Total Curvature and Rearrangements

Björn E. J. Dahlberg*†

Abstract

We study to what extent rearrangements preserve the integrability properties of higher order derivatives. It is well-known that the second order derivatives of the rearrangement of a smooth function is not necessarily in L^1 . We obtain a substitute for this fact. This is done by showing that the total curvature for the graph of the rearrangement of a function is bounded by the total curvature for the graph of the function itself.

1 Introduction

The purpose of this note is to study the regularity properties of the decreasing rearrangement of a function. Let f be a real-valued, bounded and measurable function on an interval I = [a, b]. Its decreasing rearrangement f^* is characterised by the following properties:

- (a) f^* is bounded and decreasing on I;
- (b) f^* is right continuous on [a, b) and left continuous at b;
- (c) f^* and f are equimeasurable, i.e.,

$$|\{x \in I : f^*(x) > \lambda\}| = |\{x \in I : f(x) > \lambda\}|$$

for all $\lambda \in \mathbb{R}$.

Here |E| denotes the Lebesgue measure of the measurable set E. We refer to Hardy, Littlewood and Polya [1] for the classical theory. The monograph by Polya and Szegö [3] contains a wealth of applications of rearrangements to symmetrization and isoperimetric inequalities.

We recall that

(1)
$$\int \varphi(f^*)dx = \int \varphi(f)dx$$

for all continuous functions φ . The basic regularity result for rearrangements is that if $1 \leq p \leq \infty$ and if the derivative of f belongs to $L^p(I)$, then f^* has the same property. More precisely,

^{*}The author was supported by a grant from the NFR, Sweden.

[†]Björn Dahlberg died on the 30th of January 1998. The results of this paper appeared in his post-humous work. The final version was prepared by Vilhelm Adolfsson and Peter Kumlin, Dept. of Mathematics, Chalmers University of Technology and Göteborg University, SE-412 96 Göteborg, Sweden; email: vilhelm@math.chalmers.se

(2)
$$\left\| \frac{df^*}{dx} \right\|_p \le \left\| \frac{df}{dx} \right\|_p,$$

where $||f||_p = (\int |f|^p dx)^{1/p}$.

We shall in this paper study how rearrangements preserve the integrability properties of higher order derivatives. We remark that it is easy to give examples of smooth functions f such that $\frac{d^2f^*}{dx^2}$ does not belong to L^1 . For example, letting

$$f(x) = 2x^3 - 9x^2 + 12x, \quad 0 \le x \le 3$$

$$g(x) = (8x^3 - 36x^2 + 30x + 153)/32$$

then (see Talenti [4])

$$f^*(x) = \begin{cases} f(3-x) & x \in [0,1/2] \cup [5/2,3] \\ g(x) & x \in [1/2,5/2]. \end{cases}$$

Notice however, that in this case $\frac{df^*}{dx}$ is of bounded variation. For f a bounded function on I = [a, b] let

$$(3) \qquad \|f\|_{C}=\sup\{|\int f\varphi''dx|:\varphi\in C_{0}^{\infty}(a,b)\quad \text{and}\quad \|\varphi\|_{\infty}\leq 1\}.$$

Here $C_0^{\infty}(a,b)$ denotes the class of infinitely many times continuously differentiable functions supported in (a,b). We remark that if f is smooth, then

$$||f||_C = \int_I |f''| dx.$$

We shall establish the following analogue of (2).

Theorem 1.1. Suppose f is real-valued, bounded and measurable on [a, b]. Then

$$||f^*||_C \le ||f||_C.$$

We shall derive (4) by analysing the total curvature of the graphs of f and f^* , respectively.

