalescent. What follows is a discrete-time counterpart of Theorem 2.1.

Theorem 2.2 If (1) and (24) hold, the discrete-time genealogical process {R(k)}r>0 weakly
converges to the discrete-time ®-coalescent if and only if ® is the weak limit distribution of
the vector of ordered offspring proportions (V(—Al,), ey U(—ﬁ))

Remark. The definition of the discrete-time ®-coalescent given above slightly modifies
the Definition 36 of [17]. The limit process of Theorem 2.2 is the discrete-time =-coalescent

in the strict sense of Definition 36 from [17], if the limit distribution of (5,..., %) is
of the form ®(dx) = %l{zpo} + agdo(dz)1{,,—0y, Where &g is the Dirac measure on A

concentrated at zero and a non-negative constant ag is such that ®(A) = 1.

3 Poisson-Dirichlet coalescent

The best known example of a non-trivial probability measure on an infinite simplex is the
Poisson-Dirichlet distribution ITy(dz) with a positive parameter 6 defined on the infinite
simplex A* := {z € A : > x; = 1}. Calculations of Section 9.5 in [10] show that

r+s T
/* Z mfll...wf:a:irﬂ...:cirﬂ Iy (dz) = WH(ki_l)!

i17 Fir g i=1

forall r > 1, ky,...,k, > 2, s > 0, where as usual b = k;y + ... + k. + s and 6% :=
00 +1)...(0 +b—1) is the ascending factorial power. This formula suggests a natural
example of the discrete-time ITp-coalescent with explicit transition probabilities
gr+s r
Phiks.ookris = g [Ik: — 1) (25)

i=1

This will be called the Poisson-Dirichlet coalescent with parameter 6.



Using representation (10) put p(l1, ..., ) := Poky,.. .kwss and I := l1+...+1p. To compute
the total probability py of all mergers in the Poisson-Dirichlet coalescent with b ancestral
lines rewrite (25) as p(l1,...,lp) = 9[,,] H] 1((F = 1)1k Observe that due to (11)

bl bl
m= 2 L A S ATCT) o (] Z a[b L D12k bl

1,oonids !

where the sum is taken over all nonnegative integers I, ...,[; satisfying Z;’.:l jl; = b and
Iy < b. Since the last sum contains all except one (that with I; = b) probabilities constituting
the Ewens distribution (see [6] or [10]), we obtain p, = 1 — 6°/6[*l. This simple formula
clearly shows how the coalescent slows down as the number of branches in a tree decreases.
It reveals also the influence of the parameter 8 on the overall speed of the coalescent: larger
value of 6 brings lower speed. Recall that with the Kingman coalescent p, = (%), and notice
that 1 — 6°/611 ~ =1(%) as  — oo. Thus, if § — oo the Poisson-Dirichlet coalescent can
be approximated by the Kingman coalescent, as the multiple mergers become less and less
frequent.

We further enhance the example of the Poisson-Dirichlet coalescent by deducing it as the
limit process for an exchangeable reproduction model described by a compound multinomial
distribution. Recall first that the Wright-Fisher population model uses the symmetric multi-
nomial Mn(N;pi, . ..,pn) with p1 =... = py = 4 as the joint distribution of offspring sizes
(v1,...,vN). To extent this model we assume that the multinomial parameters (p1,...,pn)
are random and have a symmetric Dirichlet distribution D(a,..., @), so that the resulting
distribution of (v1,...,vN) is the so-called Dirichlet compound multinomial (cf. [6]):

N a[nll . a[nN]
P(l/lznl,...,VN:nN) = (nl nk)W (26)

This model is particularly convenient for the coalescent calculations in view of the next
formular for the joint moments:

(b)
(k) k), N\ AN T B 1S
E(y1 Ve 1/7-+s) = (Na)[b]a o alfrlaf, (27)
Equality (27) implies E (Vf")) = %, so that 0% = %: the smaller is «

the more variable become the offspring sizes, and the larger is a the closer is the model to
the Wright-Fisher model in which % = % If o does not depend on N the asymptotic
genealogy of the Dirichlet compound Wright-Fisher model is the Kingman coalescent. If
a = £ it is easy to verify that (12) and (27) imply the convergence to the Poisson-Dirichlet
coalescent. This derivation of the Poisson-Dirichlet coalescent illuminates the meaning of
the parameter 6: the smaller is § the more variable are offspring sizes and therefore the
faster goes coalescing.

