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Abstract

Particle positions have been observed and estimated in a series of images. The
particles are assumed to perform a Brownian motion, however some of them
seem to be fixed. A model is introduced with two kinds of particles, diffusing
and fixed. To each particle position estimate we assume an additive normal
measurement error. The parameter of the model consists of the diffusion variance,
the measurement error variance, and the proportion of diffusing particles. The
problem can be considered as an incomplete data problem since we do not know
a priori which particles are really diffusing. The complete data is of curved
exponential type and the observed data is a mixture of two normal components.
The maximum likelihood estimator is computed via the EM algorithm. The
estimator is shown to be strongly consistent and asymptotically normal, as the
number of particles approaches infinity, under a reasonable restriction on the
parameter space.

Key words: asymptotic normality, curved exponential family, discretely ob-
served diffusion, EM algorithm, measurement error, mixture distribution, strong
consistency

1 Introduction

This article deals with the estimation of the diffusion variance (or equivalently, the
diffusion coefficient) of colloidal particles. Particle positions have been observed
and estimated in a series of images (frames) recorded on a video microscope
using more or less standard image processing algorithms and tools. The position
estimates of the particles are then linked so that we get a trajectory for each
particle in the sequence.
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Figure 1: The 26 trajectories estimated in a sequence of 12 images together with
the first image in the sequence. Notice that three of the particles seem to be fixed.

The particles are performing a Brownian motion in three dimensions and they
move independently of each other. The naive estimate of the diffusion variance
is the mean of the squared increments. If we, however, assume that the position
estimates of the particles are imperfect, i.e. if we assume a measurement error,
this estimate of the diffusion variance will be biased.

Another complicating fact is that some of the observed particles are not moving
but are instead either particles adsorbed on the objective or cover glass of the
specimen, or “false” particles which are due to for example defects in the optics
of the microscope. One solution to this problem is of course to remove these false
particles manually. This is not satisfactory from a statistical point of view, first
because we should be able to do it using statistical methods, second because these
particles actually gives us information on the measurement error.

The proposed method takes care of both of these problems by assuming a mix-
ture distribution of diffusing and fixed particles and then estimate the relevant
parameters using maximum likelihood estimation. For fixed number of observed



increments the estimator is shown to be strongly consistent and asymptotically
normally distributed, as we let the number of particles go to infinity.

An example of what the situation may look like, can be seen in Figure 1. The fig-
ure shows the initial image in a sequence of 12 images, together with the position
estimates of a major part of the particles in the subsequent 11 images, thereby
forming the estimated trajectories of the particles. By manual inspection, we
made sure that no change of the identities of the particles occurred in the process
of converting the position estimates in the images into trajectories. The time
interval between two images is 40 milliseconds. The particles are spherical, made
of polystyrene and are all equal in size, 494 nm in diameter. The apparent differ-
ence in size and brightness are due to an out-of-focus effect and depend on their
placement in depth relative to the focal plane. Particles above the focal plane
are bright in the middle and dark on the circumference and vice versa for the
particles below the focal plane. The depicted size of a particle is also increased
the further away from the focus plane it is. Here three of particles seem to be
fixed; one adsorbed on the cover glass, one on the objective glass, and one which
probably correspond to a defect in the optics.

1.1 Outline of the paper

The article is organized as follows.

In Section 2 we introduce a model with two kinds of particles, diffusing and fixed,
both observed with additive measurement error on the position estimates. The
observation length is N+1 frames. We have three parameters in the model, o2 is
the diffusion variance, o2 is the variance of the measurement error on the position
estimates, and p is the proportion of diffusing particles. The problem can now
be considered as a missing data problem since the only way to infer whether a
particle is diffusing or not is by the observed movement of the particle. In this
section we also look at the structure of the covariance matrices for the two kinds
of particles.

In Section 3 we introduce two concepts of data, observed and complete data.
The observed data is the observed increments of each particle and the complete
data is the observed data together with the classification variable of each particle
(indicating whether it is diffusing or fixed). We also look at the different densities
these two kinds of data correspond to. In particular, the observed data is of finite
mixture type.

The likelihood is discussed in Section 4 together with the EM algorithm (see
Dempster et al. (1977) and McLachlan and Krishnan (1997)) in Section 4.1
and some basic theory regarding this method of finding the maximum likelihood
estimate.