Let $\gamma(t), a \leq t \leq b$ be a simple curve in the plane and let $X = \{\xi_0, \dots \xi_M\}$ be a partition of [a,b], i.e., $a = \xi_0 < \xi_1 < \dots < \xi_M = b$ and let $e_i = \frac{\gamma(\xi_{i+1}) - \gamma(\xi_i)}{|\gamma(\xi_{i+1}) - \gamma(\xi_i)|}, 0 \leq i \leq M-1$.

$$\mathcal{B}(\gamma, X) = \sum_{i=1}^{M-1} \delta_i$$

where δ_i is the length of the shortest arc on $S^1 = \{p \in \mathbb{R}^2 : |p| = 1\}$ joining e_{i-1} and e_i . Finally, the total curvature of γ is

(5)
$$\mathcal{B}(\gamma) = \sup_{X} \mathcal{B}(\gamma, X),$$

where the supremum is taken over all partitions X of [a,b]. We refer to Milnor [2] for the basic properties of the total curvature of arcs. We remark

that if γ is a smooth curve with curvature k, then it can be shown (Milnor [2]) that

(6)
$$\mathcal{B}(\gamma) = \int |k| ds,$$

where the integration is taken with respect to the arc length of γ . For $f:[a,b] \to \mathbb{R}$ continuous let T(f) denote the total curvature of the graph of f.

Theorem 1.2. Suppose $f:[a,b] \to \mathbb{R}$ is continuous. Then

$$(7) T(f^*) \le T(f).$$

Acknowledgement: The results of this paper were presented in October 1997 at the MSRI, Berkeley, CA, during the program Harmonic Analysis and Applications to PDEs and Potential Theory.

2 Preliminary Results

We shall from now on let I = [a, b] be an interval. Let C(I) be the class of continuous and real-valued functions on I. If $f \in C(I)$, then f^* denotes the decreasing rearrangement. Notice that $f^* \in C(I)$ also. For $x \in I$ let S(x) = a + b - x. Notice that S maps I onto itself. If g(x) = f(S(x)), then

$$(8) g^* = f^*$$

If h(x) = -f(x), then

(9)
$$h^*(x) = -f^*(S(x)).$$

Let $X = \{\xi_0, \dots, \xi_N\}$ be a partition of I and let $\gamma : I \to \mathbb{R}^2$ be a simple polygon with nodes at ξ_i , i.e., $\gamma : I \to \mathbb{R}^2$ is continuous, one-to-one and its restriction to the intervals $[\xi_i, \xi_{i+1}]$ is linear for $0 \le i \le N-1$. Then it is well known (see Milnor [2]) that

(10)
$$\mathcal{B}(\gamma) = \mathcal{B}(\gamma, X).$$

In particular, if f is piecewise linear with nodes at ξ_i , $0 \le i \le N$, we have

(11)
$$T(f) = \sum_{i=1}^{N-1} |\varphi_{i+1} - \varphi_i|$$

where $\varphi_i \in (-\pi/2, \pi/2)$ is defined by

(12)
$$\tan \varphi_i = \frac{f(\xi_i) - f(\xi_{i-1})}{\xi_i - \xi_{i-1}}.$$

For $E \subset \mathbb{R}^d$ we let Int (E) and ∂E denote the interior and the boundary of the set E. Let

$$\mathcal{D} = \{ x \in \mathbb{R} : 0 \le x \le \pi/2 \}$$

and define $\gamma: \mathcal{D}^2 \to \mathcal{D}$ by

$$\cot \gamma(x, y) = \cot x + \cot y$$
 if $(x, y) \in \text{Int } (\mathcal{D}^2)$

and

$$\gamma(x, y) = \text{Min } (x, y) \text{ if } (x, y) \in \partial \mathcal{D}^2.$$

Then γ is continuous on \mathcal{D}^2 .

Proposition 2.1. The function γ has the following properties:

- (i) $\gamma(x,y) = \gamma(y,x)$ for $(x,y) \in \mathcal{D}^2$;
- (ii) $\gamma(x, \pi/2) = x \text{ for } x \in \mathcal{D};$
- (iii) $0 \le \gamma(x,y) \le Min(x,y) \le x \text{ for } (x,y) \in \mathcal{D}^2;$
- (iv) $0 < \frac{\partial \gamma(x,y)}{\partial x} < 1 \text{ for } (x,y) \in Int (\mathcal{D}^2).$

(v)
$$\frac{\partial \gamma(x,y)}{\partial x} < \frac{\partial \gamma(x,z)}{\partial x}$$
 if $x \in Int(\mathcal{D})$ and $0 < y < z < \pi/2$.