It is a less straightforward excercise to obtain a colescent with continuous time from the
Dirichlet compound Wright-Fisher model. It requires a randomization of the parameter «
in such a way that most of the time a takes a value A, which does not depend on N, and

with a small probability « is inversely proportional to N:
0

P(a:A)—l—ﬁ, P(a N):%' (28)

10



In this case condition (3) holds with the limit variance 0% = 4+ + 155- Moreover, it follows

that the genealogical process {R([Nt])}:>0 weakly converges to the Z-coalescent, where

2 :=E(A,p,0) has an atom at zero of size a := %, which is the first term in the formula

for o2

, and outside zero the measure Z(A4,p,0) is closely related to the Poisson-Dirichlet
distribution.

Observe first that (27) and (28) imply
(k1) g+ ¥
B (A" v vegs) o~ pNTTT Lk =10+l s

which according to Proposition 2.1 and (12) entails that {RR([Nt])};>0 converges to a coa-
lescent with the collision rates
07‘+s T
Abski,eosknss = Pgar (ki = D'+ algpeq py=23-

i=1
The total rate of all mergers for b ancestral lines in the limit coalescent is Ay, = a(g) +

p (1 — 69[—;) Notice that when parameter p is relatively small we have a model of the King-
man coalescent of asynchronous pairwise mergers with occassional (simultaneous) multiple
mergers.

4 Proof of Theorem 2.1

Given a probility measure = on the infinite simplex A and a positive integer r we can

introduce a symmetric measure on the r-dimensional simplex

Ar = {('Z.].?"')a‘-T): '7:17"'7'7:7'207 $1++$r§1}

by
S = [T Honees | Ed)/0.0) (29)
A\ #ir
for all measurable S. These measures are infinite: ¥,.(A,.N{z1,..., 2,1 > €,2, > 0}) = 00,

but on the other hand, for all e >0 and r > 1

)< [ () (B) S na | S/ ) <€

. . € €
i1F. Fir

where A, . := A, N{z1,...,2, > €}. It turns out that the probability measure Z is uniquely
determined by the sequence of measures {¥,},>.

Lemma 4.1 Assume (1), (2), (7) and let ¥, n stand for the symmetric measure on A,

Vi Vr

giving the joint distribution of the vector (ﬁ, . "’F) of mormalized offspring sizes. The
time-scaled genealogical process (Rirys)i>0 weakly convergence to the Z-coalescent if and

only if the weak convergence
N'TNy¥, Ny > ¥,, N300, r>1 (30)

holds over A, . for any € > 0, where ¥, is connected to Z via (29).

11



PRrROOF OF LEMMA 4.1

Condition (30) is similar to the following weak convergence condition given in [13]. It is
shown there that under (1), (2), and (7) the weak convergence of (Riry¢)t>0 takes place if
and only if for all r > 1 there exist a symmetric measure F,. defined on A, such that the
weak convergence

FT(d!L‘l, .- .,d.’Er)

N'Tn¥, n(dz,...,dz,) — 3 5 , N> o0 (31)
wl ... x"‘
holds for (z1,...,2,) € A, and any given € > 0, and moreover
NT"TNE ((v1 — 1)%- -+ (v, — 1)?) = F.(A,), N = . (32)

Furthermore, it is known that the total masses of F, form a monotone sequence Fj (A1) >

F>(As) > ... Notice that for r = 1 convergence (32) follows automatically from (5), the

definition of the time scale T. Therefore, our task reduces to verifying that the limits in

(30) and (31) coincide, and that (32) for r > 2 is always true under conditions of the lemma.
The equality