In Section 5 we study the asymptotic properties of the estimator when we keep



the observation length and and let the number of particles go to infinity. We show
that the estimator of the triple (62,02, p) using only the observed increments is
strongly consistent and asymptotically normally distributed under a small but
reasonable restriction on the parameter space.

Finally, in Section 6, we use the model assumption and estimate the diffusion
variance for the data corresponding to the trajectories seen in Figure 1.

2 The model

Denote the true and the observed position of a particle at time k = 0,..., N by
Ry, and S, respectively, where Sy, is the true position with measurement noise
added to it. We arrive at the following state-space model

Ry = R + wi (1)
S, = Ry + e

where w is the position increment of the motion of the particle and e the mea-
surement error of the position.

The particle is performing a Brownian motion so the wy:s are i.i.d. zero mean
normally distributed random variables with variance 2. For a fixed particle, wy,
is zero for all k (an alternative is to think about this as o2 being equal to zero for
fixed particles). The errors ej are also assumed to be i.i.d. zero mean normally
distributed random variables with variance o2, independent of the true position
of the particle, of other particles, and of the increments wy.

The initial value, Ry is assumed to be a constant.

Let n be the number of observed particles and introduce an indicator Z; to each
particle to be one if the i:th particle is diffusing (performing a Brownian motion,
0? > 0) and zero if fixed (02 = 0). Let {Z;}?, be i.i.d. and introduce a third
parameter p, defined as

The model can easily be extended to noisy observations of a Brownian motion
in d dimensions if we assume the measurement error in each dimension to be
distributed as wj, above and independent of each other. Then a particle follows
same the state-space model (1) in each dimension independently of each other.

For ease of notation, we will assume that d is one. The only exception from this is
in Section 6, which deals with the analysis on the trajectories plotted in Figure 1.



2.1 Covariance matrix of the observed increment vector

We define the observed increments for a particle as Y, = S, —Sy_1, k=1,...,N.
The covariance matrix of the increment vector, Y = [V3,..., Yn]7T, is

Y = 0%l + 02T (2)

for a diffusing particle and
EO == UgT

for a fixed particle, where I is the N times N identity matrix and T is the tri-
diagonal matrix defined as

2 -1 0 0
-1 2 -1 0
T — 0o -1 2 0
0O 0 O 2

We see from the covariance matrix above that the measurement noise in the posi-
tion induces a dependence between the increments, which originally, by definition
of a Brownian motion, were independent.

2.2 Transformation of the increment vector

To make our formulas look cleaner in the subsequent sections, we use some basic
linear algebra to transform the increment vector so that the transformed vectors
become uncorrelated.

In (2), X; has the same eigenvectors as T since every vector is an eigenvector to
I. If we denote the eigenvalues of T' as \g, k = 1,..., N, the eigenvalues of ¥;
are

Yk =02 +Gz)\k, k=1,...,N.
Let U have the eigenvectors of T' as columns. Then we can write, by the spectral
decomposition theorem, T = UAUT, where A = diag{)\1,...,An}. So if

Y =UTY (3)
is the transformed increment vector, its covariance matrix will be diagonal:

Var{V} = UTVar{Y}U

UT(0?I + c2UAUT)U (4)
o?I + o2A

= dlag{717 7'7]\’}



for a diffusing particle and likewise, with o2 = 0, for a fixed particle. The depen-
dence between the increments is now “hidden” in U and A, which do not depend
on o2 or o2, but only on the length of the increment vector N, which of course is
known.

3 Data and densities

The observed data consists of the vectors of noise corrupted increments Y; while
the classification variables Z; are unobserved. Together, they make up the com-
plete data, denoted X; = (Y;,7;),i=1,...,n.

The probability density function of the complete data X is
9e(x;0%00,p) = [pfi(y;0%02) ) [(1 = p) foly;02)]' (5)

where f; and fy are the pdf of a zeros mean N-variate normally distributed
random variable with covariance matrices ¥; and X, respectively. Using the
transformed increment vector Y, we write

1 1 i }
-5 - 3 6
(2m)N/2 Hszl (02 4 A\po2)1/2 exp{ 9 kz 02 + A\po? (6)

fl(y;az,aﬁ) =

and
N .
\ 1 { 1 Ui }

;o) = P12 !
folysoe) @m T, (wo?) 2 T\ 2 £ Ao v

N .