Proof. The first three properties are obvious from the definition of γ . The last follow from the identity

$$\frac{\partial \gamma(x,y)}{\partial x} = \frac{\cot^2 x + 1}{\cot^2 \gamma + 1}, \quad (x,y) \in \text{Int } (\mathcal{D}^2),$$

which completes the proof of the proposition.

The function γ will be used for computing the rearrangements of piecewise linear functions. The following lemma gives its basic role.

Lemma 2.1. Let $I_1=(a_1,b_1)$ and $I_2=(a_2,b_2)$ be two disjoint, open and bounded intervals of positive length. Let I be an interval of length $|I_1|+|I_2|$. Set $E=I_1\cup I_2$ and assume $f:E\to\mathbb{R}$ has a linear restriction to the subintervals I_1 and I_2 with $f(I_1)=f(I_2)$. Let $(\alpha,\beta)\in Int\ (D^2)$ and assume $|f'|=\tan\alpha$ in I_1 and $|f'|=\tan\beta$ in I_2 and set $\gamma=\gamma(\alpha,\beta)$. Then there is a decreasing linear function $g:I\to\mathbb{R}$ such that

$$g' = -\tan \gamma$$

and

$$(13) |\{x \in I : g(x) > \lambda\}| = |\{x \in E : f(x) > \lambda\}|$$

for all $\lambda \in \mathbb{R}$.

Proof. Let J = (A, B), A < B, the range of f, i.e.,

$$J = f(E) = f(I_1) = f(I_2).$$

We may assume $f(b_1) = B$, otherwise we replace f by $f(a_1 + b_1 - x)$ on I_1 . Similarly, we may assume $f(a_2) = B$ so $f(a_1) = f(b_2) = A$.

There is also no loss in generality in assuming $a_1 < b_1 = a_2 < b_2$ so that f is continuous in $E = (a_1, b_2)$. Elementary geometry shows that if g is the linear function on E with $g(a_1) = B$ and $g(b_2) = A$, then g satisfies (13) and $g' = -\tan \gamma$. The lemma is proved.

We shall next show some inequalities involving the function γ . We first define $a_n: \mathcal{D}^n \times \mathcal{D}^n \to \mathbb{R}$ and $b_n: \mathcal{D}^n \times \mathcal{D}^n \to \mathbb{R}$ by $a_1(x,y) = \gamma(x,y), b_1(x,y) = x+y$ if $x,y \in \mathcal{D}$.

If $n \geq 2$ and $x, y \in \mathcal{D}^n$, we set

$$a_n(x,y) = \gamma(x_1,y_1) + \sum_{i=1}^{n-1} |\gamma(x_i,y_i) - \gamma(x_{i+1},y_{i+1})|,$$

$$b_n(x,y) = x_1 + y_1 + \sum_{1}^{n-1} (|x_i - x_{i+1}| + |y_i - y_{i+1}|)$$

We next define $\alpha_n, \beta_n : \mathcal{D}^n \times \mathcal{D}^n \times \mathcal{D} \to \mathbb{R}$ by

$$\alpha_1(x,y,t) = \gamma(x,y) + |t-\gamma(x,y)|, \qquad \beta_1(x,y,t) = x+y+|t-x|$$

for $x, y, t \in \mathcal{D}$. If $n \geq 2$ and if $x, y \in \mathcal{D}^n$, $t \in \mathcal{D}$, we set

$$\alpha_n(x, y, t) = a_n(x, y) + |t - \gamma(x_n, y_n)|,$$

 $\beta_n(x, y, t) = b_n(x, y) + |t - x_n|.$

We can now give some basic inequalities.

Proposition 2.2. Let n > 1 and let $x, y \in \mathcal{D}^n$, $t \in \mathcal{D}$. Then

$$(14) a_n(x,y) \le b_n(x,y),$$

(15)
$$\alpha_n(x, y, t) \le \beta_n(x, y, t).$$

We shall base the proof of Proposition 2.2 on the following lemma.

Lemma 2.2. Suppose $f: \mathcal{D} \to \mathbb{R}$ satisfies $0 \leq f' \leq 1$. Let $\theta \in \mathcal{D}$ and $A \in \mathbb{R}$ and set

$$q(x) = x + |x - \theta| - f(x) - |f(x) - A|.$$

Then $g(x) \geq g(\theta)$ for all $x \in \mathcal{D}$.