F.(dzy,...,dz,) =z} - 22V, (dzy,...,dz,), (x1,...,7,) € A, €>0

immediately follows from the representation
Fi( / Z yu . yzrl{(yll, Yin )EST E(dy)/(y,y) + alir—1,0,....00€S}>
i1 #.. Fir

which according to Proposition 11 in [17] is valid for any subset S C A,. The same repre-
sentation implies that for any € > 0 and r > 2

FA N {z <)) <& /A 3 25(dy)/(y,y) = €&,

11=1

which together with (31) entail

lim lim sup |N "TnE ((V1 - 1) - (v — 1)21{,,1,...,,,T>N€}) — FT(AT)| =0.

=0+ N oo

To deduce (32) from the last convergence it suffices to prove that
N "TyE ((1/1 —1)% (v, —1)2 (1 - ]-{ul,...,ur>N€})) -0

as first N — oo and then € — 0. Therefore, due to the upper bound 1 —1(, s ne,....v,>Nep <
> izt Livi<ne} it is enough to show that

lim lim N™"TNE ((v1 —1)*--- (vy — 1)* 15, <nep) = 0. (33)

e+0 N—>oo
(1)
Observe that ZZ 5 Vi 1l<ne} < Ne ZN v; < NZ2e implies

(N - 1)E ((1/1 - 1)2(112 - 1)21{,,251\]6})
< (N - 1)E ((Vl - 1)21/22]‘{I/2SN6}) + (N - 1)UI2V

N
@ S TE((r - 1?1, <ne) + (N = 1)%ey < NPeey + NZey.
=2

12



Dividing the leftmost and the rightmost sides by N3cy we obtain an upper bound confirming
that (33) is valid for 7 = 2. Finally, validity of (33) for r > 3 follows by induction over r
due to the inequality

(N —r+ ]-)E ((Vl - ]-)2 T (Vr - 1)21{1/T5Ne})
N
< Z E((r1 —1)* - (vro1 — 1’071, <ney) + NE (1 — 1)% -+ (v, — 1)?)
< (N?e+ N)E ((n = 1) -+ (v — 1)?).

PRroOF OF THEOREM 2.1
A. Exchangeable reproduction assumptions: (1), (2), (7).
Al. The “if” part of Theorem 2.1. Fix an arbitrary 0 < € < 1, and let (z1,...,2,) € A, ..

Due to the obvious equality

E: Livi >Nay,oi, >Nap} = E: 1{V(i1>>N$1’---a"(ir)>Nzr}

TN i1
we have
(N).P(v1 > Nxy,...,v. > Nz,) = Z P(V(il)>N.ZL‘1,...,I/(Z~T)>N.ZL‘T).
1<iy . Fip <ie
In the last sum there is no need to consider v; for i above i := [e1], since i) <

V@) + .-+ va) < N and vy < Ne for i > e !, Thus, (19) via (20) implies (30) and
according to Lemma 4.1 we have established the asserted convergence to the =-coalescent.

A2. The “only if” part of Theorem 2.1. If the convergence to the Z-coalescent takes
place, it follows from Lemma 4.1 that N"TnP(vy > Nz1,...,v, > Nzx,) weakly converges
for (z1,...,%,) € A, given an arbitrary 0 < e < 1. We will use this convergence to show
that the weak convergence

INP (Vi) > Noy, ..., v(,) > Na,) —>/ Lyi>er,pe>a,1 2(dy), N =00 (34)
A

holds over 1 > ... >z, > efor all r > 1.

For the purpose of illustration we start with the simplest case of (34) with r = 1 and
iy = 1. The representation {r(;) > 2z} = {v1 > z} U...U{vny > z} and the inclusion-
exclusion method imply

N
P(I/(l) > N.’L‘l) = NP(Vl > N.’El) - (Q)P(Vl > N.Z‘l,Vg > N.’L’l)
N
-+ (3>P(V1>N,CL'1,V2>N.’E1,V3>N$1) (35)
i (N
— ...—}-(—1)6 ; P(V1>N.’E1,...,I/,'E>N.Z'1).
€
It follows that (30) does entail (34) and that even in this simple case the emerging rela-

tion between ® and {¥,},>; is rather complex. Turning to the general case we see how
overwhelming becomes the full set of formulae expressing ® in terms of {¥,},>1.