B 1 1 Ui
= (271_0_3)N/2(N+]_)1/2 exp{_zag ,;_k} (8)

where §j = UTy from (3). The second equality in the last expression, comes from
the fact that [[Ay =|A| = |T|=N+1.

In the d dimensional case, f; will be a dN-variate normal density with d inde-
pendent parts, one in each in each dimension, since each coordinate process is
independent of the others.

The probability density of the observed data, Y, we get by integrating (5) over Z

9(y;0%02,p) = pfily;0%02) + (1-p) foly; o2). 9)

Our observed data is a finite mixture of two normal components. For a thorough
account on finite mixture models and their applications, we refer to McLachlan
and Peel (2000).



4 Likelihood

Denote our parameter § = [02,02, p]7T.

The complete likelihood L. induced by the complete data (increments and classi-
fication variables) from n observed particles is

Lc(6) = H[Pfl (yi50% o) [(1=p) fo(yi; 02)] ™ (10)

=1

However, our observed data consists of only the increments so the observed like-
lihood becomes

L(6) = prl(yiQUQa a2) + (1=p) fo(yi;0?) (11)

=1

4.1 The EM algorithm

A intuitive method to get the maximum likelihood estimate from our observed
data is to use a method whose name, the EM algorithm, comes from the article
by Dempster et al. (1977), but whose essence actually was introduced and used,
for the special case of finite mixtures of distributions from the exponential family,
by Hasselblad (1969). Further examples of its use, before it was actually called
the EM algorithm, can be found in Day (1969), Behboodian (1970) and Sundberg
(1976). For an overview of the theory and applications of the method we refer to
McLachlan and Krishnan (1997).

The method uses the simple structure of the complete likelihood together with
estimates of the unobserved data in a iterative scheme.

4.1.1 Notation

Let k be the conditional density of the unobserved data Z, given the observed Y.

Then oe(2:6)
k(z|y;0) = gc(y;’g)
Taking the logarithm and re-arranging, we get
log g(y; 0) = log gc(;0) — log k(2] y; 6) (12)
Denote by L(6) and L.(6), the observed and the complete data likelihoods
L(6) = g(y; 0)



L.(0) = ge(x;0)

and take the conditional expectation of (12) given Y, at the parameter 6’

log L(6) = Eg/{log gc(z;0)|y} — Egr{log k(2| y;0) |y}

and denote the first term Q(6]6') and the second H(6|6").
Let furthermore

S(y;0) = 0log L(6)/06
and

Sc(z;0) = dlog L.(6)/06

be the score functions.

4.1.2 Method

The EM algorithm consists of two steps at each iteration. Assume ) is the
estimate of 6 from the k:th iteration step. Then we do:

e E-step: Compute Q(8|6)

e M-step: Choose 8%*t1) € argmax Q(6|6®)

Since H(|6®)) < H(6™*)|6¥) for all § by Jensen’s inequality, the rule of choosing
6k+1) as a maximizer of Q(8]0*)) gives us that

LE*) > L(e™)

guaranteeing that we approach a local maximum of the likelihood. In practice,
we iterate until some sort of convergence criterion is met.

Notice that there is no guarantee that we converge to the global maximum of the
likelihood function, and thus at the actual maximum likelihood estimate.

The EM algorithm should simply be thought of a numerical method for maxi-
mizing the likelihood. Often, it suffers from painstakingly slow convergence, and
then a Newton-Raphson approach usually does better. However, when the data
is considered to have missing values, it is very appealing to use it since we also
get estimates of the missing values. We write “is considered” because the miss-
ing values may be a theoretical construction only. In our problem, though, it is
natural to think of the classification variables as being missing data.



4.1.3 Finite mixtures

When the data comes from a mixture, the E-step consists of estimating the un-
observed data, i.e. the classification variables. In the M-step we maximize the
complete likelihood (10) using the estimated classification variables, Z;, from the
E-step together with our data Y;:

e E-step: For each i =1,...,n, compute

p® £y (ys; 2
p® fi (ys; =) + (1—p®) fo (y3; £5)

e M-step: Maximize Eyw {log L.(8)|y} =

Z; = Byw {Zi|Vi} =

=Y Zilog{phi(yi; 0% 07)} + (1= Z) log{(1-p) folyi; 02)}

i=1

2,02,p).

with respect to 6 = (o
In this application of the EM algorithm, each of the two steps has a probabilistic
meaning; in the E-step we classify each particle using a quadratic discriminant
rule, and in the M-step we use these classifications as if we had the complete data.
Note however that the classifications are not just zero or one, but any number in
between.