Proof. Let h(x) = f(x) + |f(x) - A|. Clearly

$$0 \le h' \le 2$$
 in \mathcal{D} .

If $0 \le \theta < \pi/2$, we have that $g' = 2 - h' \ge 0$ in the interval $(\theta, \pi/2)$. If $0 < \theta \le \pi/2$, we see that $g' = -h' \le 0$ in $(0, \theta)$ so in all cases $g(x) \ge g(\theta)$. \square

Proof of Proposition 2.2. We begin by verifying the case n = 1. If $x, y, t \in \mathcal{D}$, we have that

$$a_1(x,y) \le x \le x + y = b_1(x,y)$$

which establishes (14) in this case. If $t \geq \gamma(x,y)$, we have $\alpha_1(x,y,t) = t \leq x + |t-x| \leq \beta_1(x,y,t)$. If $0 \leq t \leq \gamma(x,y)$, we have $\alpha_1(x,y,t) = 2\gamma(x,y) - t \leq 2\gamma(x,y) \leq x + y \leq \beta_1(x,y,t)$ which establishes (15) when n=1. Let now $n \geq 2$ and assume that (14) and (15) hold in the range $1,2,\ldots,n-1$. For $x \in \mathbb{R}^n$ let $\hat{x} \in \mathbb{R}^{n-1}$ be the vector (x_2,x_3,\ldots,x_n) and set $x^* = (x_2,\hat{x})$. Let $e_n = b_n - a_n$, $\epsilon_n = \beta_n - \alpha_n$. If $x,y \in \mathcal{D}^n$, $t \in \mathbb{R}$, it follows from Lemma 2.2 that

$$e_n(x,y) \ge e_n(x^*,y^*) = e_{n-1}(\hat{x},\hat{y}) \ge 0.$$

Similarly $\epsilon_n(x,y,t) \geq \epsilon_n(x^*,y^*,t) = \epsilon_{n-1}(\hat{x},\hat{y},t) \geq 0$. Hence the proposition follows by induction.

3 The Main Inequality

We shall in this section develop the main step in the proof of Theorem 1.2. We begin by defining $\Gamma: \mathcal{D}^3 \to \mathcal{D}$ by setting

$$\Gamma(x, y, z) = \gamma(x, \gamma(y, z))$$
 for $x, y, z \in \mathcal{D}$.

Notice that if $(x, y, t) \in \text{Int } (\mathcal{D}^3)$, then

(16)
$$\cot \Gamma(x, y, z) = \cot x + \cot y + \cot z,$$

so Γ is a symmetric function. We shall now define $A_n, B_n : \mathcal{D}^n \times \mathcal{D}^n \times \mathcal{D}^n \to \mathbb{R}$ by setting $A_1(x,y,z) = x+z+2\Gamma(x,y,z), B_1(x,y,z) = x+2y+z$. It is easily seen that

$$(17) A_1 \leq B_1.$$

For $n \geq 2$ and $x, y, z \in \mathcal{D}^n$ we now set

$$A_n(x,y,z) = x_1 + \Gamma(\omega_1) + \sum_{i=1}^{n-1} |\Gamma(\omega_{i+1}) - \Gamma(\omega_i)| + \Gamma(\omega_n) + z_n,$$

$$B_n(x,y,z) = \sum_{i=1}^{n-1} (|x_{i+1} - x_i| + |y_{i+1} - y_i| + |z_{i+1} - z_i|) + x_n + y_1 + y_n + z_1.$$

Here $\omega_j = (x_j, y_j, z_j), 1 \leq j \leq n$.

We can now formulate the main result of this section.

