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Abstract

The aim of this note is to find new inequalities for the Weierstrass products
n
∏

i=1

(1+xi) and
n
∏

i=1

(1−xi),

which are an analogues of Alzer’s inequalities [A].

1. Introduction

Several authors interested in Weierstrass products
n
∏

i=1

(1 + xi) and
n
∏

i=1

(1− xi). In [B, Pages 104–105]

proved

1−

n
∑

i=1

xi ≤

n
∏

i=1

(1− xi) ≤

(

1 +

n
∑

i=1

xi

)−1

,

and

1 +

n
∑

i=1

xi ≤

n
∏

i=1

(1 + xi) ≤

(

1−

n
∑

i=1

xi

)−1

,

where xi ∈ [0, 1], i = 1, 2, . . . , n, and in the second inequality assumed that
∑n

i=1
xi < 1. In the last

years these products attacked by many other inequalities which have been published. For example,
Klamkin and Newman [KN] discovered several extensions and new inequalities:

(n + 1)n
n
∏

i=1

xi ≤

n
∏

i=1

(1 + xi), (n− 1)n
n
∏

i=1

xi ≤

n
∏

i=1

(1− xi),

and in [K] presented another inequality:

(n + 1)n
n
∏

i=1

(1− xi) ≤ (n− 1)n
n
∏

i=1

(1 + xi),

where xi ∈ [0, 1], i = 1, 2, . . . , n, and
∑n

i=1
xi = 1. An another example, the Ky Fan’s (see [B, Page 5])

inequality:

(1.1)

(

n
∏

i=1

xi

1− xi

)1/n

≤

∑n
i=1

xi
∑n

i=1
(1− xi)

,
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2 INEQUALITIES FOR WEIERSTRASS PRODUCTS

where xi ∈
(

0, 1

2

]

, i = 1, 2, . . . , n. In this paper, we are interesting in the Alzer’s inequalities [A] of
Weierstrass Products. Here, we present a generalization for the Alzer’s inequalities by using the same
arguments proof as in Alzer’s paper [A]. In Section 2 we establish new inequalities for Weierstrass
products which are an analogues for these inequalities in [A]. Finally, we apply the applications of
[A] to get new inequalities for trigonometric and integral sums and products.

2. Inequalities for Weierstrass products

Let us start by proving two lemmas which are an analogues of the two lemmas in [A].

Lemma 2.1. For all real xi ∈ [0, 1], i = 1, 2, . . . , n, and a ∈ [0, 1], we have

(2.1)
n
∏

i=1

xi

[

1 + a

n
∑

i=1

(1− xi)

]

+
n
∏

i=1

(1− xi)

[

1 + a

n
∑

i=1

xi

]

≤
1

2
a + 1.

Proof. Using the same arguments as in the proof of [A, Lemma 1] we get as follows. Let

S(x1, . . . , xn) =

n
∏

i=1

xi

[

1 + a

n
∑

i=1

(1− xi)

]

+

n
∏

i=1

(1− xi)

[

1 + a

n
∑

i=1

xi

]

,

since a, xi ∈ [0, 1] for all i, we arrive at

S(x1, . . . , xn)− S(x1, . . . , xn−1) = −a(1− xn)
n−1
∏

i=1

xi
n
∑

i=1

(1− xi)− (1− a)(1− xn)
n−1
∏

i=1

xi

−axn
n−1
∏

i=1

(1− xi)
n
∑

i=1

xi − (1− a)xn
n−1
∏

i=1

(1− xi) ≤ 0.

Hence, inductively on n we have

S(x1, . . . , xn) ≤ S(x1) = −2a

(

x1 −
1

2

)2

+ 1 +
1

2
a ≤

1

2
a + 1,

as requested. ¤

The next lemma is a counterpart of Ky Fan’s Inequality 1.1 and analogues of [A, Lemma 2].

Lemma 2.2. For all real xi ∈
(

0, 1

2

]

, i = 1, 2, . . . , n, and a ≥ 0, we have

(2.2)

∏n
i=1

xi
∏n

i=1
(1− xi)

≤
1 + a

∑n
i=1

xi

1 + a
∑n

i=1
(1− xi)

,

with equality if and only if xi =
1

2
for all i = 1, 2, . . . , n.

Proof. To this theorem we present two different proofs: by induction argument, and by Ky Fan’s
Inequality 1.1.