A fast, Newton-Raphson based, computational method for the M-step can be
found in (30) of Appendix C.

4.1.4 Information matrix

Now we are going to explore how the information matrix from our observed data
relates to the information matrix from the complete data. This will also give us a
computationally efficient way of calculating the observed information when using
the EM algorithm. Appropriate regularity conditions allowing us to differentiate
under the integral are assumed in the following. In our application this is true
since we are dealing with exponential families, see for example van der Vaart
(1999).

Let
I(6;y) = —0?log L(#) /0606™

and
I.(8;z) = —8%log L.(9)/0606"

Using the following version of (12)
log L(6) = log Lc(6) — log k(2[y; 6),



and differentiating twice and taking conditional expectation of z given y, we get

1(0;y) = Zc(0;y) — I (8:y) (13)
where
I.(8;y) = Eo{I.(0;2)|y}
and
In(8;y) = —Eo{0%log k(z]y;6)/0606 |y}
corresponding to the conditional expectation of the information matrix of the

complete data given y, and the missing information, respectively.

In Louis (1982), it is shown that Z,, can be expressed as
I (83 y) = Eo{Sc(X;60)S7 (X;0)ly)} — S(y;0)S™ (y;6). (14)

This is nice, first since S(y;0) = 0 at the MLE 6 and secondly because now the
observed information matrix at 6 is

I(8;y) = T8 y) — [Ee{S.(X;0)ST(X;0)|y)Hy_s (15)

where both terms easily can be computed in the last M-step in the EM algorithm
since the first term is actually the negative of the Hessian of the function to
maximize in the M-step, and this is often used in the actual maximization.

Denote the expected information matrix by Z(6) which can be expressed as
Z(0) = Zc(0) — Eo{Zm(6;Y)} (16)

by taking expectation of (13) over the distribution of Y.

5 Asymptotics

Is this section we are going to study the asymptotic properties of the estimator as
the number of particles n grows large. As it turns out, our maximum likelihood
estimator is both strongly consistent and asymptotically normal. First we address
some important issues regarding the data and the parameter space.

The complete data comes from the exponential family of distributions, see for
example Lindsey (1996). If N # 1 however, it is non-regular or curved, since the
parameter space is 3-dimensional and the dimension of the sufficient statistics is
N + 2 (see the Appendix for a derivation of this). The case N = 1 is not very
interesting though since we think of our problem as studying a video sequence of
images of particles.

Let © be the parameter space consisting of those § defining valid finite mixture
densities (9). Q = {0 = [02%,02,p]T: p € [0,1], 0% > 0,02 > 0}. The true
parameter point fy is assumed to lie in the interior of 2, denoted int(2).

10



Often when one deals with finite mixtures, there is a problem of identifiability, i.e.
that a permutation of the parameters in the model yields the same distribution.
In our model, and as long as the true parameter 6y lies in the interior of 2,
we do not have this problem since the two distributions in the mixture are not
interchangable.

The asymptotics when using complete data is covered in Appendix D.

5.1 Existence of a maximum likelihood estimator

To guarantee that the likelihood has a global maximizer of for each n, we restrict
the parameter space 2, by using an idea from Hathaway (1985). For fixed ¢ €
(0,1), define €, to be the subset of Q such that
o2
0<c§—2§c_1<oo (17)
o

e

This restriction means that we do not allow the “signal-to-noise” ratio to be too
small, neither too big.

Lemma 1. Let {Y1,...,Y,} be a set of observations from the finite mizture speci-
fied by the density (9). Then, with probability one, there exists a global constrained
mazimizer of L(6) in Q..

Proof. The idea is to show that

sup L(6) = sup L(6)
(A 0eK

for some appropriate, compact K C €.

With probability one, the increment vectors will all be different from zero. There-
fore all the terms in the likelihood will stay bounded. Also, it will go to zero if
both 02 and o2 either go to zero or to infinity. By condition (17) above however, it
is enough that one of the two variances goes to zero or infinity; the other variance
“will follow”.