13



Giving up the task of finding the exact relationship we just verify that (34) holds for
some finite measure ® on AN{z; > €}. The idea is to apply the inclusion-exclusion method
to the representation

{I/(l) > Nxq,.. V() > N:Er} = Uil#...;ﬁir{l/il > Nzy,...,v;, > Nib'r},

where r > 1, 1 > ... > 2, > €. In view of Lemma 4.1 it is enough to show that the
resulting formula for Ty P (I/(il) >Nz, v4,) > NxT) is a sum of the products
c(ml, caey mr)Nm1+"'+mrTN
XP(I/1 > N.Z‘l, cey Uy > N$1,Vm1+1 > N.Z‘z, v Umidmey > NJIQ, (36)
e s Umgtoobmp1+1 > NZpy oo Vg pmy, > Ny,
where mq,...,m, > 1, mi +...+m, <i. and ¢(m1, ..., m,) are some negative or positive

finite coefficients asymptotically independent of N.

Consider an intersection of m distinct sets {v;,, > Nz1,...,v;, > Nz}, ..., {viy,, >
Nzy,...,v;, > Nz} and let

M, be the set of distinct 4., 1 < v < m,

M,_1 be the set of distinct 4,1, such that i,_1 , ¢ M;, 1 <v <m,...,

M, be the set of distinct 41, such that 41, ¢ Mo U ...UM, 1 <v <m.
We will classify such intersections using labels (mq,...,m,), where m; is the number of
elements in M;. Observe that a (my, ..., m,)-intersection contributes at the m-th round of
the inclusion-exclusion procedure to the formula for P(v(;,) > Nzy,...,v,) > Nz,) with

the probability mentioned in (36). Since the total number of the (my, . .., m,)-intersections is

N

of the form ¢y (my,...,m;) (ml,...,mT,N—ml—...—

mr), it follows that the combined contribution
of the (m1, ..., m,)-intersections is of the form (36).

Now, when (34) is established for some measure ®, let us check the inequality
/ (z,2)2(dz) <1, (37)
A

assuming that (z, z)®(dz) has no atom at zero. Since Zf\;l Vi >Nep = Zz;l I/(Zi) Lo >Ne}s
we have

1 ie
NTN/ 23y N(dpy) = TN/ (Z ng[w;Ze}) ® (dz).
€ A \i=1

Applying Lemma 4.1 and (34) we obtain [, (2221 xfl{zi2€}> ®(dx) <1 and letting e — 0
we arrive at (37).

It follows from (37) that we can introduce a probability measure on A by Z'(dz) :=
(z,2)®(dx) + a'd(dz), where a' := 1 — [, (z,z)®(dx). It remains to apply (34) together
with the already established “if” part of the theorem and conclude that =' must coincide
with the coalescent rate measure =.

B. General reproduction assumptions: (1), (7).
The general reproduction case follows from the exchangeable reproduction case above,

due to the invariance of the condition (19) with respect to permutation of the offspring sizes
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(v1,...,vN). Namely, if the joint distribution of (v1,...,vn) is not exchangeable, we can
switch to an exchangeable version (v],...,vl) keeping unchanged the distribution of the
ordered offspring sizes (v(1),...,¥)). The symmetrized vector (v{,...,vy) can be viewed
as a random permutation of (v1,...,vN), which is equal to (vr1,...,V;n) with probability
1/N1, where (71,...,7N) is an arbitrary permutation of (1,...,N).