Theorem 3.1. Let $n \geq 1$ and suppose $\omega \in \mathcal{D}^n \times \mathcal{D}^n \times \mathcal{D}^n$. Then

$$(18) A_n(\omega) \le B_n(\omega).$$

We will next introduce some notation. Let $U_n=\mathcal{D}^n\times\mathcal{D}^n\times\mathcal{D}^n$ and let

$$\Delta_n = B_n - A_n.$$

Put

$$\delta_n = \min_{U_n} \Delta_n$$

and let

$$D_n = \min\{\delta_1, \dots, \delta_n\}.$$

From (17) follows

$$\delta_1 = D_1 = 0.$$

Also set

$$\Omega_n = \{ \omega \in U_n : \Delta_n(\omega) = \delta_n \}$$

and notice $\Omega_n \neq \phi$ since Δ_n is continuous on U_n . For $\omega = (x, y, z) \in U_n$ and $1 \leq j \leq n$ let $\Gamma_j(\omega) = \Gamma(x_j, y_j, z_j)$.

Lemma 3.1. Suppose $n \geq 2$, $\delta_n < 0$ and $D_{n-1} = 0$. Then n is odd and for all $\omega \in \Omega_n$

(22)
$$\Gamma_{2j}(\omega) < Min(\Gamma_{2j-1}(\omega), \Gamma_{2j+1}(\omega)), \quad 2 \leq 2j < n.$$

(23)
$$\Gamma_1(\omega) > \Gamma_2(\omega), \quad \Gamma_n(\omega) > \Gamma_{n-1}(\omega)$$

(24)
$$\Gamma_{2j+1}(\omega) > Max\left(\Gamma_{2j}(\omega), \Gamma_{2j+2}(\omega)\right), \quad 2 \leq 2j < n-2.$$

Proof. Let $\omega = (x, y, z) \in U_n$, $x, y, z \in \mathcal{D}^n$.

For $p=(p_1,\ldots,p_n)\in\mathbb{R}^n$ let $\hat{p}=(p_2,\ldots,p_n)$. Let $\hat{\omega}=(\hat{x},\hat{y},\hat{z})\in U_{n-1}$. If $\Gamma_1(\omega)\leq \Gamma_2(\omega)$, then using that $\Delta_{n-1}(\hat{\omega})\geq D_{n-1}=0$

$$\Delta_n(\omega) = \Delta_{n-1}(\hat{\omega}) + x_2 + |x_1 - x_2| - x_1 + y_1 + |y_1 - y_2| - y_2 + z_1 - z_2 + |z_1 - z_2| \ge 0$$

Similarly, if $\Gamma_n(\omega) \leq \Gamma_{n-1}(\omega)$, then $\Delta_n(\omega) \geq 0$, which shows (23). Let now 1 < i < n and let W = (X, Y, Z) where $X, Y, Z \in \mathcal{D}^{n-1}$

$$\begin{cases} X_j = x_j \\ Y_j = y_j \\ Z_j = z_j \end{cases}$$

for $1 \leq j < i$ and

$$\begin{cases} X_j = x_{j+1} \\ Y_j = y_{j+1} \\ Z_j = z_{j+1} \end{cases}$$

for $i \leq j \leq n-1$. If $\Gamma_i(\omega)$ is between $\Gamma_{i-1}(\omega)$ and $\Gamma_{i+1}(\omega)$, then

$$\begin{split} \Delta_n(\omega) &= \Delta_{n-1}(W) + |x_{i-1} - x_i| + |x_i - x_{i+1}| - |x_{i-1} - x_{i+1}| + \\ &+ |y_{i-1} - y_i| + |y_i - y_{i+1}| - |y_{i-1} - y_{i+1}| + \\ &+ |z_{i-1} - z_i| + |z_i - z_{i+1}| - |z_{i-1} - z_{i+1}| \ge 0. \end{split}$$

Using (23), we now see that (22) holds. Again using (23), we see that n must be odd. Finally (23) yields (24), which completes the proof of the lemma.

For $f \in C(\mathcal{D})$ we let m(f) denote the minimum of f on \mathcal{D} , i.e.,

$$m(f) = \min\{f(x) : x \in \mathcal{D}\}.$$

We shall now consider functions $g \in C(\mathcal{D})$ of the form

(25)
$$g(x) = |x - \alpha| + |x - \beta| - |f(x) - a| - |f(x) - b| + c,$$

where $\alpha, \beta \in \mathcal{D}$ and $a, b, c \in \mathbb{R}$. If (25) holds, we will say that g has the function f as its base. We say that $g \in \mathcal{M}_0$ if $g \in C(\mathcal{D})$ has the form (25) and

$$f(\xi) < \text{Min } (a, b)$$

whenever $g(\xi) = m(g)$. If

$$f(\xi) > \text{Max}(a, b)$$

whenever $g(\xi) = m(g)$ we will say that $g \in \mathcal{M}_1$.