So, there exists constants a; and b; such that K = {6 € Q. : a1 < 02 < ag, by <
02 < by} gives the desired result. O

Remark: Without the condition (17), our trouble spots are

o L =i, folyi;o2) as o® =0
o L—p"[[, filyi|0%0) as 07 = 0

o L (1-p)"[T, fo(yi;o?) as 0? = oo

11



A maximum hence exists, but it does not necessarily have to be unique for finite
n: If p = 0, we see that o2 is “free”. Likewise, if p = 1 and N = 1, all values of
o? and o2 satisfying o + 202 = ¢ for some constant ¢, are maximum likelihood

estimators.

5.2 Consistency
5.2.1 Special case, N =1

When N = 1, the complete data is of regular exponential type. Sundberg (1974)
gives the consistency and asymptotic normality of the maximum likelihood esti-
mator 6,,, under the single condition that the information matrix Z(8) is positive
definite at the true parameter point #y. Since Lemma 2 below says that this is
true for all 8y € int(Q2), we are actually done for N = 1, both with the consistency
and the asymptotic normality.

5.2.2 Generally, N >1

To prove consistency of the maximum likelihood estimator for general IV, we verify
that Wald’s classical conditions for the mixture density g in (9) are satisfied when
the true parameter is in Q.. In the process, we use results from Redner (1981).

Theorem 1. Let the true parameter point 89 be in Q. and let 6., be the global
mazximizer of L(0) over Q., for each n. Then

P{0, — 0y asn — oo} = 1

Proof. Wald’s conditions are enumerated as in Redner (1981) to 1 through 6. We
refer the reader to that article.

Conditions 1,2,4’ and 5 are satisfied for 2 and the mixture component densities
f1 and fy. The proof of Redner’s Theorem 5 shows that Conditions 2 and 4 are
satisfied for the mixture density g = pfi + (1—p)fo. If we restrict Q to Q. as
defined above (17), then also Conditions 3 and 6 are satisfied, giving us the result
by applying Theorems 1 and 2 from Wald (1949). O

Remark 1: The extra condition (17) helps us in the process of first to prove that an
maximum likelihood estimator exists for all n and second, to prove that Condition
3 of Redner (1981), L(6;) — 0if d(6y,8;) — oo, where d means Euclidean distance.

Remark 2: The restriction (17) of the parameter space also gives us consistency
under an expanded model with a drift term in the diffusion together with sys-
tematic position measurement errors, that is, if the mixture components have

12



non-zero expected value and we need to estimate these as well. Also, the conclu-
sion of Lemma 1 holds if the number of observations n is larger than three (one
more than the number of mixture components).

5.3 Asymptotic normality

Sufficient conditions for the asymptotic normality of the maximum likelihood
estimate 6,, can be found in for example Theorem 5.23 in van der Vaart (1999).
Since we have consistency and that log g(y;0) is smooth, what remains is to be
proven is that the map 6 — Egy, log g(Y'; §) admits a second order Taylor expansion
around 6y € int(2) with non-singular second derivative matrix. In other words,
what we have to prove is that the expected information matrix Z(6) is positive
definite.

Theorem 2. Let 0y € int(Q.) be the true parameter point. Then the mazimum
likelihood estimator 0, is asymptotically normal, i.e.

V(0 — 60) 2 N(0,Z(65) ") (18)

as n — o0.

By the discussion above, the result follows from the next lemma.

Lemma 2. The information matriz Z(0) is positive definite for all § € int(Q).

Proof. Positive definiteness means that aZZ(6)a > 0, for all a € R® \ 0.

Now, since Z(f) is the variance of the score function 0log g(Y;6)/00, a*Z(6)a is
the variance of the linear combination a®'8log g(Y;8)/06.

So, what we have to prove is that

dlogg(Y;8)

Var{a’ 50 }>0

for alla € R3 \ 0.

Assume the opposite. Then we have, with probability one, that

aTalogg(Y; 6)

=0 (19)

for some a € R® \ 0 since the mean of the score is zero.