(1) It is easy to see that the equality holds in 2.2 for xi =
1

2
where i = 1, 2, . . . , n. Now, we prove the

lemma by induction on n. For n = 1, Inequality 2.2 yields

x1

1− x1

≤
1 + ax1

1 + a(1− x1)
,
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equivalently, x1 ≤
1

2
and the sign of equality holds if and only if x1 = 1

2
.

Now, let us suppose that

0 < x1 ≤ x2 ≤ · · · ≤ xn ≤ xn+1 ≤
1

2
, x1 < xn+1,

and further we assume that Inequality 2.2 is true for n. Therefore, by induction hypothesis we get
∏n+1

i=1
xi

∏n+1

i=1
(1− xi)

≤
1 + a

∑n
i=1

xi

1 + a
∑n

i=1
(1− xi)

·
xn+1

1− xn+1

.

If putting p = a
∑n

i=1
xi, q = a

∑n
i=1

(1− xi), and x = xn+1, then we have to prove that

x(1 + p)

(1− x)(1 + q)
<

1 + p + ax

1 + q + a(1− x)
,

equivalently,

a(q − p)x2 + x

(

2(1 + p)(1 + q)− a(q − p)

)

− (1 + p)(1 + q) < 0.

Since, p = q if and only if x1 = x2 = . . . = xn = 1

2
we have p < q and since 0 ≤ x ≤ 1

2
we obtain

a(q − p)x2 + x

(

2(1 + p)(1 + q)− a(q − p)

)

− (1 + p)(1 + q) < −
a(q − p)

4
< 0.

Thus we have the desired result.

(2) Since xi ≤
1

2
for all i, we have that xi

1−xi

≤ 1. Therefore, by Inequality 1.1 we have

n
∏

i=1

xi

1− xi
≤

[

n
∏

i=1

xi

1− xi

]1/n

≤

∑n
i=1

xi
∑n

i=1
(1− xi)

=
a
∑n

i=1
xi

a
∑n

i=1
(1− xi)

.

Hence, because of x
y ≤ 1 if and only if x

y ≤
1+x
1+y where x, y > 0, and since a

∑n
i=1

xi ≤ a
∑n

i=1
(1−xi),

we arrive at
n
∏

i=1

xi

1− xi
≤

1 + a
∑n

i=1
xi

1 + a
∑n

i=1
(1− xi)

.

¤

For example, Theorem 2.2, for a = 2, yields [A, Lemma 2]. An another example, Theorem 2.2, for
a→∞, yields

∏n
i=1

xi
∏n

i=1
(1− xi)

≤

∑n
i=1

xi
∑n

i=1
(1− xi)

,

Theorem 2.3. For all real xi ∈
(

0, 1

2

]

, i = 1, 2, . . . , n, (n ≥ 2), and 1 ≤ a ≤ 3

2
, we have

(2.3)

∏n
i=1

(1 + xi)
∏n

i=1
(1 + (1− xi))

≤
1 + a

∑n
i=1

xi

1 + a
∑n

i=1
(1− xi)

,

with equality if and only if xi =
1

2
for all i = 1, 2, . . . , n.

Proof. It is easy to see that the equality holds in 2.3 for xi =
1

2
where i = 1, 2, . . . , n. Therefore, it

remains to prove for numbers x1, x2, . . . , xn are not all equal to 1

2
then the Inequality 2.3 is valid with

”<” instead of ”≤”.
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Let us prove Inequality 2.3 by induction on n. For n = 2 we have to prove, for 0 < x1 < x2 ≤
1

2
,

(1 + x1)(1 + x2)

(2− x1)(2− x2)
<

1 + ax1 + ax2

1 + 2a− ax1 − ax2

,

equivalently,

(3− 2a + a(x1 + x2 − 2x1x2))(x1 + x2 − 1),

which is absolutely true for 0 < x1 < x2 ≤
1

2
and 1 < a ≤ 3

2
. Now, let us suppose that

0 < x1 ≤ x2 ≤ · · · ≤ xn ≤ xn+1 ≤
1

2
, x1 < xn+1,

and further we suppose that Inequality 2.3 is hold for n. Therefore, by induction hypothesis we get

n+1
∏

i=1

1 + xi

(1 + (1− xi))
≤

1 + a
∑n

i=1
xi

1 + a
∑n

i=1
(1− xi)

·
1 + xn+1

2− xn+1

.

If putting p = a
∑n

i=1
xi, q = a

∑n
i=1

(1− xi), and x = xn+1, then we have to prove that

(1 + x)(1 + p)

(2− x)(1 + q)
<

1 + p + ax

1 + q + a(1− x)
,

equivalently,

a(q − p)x2 + 2x(1 + q)(1 + p− a) + (1 + p)(a− 1− q) < 0.