PROOF OF PROPOSITION 1.2

We have to verify that under the conditions of Proposition 1.2 the asymptotic relations
(23) and (8) are equivalent. Let € be an arbitrary positive number. Using (35) we can
replace (23) with (9). Since E ((11 —1)*) = E (11 — 1]3) — P(v1 = 0), where []4 :=c V0,
it follows from P(v; = 0) < 0%, that (8) is equivalent to

E ([ — 113) = o(Noy), N — oo. (38)

Thus it remains to show that (38) is equivalent to (9).
Relation (9) immediately follows from (38) due to the Markov inequality. On the other
hand, (9) implies (38) because

E (1 —13) <E((n1 — 1)’nilfy,<ney) + E (B 1, 5ne) < Neoy + N°P(vy > Ne).

5 Convergence conditions involving the raw moments

Convergence conditions in Proposition 2.1 are stated in terms of the central moments of the
reproduction law. Here we restate these conditions putting emphasis on the raw moments
(moments around zero). We start with two corollaries of Proposition 2.1 where all the
moment conditions (except the condition on the variance 0%;) are given in terms of the raw
moments. Notice that it does not cover the Moran model in which 0%, = 2/N.

Corollary 5.1 Under assumptions (1), (2), (7), and No% — oo the time-scaled genealog-
ical process {R([Tnt])}s>0 weakly converges to some limit process {R(t)}1>o0 if and only if
there exist

Aty = lim N TyE (u{“ ---yfr) (39)

N—oco
forallky >3, r=1andky,..., k. >2,r>2, whereb=Fki+...+k.. The (b;ki,...,kr;s)-
collision rates of the coalescent {R(t)}i>0 are for s =0 are Ay, ... ko0 = Aky,... k. and for
s > 1 can be computed from the recursion (14).

Corollary 5.2 Under assumptions (1), (2), (7), and No3 — oo the time-scaled genealog-
ical process {R([Tnt])}¢>0 weakly converges to the asynchronous coalescent {Rp(t)}i>o0 if
and only if E(v?v2) = o(No?) and there exist Ay = limy_,00 N\ "*TNE(F) for all k > 3.
Measure F' and the collision rates of {Rr(t)}s>0 are determined from {Ay}r>3 in the same
way as described in Corollary 2.1.

The replacement of the central moments in (13) by the raw moments is justified by two
mutual expansions

E(vftvf) = ii (’;1) (]Z)E((ul—l)il---(vr—l)”);

41=0 in=0
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E((n — 1)k - (v, — D)kr) = i i(—nb—bi (]:11> (Z)E (Wi --vir),

i1=0  i,=0
where b =k; + ...+ k. and b; =41 + ... + i,. All except the free terms in these sums are
regulated by conditions (13) and (39). The common absolute value of the free terms is 1,
and in the case No% — oo we can conclude that

N'" TNEWP .. .vfr) ~ NTPTNE (= D)% - (v, = D)%), N = 0 (40)

since the free terms from the mutual expansions make negligible contibution of size N" =Ty =
o(N™27%) = o(1) for all k; > 3,7 =1 and ky,...,k. > 2, r > 2. In general, the condition
Tn = o(N’7) is sufficient to justify the replacement (40).

Corollary 5.3 Let (1), (2), (7) hold, and let
k, := min{integer k > 1: lim N¥o% = oo}.
N—oco

The time-scaled genealogical process {R([Tnt]) }s>0 weakly converges if and only if there exist
limits

a) for the central moments (13) with ky,..., k. > 2,7 >1, > (ki—1) < ko,
and

b) for the raw moments (89) with ki,..., k. >2,r>1, >0 (ki—1) >k, + 1.

Due to (5) we have an upper bound on the time scale Ty = o(N*-*+1), and a lower bound
N*s = O(Ty). Parameter k, can be estimated in terms of the probability py := P(Dy) of
the event Dy := {(v1,...,vn) # (1,...,1)} that in a given generation at least one parent
has no children (for example, in the Moran model case py = 1). Using the inequalities

N
o =) (i—=1°2Pr =i)>Pn #1)
=0
and
py =P{ri #1}U...U{vn #1}) < NP(r1 #1)

we obtain No% > pn (recall that in the Moran model case No3 = 2py). In particular, if
it is known that N¥pxy — oo, we have k, < u — 1.
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