13



Writing out the components of the score function, we have

Odlogyg _ pg;%
0o  pfi+(1—p)fo

Ologyg _p% +(1 —P)%

do2  pfi+(1-p)fo
Ologg _ fi—fo
op  ph+1-pfo

where
% - %é’:( o? +~)\2k02) = +1)\kag)f1(y;02, 02) = ki(y) fi(y ;0% 07)
g(g = %é( o2 ikij:(, - :\Ij\kﬁ)f (y;0%02) = ka2(y) f1(y ;0% 02)
gfe; = ( 2 4 SV 5;)]“0(1/,06) = k3(y)fo(y;02)

We write (19) as

1pgf2+ 2[ %+(1— )ng] +a3[f1—f0] =0

Re-arranging and noticing that f;(y) > 0 and fo(y) > 0 for all y, we see that this
is equivalent to saying that

{ aipki1(Y) + azpke(Y) + a3 =

" (20)
ag(l—p)kg(Y) —asz = 0

Since k1 (Y), k2(Y), and k3(Y) are non-zero with probability one, we have a
contradiction because (20) is satisfied only if a is zero. O

Remark: Notice that (20) is satisfied for non-zero a if p = 0. This is also what
we would expect since then we have no information on ¢2. Also, if N = 1, then
ko(Y) = Ak1(Y), soif p =1, (20) is satisfied as long as a; +)\1a2 =0 and a3 = 0.

5.4 Note on a further generalization

An interesting article with relevance to our problem, is Kiefer and Wolfowitz
(1956). It deals with the consistency of a maximum likelihood estimator when

14



there are infinitely many incidental parameters present. These incidental param-
eters could be, in a generalization of our problem, the variance of the Brownian
motion o2 if all diffusing particle have different diffusion coefficients. This corre-
sponds to a so called poly-disperse solution in contrast to our present problem,
which is mono-disperse (every particle has the same diffusion coefficient).

Assume that for each i = 1,...,n, we have that Y; is N-variate normally dis-
tributed random variable with mean zero and covariance matrix ¥; = Io? 4+ To?.
Then, in the language of Kiefer and Wolfowitz (1956), the o?:s are the incidental
parameters and o2 the parameter (even though, in our context, these names are
misleading since we consider it to be the other way around). Notice that if the
o?:s are constants and different for each i we only observe one increment vector
Y; for each o7. Obviously the estimates of the o7:s can not be consistent. It
turns out however, that if we consider o7, i = 1,...,n to independent random
variables with common (but unknown) distribution function F', and under certain
assumption on F', the maximum likelihood estimator of F' converges to F' at every
point of continuity of F', almost surely. Also, the maximum likelihood estimator
of 02 is strongly consistent.

2

The case discussed in this section is of course a special case of these o

from an unknown distribution function with only two values: let

coming

0 when z < 0
F(z)={ 1-p when0<z<o?
1 when ¢2 < z

6 Application

The data from the example in the introduction were analysed with the EM algo-
rithm. The positions of the 26 particles were estimated in two dimensions in each
image using a circle detection algorithm. The total number of frames were 12, so
N =11.

By manual inspection, we concluded that three particles in Figure 1 seem to be
fixed, and refer to them as particle 1 to 3, where 1 is the big white in the middle,
2 the big black to the left, and 3 the seemingly “false” particle, probably due
to an optics defect, in the lower left corner. The remaining 23 are considered as
diffusing particles.

6.1 Results

We applied the EM algorithm to the observed data with initial value 8 =[1, 1, 0.5]%.
We stopped when the change of the Z;:s between two consecutive E-steps was

15



smaller than 107%. This criterion was satisfied after 3 steps with the resulting
estimates

&% = 2.2058
62 =0.3172 (21)
p = 0.8847

where the unit for the first two is pixel2. The estimated classification variables
Z; were
Z1 =1.049-107°
Z> =1.528-1075
Z3 =2473-1073

Z; =1.000 for i=4,...26

in good correspondence with our manual classification.

6.2 Observed information matrix

Using the result (15) to compute the observed information matrix at the MLE

[ 33.75 52.75 0 ] 0.034  0.153 —0.090
I(6%,62,p;Y) = | 52.75 4766 0 —| 0153 0.691 —0.405
0 0 2549 | —0.090 —0.405 0.240

[ 33.72 52.59 0.090 ]
= | 52.59 475.9 0.405
| 0.090 0.405 254.7 |

were the second term of the upper row corresponds to the missing information
due to lack of the unobserved classification variables.