Since, a = b if and only if xi = 1

2
for i = 1, 2, . . . , n, we have p < q. Therefore, since x ≤ 1

2
and

1 < a ≤ 3

2
we obtain

a(q − p)x2 + 2x(1 + q)(1 + p− a) + (1 + p)(a− 1− q) ≤ −
3a(q − p)

4
< 0,

which this completes the proof. ¤

For example, Theorem 2.3, for a = 1 yields the second inequality in [A, Theorem, Equation 2.2].

Corollary 2.4. For all real xi ∈
[

1

2
, 1
)

, i = 1, 2, . . . , n, (n ≥ 2), and 1 ≤ a ≤ 3

2
, we have

(2.4)

∏n
i=1

(1 + xi)
∏n

i=1
(1 + (1− xi))

≥
1 + a

∑n
i=1

xi

1 + a
∑n

i=1
(1− xi)

,

with equality if and only if xi =
1

2
for all i = 1, 2, . . . , n.

Proof. If we set xi = 1−yi, yi ∈
[

1

2
, 1
)

, i = 1, 2, . . . , n, in Inequality 2.3 then we arrive to Inequality 2.4.
¤

Theorem 2.5. For all real xi ∈
(

0, 1

2

]

, i = 1, 2, . . . , n, (n ≥ 2), and 2

3
< a ≤ 1, we have

(2.5)
1 + a

∑n
i=1

xi

1 + a
∑n

i=1
(1− xi)

≤
1 +

∏n
i=1

xi

1 +
∏n

i=1
(1− xi)

,

with equality if and only if xi =
1

2
for all i = 1, 2, . . . , n.
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Proof. It is easy to see that the equality holds in 2.5 for xi =
1

2
where i = 1, 2, . . . , n. Therefore, it

remains to prove for numbers x1, x2, . . . , xn are not all equal to 1

2
then the Inequality 2.5 is valid with

”<” instead of ”≤”.

Let us prove Inequality 2.5 by induction on n. By simplify Inequality 2.5 we arrive to

(2.6) an− 2a

n
∑

i=1

xi + (an + 1)

n
∏

i=1

xi −

n
∏

i=1

(1− xi)− a

n
∑

i=1

xi

(

n
∏

i=1

xi +

n
∏

i=1

(1− xi)

)

≥ 0.

For n = 2 we have to prove, for 0 < x1 < x2 ≤
1

2
,

h(x2) = 2a− 2a(x1 + x2) + (2a + 1)x1x2 − (1− x1)(1− x2)− a(x1 + x2)(x1x2 + (1− x1)(1− x2)),

where h :
(

x1,
1

2

]

→ R. So, h′′(x2) = 2x(1− 2x1) > 0, and h′(x2) = 0 if and only if

x2 =
(x1 − 1)2

1− 2x1

+
a− 1

2a(1− 2x1)
≥

(x1 − 1)2

1− 2x1

−
1

4(1− 2x1)
=

3

4
−

1

2
x1 ≥

1

2
.

Therefore, h(x2) is strictly decreasing on
(

x1,
1

2

]

which gives

h(x2) ≥ h

(

1

2

)

=

(

1

2
− x1

)(

3a

2
− 1

)

> 0.

Now, let us suppose that

0 < x1 ≤ x2 ≤ · · · ≤ xn ≤ xn+1 ≤
1

2
, x1 < xn+1,

and further we suppose that Inequality 2.3 is hold for n. Let us define a function f :
(

0, 1

2

]

→ R by

f(x) = a(n + 1)− 2a
n
∑

i=1

xi − 2ax + (an + a + 1)x
n
∏

i=1

xi − (1− x)
n
∏

i=1

(1− xi)

−a

(

x +
n
∑

i=1

xi

)(

x
n
∏

i=1

xi + (1− x)
n
∏

i=1

(1− xi)

)

,

so we have to prove f(xn+1) > 0. This by prove that f is a convex function, f ′
(

1

2

)

< 0, and

f
(

1

2

)

> 0. The function f is a convex function because f ′′(x) = 2a (
∏n

i=1
(1− xi)−

∏n
i=1

xi) ≥ 0. By
direct calculations together with Lemma 2.1 we arrive at

f ′
(

1

2

)

=

n
∏

i=1

xi

(

1 + a

n
∑

i=1

xi

)

+

n
∏

i=1

(1− xi)

(

1 + a

n
∑

i=1

xi

)

− 2a ≤ 1 +
a

2
− 2a ≤ 1−

3a

2
< 0.