The inverse of this is

0.0358 —0.0040 0.0000
I7Y(6%,6%,p;Y) = | —0.0040 0.0025 0.0000 (23)
0.0000  0.0000 0.0039

which gives us an approximate variance of the estimate of 52 to

Var{52} ~ 0.0358 (24)

6.3 Comparison with the theoretical diffusion coefficient

The estimated 62 above corresponds to an estimated diffusion coefficient of

D =0.893 um?/s

16



using the relationship between diffusion variance and diffusion coefficient, o* =
2D7 and scaling to um. Here, 7=0.040 s is the time interval between observations,
and each pixel corresponds to a square with side M =180um.

The asymptotic normality result from Section 5.3 can be used to give an approx-
imate 95%-confidence interval of D:

N M?
D=D+1.96- §\/0358 = .893 £+ .150 um?/s (25)

The theoretical diffusion coefficient is given by Stoke-Einstein’s relation (see for
example Evans and Wennerstrom (1999) pages 370-372)

_ kgT
B GTFURH

where kp is Bolzmann’s constant, 7 the viscosity of the solution, 7' the tempera-
ture and Ry the hydrological radius of the particle.

The appropriate values for the viscosity and temperature are 7=0.9 mPa and
T=298 K. The geometric radius of the particles are 247 nm and we used this as
the hydrological radius, even if the latter is often a bit larger than the former.
Plugging this into (6.3) gives us

D =0.982 um?/s

Comparing with the confidence interval in (25), we see that the theoretical diffu-
sion coefficient is within this interval.

6.4 Simulation of the approximate distribution of the esti-
mates

We simulated 1000 time series with 26 particles, of which 3 were fixed, over 12
frames in two dimension, using the estimated values of o2 = 2.2058 and o2 =
0.3172 from (21) as the true diffusion variance and error variance. For each time
series, we used the EM algorithm to estimate o2 and o2.

The histograms of the estimated values are displayed in Figure 2. The mean and
empirical covariance of the 1000 estimates of o2 and o2 were

62 = 2.2054
62 =0.3185

and
.0348 —.0040
—.0040 .0027
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Figure 2: The histograms of the estimated 62 and 62 using the EM algorithm

from 1000 simulations using 2.2058 and 0.3172 as true values.

in good agreement with the true values of o2 = 2.2058 and o2 = 0.3172 and the
inverse of the observed information matrix in (23).
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Appendix A: Sufficient statistics

Consider the complete data density (5). Take the logarithm and use the trans-
formed increment vectors Y (see section 2.2) for easier notation

~2

N N
< z
logg. = 2logp— = log(0” + Meo?) = 2 3 ——k—

k=1 b= 1‘72"_)"“72
2
+ (1 —2)log(l—p) Zlog k) — 2 azAk
N
1 1 1-2)7
= z~2(——7A )
; L 202 + A\po? 203 ;
0' + Ao 1 &
log(—) ==Y log b -(=%"1 2) _log(1—
+Z(0g Z No? )) (2; og(Ako?) —log( p))
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and we see that a minimal sufficient statistic can be chosen to be

tl = Z:lj%
tN = 20
N
(1 - 2)7;
I ol
k=1 Ak
tNy2 =2

with the corresponding canonical parameter o

11
@ =7y 02 4+ \io2
1 1
ON = —————
N 202+ Anyo?
1
ON+1 = 202
e
N 2 2
D 1 0% 4+ Ao
an+y2 = log(lTp) —3 Zlog(Tf)
k=1 €

which is a function of our parameter 6. Since this is 3-dimensional and the
sufficient statistics is (IV + 2)-dimensional, we say that the complete data belongs
to a curved exponential family or, with the terminology of Barndorff-Nielsen and
Cox (1994), a (N +2, 3)-exponential model.

Solving for p in the expression for ant2 above, we get

1/2 1/2
N a2+ Ak o? N an
QN 42 e QN 42 +1
e Hk:l( Ae o2 € Hk:l Ak Ok
N 024 Ap 02 N AN41
o o
14 eon+2 szl( o ) 14 ean+ szl(xm

and we can write the complete data density as
log g. = o't — k(a) (26)
where a = a(f) and k is
N

1 N o « 1/2
k(a) = 5 log(N +1) — 5 log(—2an+1) + 10g<1 +eve I (ﬁ) ) (27)
k=1
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From standard theory of exponential families, we get the cumulants of the suf-
ficient statistics by differentiating k(c). In particular, we have ET = g—(’i and

Var{T} = %, which we denote p and V, respectively.

The expectation of the sufficient statistics
p(o® + \io?)
ET =1 p(o® + Ayo?)

(1-p)No;
p

Appendix B: Geometry of the complete data

Differentiating the complete data likelihood once, we get the score function

Ologge _ 0\ Ok _ 00 g
00 _(89T) T 00 _(69T) (T - ET)
where we used
Ok _ (B_a)T%
06 ‘00T’ da

and 0k/0a = ET.

Hence at the MLE é, the difference vector T' — p is orthogonal to the derivative
of the canonical parameter o with respect to the parameter 8. This relation and
other geometrical interpretations of the maximum likelihood estimate in a curved
exponential family, were, to the author’s knowledge, first made by Efron in two
groundbreaking articles, Efron (1975, 1978). Since then a lot of research has been
made in this area with fruitful connections between statistics and differential
geometry, see for example Amari et al. (1987), McCullagh (1987) and Barndorff-
Nielsen and Cox (1994)

Appendix C: Iterative scheme for complete data MLE

Exploring the geometrical relations of the curved exponential further, brings us to
a Newton-Raphson style of iterative method of finding the maximum likelihood
estimate of 8, given the complete data. Even if the unobserved classification vari-
ables Z; are not available to us, the M-step in the EM algorithm (see section 4.1.3)
maximizes the complete data likelihood using the estimated Z;:s from the E-step.
The idea comes from Wei (1998).
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We adopt the notation of Wei:

p(0) = EgT
V(6) = Varg{T'}
Oa
Do = g7
p= 9k

and derive the following identity

D ou ou Oa

= — = — — = Da
00T  9aT 90T v

Write I, = log L. and let ic and lc denote the first and second derivative of [, with
respect to 6.
Expressing the score function I, as

. ol, oan\T 0Ol, Oda\T

lc = - = —_— _— = —_— T —

96 (ae) da (ae) (T =n) (28)
=Do(T —p) = DTV HT — p)

and the score equation at 6 can be written

0=DTV YT - p)
where D, V', and p are evaluated at 6.

Differentiate I, once again and we get

= (52)" Logaar | - P27

0%a (29)
T T
=T -p [aoaoif’] — Do VDo

Now, Newton’s classical iterative scheme can be written

Oir1 = 0; + [—1c(6)] " c(6)
Using the expressions in (28) for I, together with Eg{—I.} = DTV D, instead of
l. we get

0iv1 =0; + [DZVDa] _lDa(T — 1)

1 (30)
=0;+ [D"V™'D]T V7'D(T - p)

We find V by differentiating k twice with respect to a. The matrix turns out to
be quite complicated with all its elements different from zero. In the iteration
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scheme (30), it is the inverse V~! we need, and since this is in fact much less
complicated, we present it here

1 0 0 __ 1
2p(a2+A102)2 2p(a2+A102)
-1 _ 1 ) 1
v - 0 2p(a2+Ano2)? (1) - 2p(0'2]?|—/\Nag)
0 o 0 WP N@E?  AL-po?
T 2p(o%+Ai0Z) 7 T 2p(oP+Ano?) 2(1—p)o? 2p(1—p)

Appendix D: Complete data asymptotics

In applications it may happen that you label the particles manually as diffusing or
fixed or defect particles and want to estimate the parameters. Then our problem
becomes easier, mainly because the likelihood is composed of a product.

From (29), we get the expected information matrix to the complete data

7.0) =D"v~'D =D"D,

N
%ZkZI (0'2+;;c0'g)2 2 Zk 1 g0'2+/}\k,0'2)2 0
— N A
B ngzl (a2+>iag)2 2 Ek 1 (0'2+)\k<72)2 + 2(( 2)€) (1]
0 0 T
p(1—p)

which is positive definite for all § € int(2). To see this, apply the Cauchy-Schwarz
inequality on the upperleft 2 by 2 matrix elements.

For 6, € int(Q.) we get strong consistency from Wald (1949), and since also Z.(6p)
is positive definite, all conditions for asymptotic normality are satisfied.

24