To prove that f
(

1

2

)

> 0, let us write

f

(

1

2

)

= u(x1, . . . , xn) + v(x1, . . . , xn) +
1

2
(1− a)

(

n
∏

i=1

(1− xi)−

n
∏

i=1

xi

)

,

where

u(x1, . . . , xn)

= an− 2a
n
∑

i=1

+(an + 1)
n
∏

i=1

xi −
n
∏

i=1

(1− xi)− a
n
∑

i=1

xi

(

n
∏

i=1

xi +
n
∏

i=1

(1− xi)

)

,

v(x1, . . . , xn)

= a
4

n
∏

i=1

(1− xi)

(

1 + 2
n
∑

i=1

xi

)

−
a
4

n
∏

i=1

xi

(

1 + 2
n
∑

i=1

(1− xi)

)

.
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Since 2

3
< a ≤ 1 we have 1

2
(1− a) (

∏n
i=1

(1− xi)−
∏n

i=1
xi) ≥ 0, and by induction hypothesis we get

u(x1, . . . , xn) ≥ 0. Lemma 2.2, for a = 2, yields v(x1, . . . , xn) > 0. Hence, f
(

1

2

)

> 0 as requested. ¤

For example, Theorem 2.5, for a = 1 yields the third inequality in [A, Theorem, Equation 2.2].

Corollary 2.6. For all real xi ∈
[

1

2
, 1
)

, i = 1, 2, . . . , n, (n ≥ 2), and 1 ≤ a ≤ 3

2
, we have

(2.7)
1 + a

∑n
i=1

xi

1 + a
∑n

i=1
(1− xi)

≥
1 +

∏n
i=1

xi

1 +
∏n

i=1
(1− xi)

,

with equality if and only if xi =
1

2
for all i = 1, 2, . . . , n.

Proof. If we set xi = 1−yi, yi ∈
[

1

2
, 1
)

, i = 1, 2, . . . , n, in Inequality 2.5 then we arrive to Inequality 2.7.
¤

3. Applications

In this section we present two applications of the pervious results. In [M] presented a great number
of inequalities involving trigonometric functions. Here, we can be formulated another two inequalities
which are the analogue of [A, Corollary 1].

Corollary 3.1.

(i) For all xi ∈
(

0, π
4

]

, i = 1, 2, . . . , n, (n ≥ 2), and 1 ≤ a ≤ 3

2
, we have

∏n
i=1

(1 + sin2(xi))
∏n

i=1
(1 + cos2(xi))

≤
1 + a

∑n
i=1

sin2(xi)

1 + a
∑n

i=1
cos2(xi)

,

(ii) For all xi ∈
[

π
4
, π

2

)

, i = 1, 2, . . . , n, (n ≥ 2), and 1 ≤ a ≤ 3

2
, we have

∏n
i=1

(1 + sin2(xi))
∏n

i=1
(1 + cos2(xi))

≥
1 + a

∑n
i=1

sin2(xi)

1 + a
∑n

i=1
cos2(xi)

,

Proof. If we replace xi by sin2(xi) for all i = 1, 2, . . . , n, then the corollary follow immediately from
Theorem 2.2 and Corollary 2.4. ¤

For example, Corollary 3.1, for a = 1, yields [A, Corollary 1].

An another application for Theorem 2.3 and Corollary 2.4 we can present the following result.

Corollary 3.2.

(i) For any integrable function f : [0, n]→
(

0, 1

2

]

where n ≥ 2, and 1 ≤ a ≤ 3

2
, we have

∏n
i=1

∫ i

i−1
(1 + f(t))dt

∏n
i=1

∫ i

i−1
(2− f(t))dt

≤
1 + a

∫ n

0
f(t)dt

1 + a
∫ n

0
(1− f(t))dt

,

(ii) For any integrable function f : [0, n]→
[

1

2
, 1
)

where n ≥ 2, and 1 ≤ a ≤ 3

2
, we have

∏n
i=1

∫ i

i−1
(1 + f(t))dt

∏n
i=1

∫ i

i−1
(2− f(t))dt

≥
1 + a

∫ n

0
f(t)dt

1 + a
∫ n

0
(1− f(t))dt

,
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Proof. If setting xi =
∫ i

i−1
f(t)dt, then the corollary immediately follow from the Theorem 2.3 and

Corollary 2.4. ¤

For example, Corollary 3.2, for a = 1, yields [A, Corollary 2].
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