For $\rho \in \mathbb{R}$ set $f_{\rho}(x) = \rho x$. Let Λ be the class of all $f \in C(\mathcal{D})$ such that f is continuously differentiable on Int (\mathcal{D}) with

$$0 < f' < 1$$
 on Int (\mathcal{D}) .

Lemma 3.2. Suppose $g \in \mathcal{M}_1$ has f as its base function. Let $\xi \in \mathcal{D}$. If $f = f_0$, then $g(\xi) = m(g)$ if and only if $\xi \in [\alpha, \beta]$. If $f = f_1$, then $g(\xi) = m(g)$ if and only if $\max{(\alpha, \beta)} \le \xi \le \pi/2$. If $f \in \Lambda$, then $g(\xi) = m(g)$ if and only if $\xi = \max{(\alpha, \beta)}$. Here the parameters α and β are defined by the relation (25).

Proof. We may without loss of generality assume $\alpha \leq \beta$ and set $h(x) = |x - \alpha| + |x - \beta|$.

If $f = f_0$, then g = h + C for some constant C, which concludes the lemma in this case. Suppose now that $g(\xi) = m(g)$ and $f \in \Lambda \cup \{f_1\}$. Since f is increasing, we have for $x \geq \xi$ that

$$f(x) \ge f(\xi) > \text{Max } (a, b)$$

so from (25) follows that

$$g(x) = h(x) - 2f(x) + C, \qquad x \ge \xi.$$

Since f is strictly increasing and h is non-increasing on $(-\infty, \beta)$, we see that if ξ were less than β , then

$$g(\beta) < g(\xi),$$

which contradicts the definition of ξ . Hence $\xi \geq \beta$ if $f \in \Lambda \cup \{f_1\}$. If $x > \beta = \operatorname{Max}(\alpha, \beta)$, then $h(x) = 2x - \alpha - \beta$. If now $f \in \Lambda$, then g is strictly increasing on $(\beta, \pi/2)$, so $g(\xi) = m(g)$ if and only if $\xi = \beta$ in this case. If $f = f_1$, then it is easily seen that $g(x) = g(\beta)$ for $x \geq \beta$ which completes the proof of the lemma.

A straightforward modification of the proof of Lemma 3.2 yields the following result.

Lemma 3.3. Suppose $g \in \mathcal{M}_0$ has f as its base function. Let $\xi \in \mathcal{D}$. If $f = f_0$, then $g(\xi) = m(g)$ if and only if $\xi \in [\alpha, \beta]$. If $f = f_1$, then $g(\xi) = m(g)$ if and only if $0 \le \xi \le \min(\alpha, \beta)$. If $f \in \Lambda$, then $g(\xi) = m(g)$ if and only if $\xi = \min(\alpha, \beta)$. Here the parameters α, β are defined by the relation (25).

Let $V \subset \{1,2,\ldots,n\}$, $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$. We define $q_V(x,t)$ as the point $y \in \mathbb{R}^n$ with $y_i = x_i$ for $i \notin V$ and $y_i = t$ when $i \in V$. If $\omega = (x,y,z) \in U_n$, we put $Q_V(\omega,t) = (q_V(x,t),y,z)$ and

(26)
$$E_n^{\omega,V}(t) = \Delta_n(Q_V(\omega,t)).$$

In the special case when $V = \{k\}$, $1 \le k \le n$, we will write $E_n^{\omega,V}$ as $E_n^{\omega,k}$. For $\omega = (x, y, z) \in U_n$ we set

$$\theta_i(\omega) = \gamma(y_i, z_i), \qquad \lambda_{i,\omega}(t) = \gamma(t, \theta_i(\omega)).$$

We observe that $E_n^{\omega,k}$ has $\lambda_{k,\omega}$ as its base function. We remark that if $\omega \in \Omega_n$, then under the conditions of Lemma 3.1 we have

$$(27) E_n^{\omega,k} \in \mathcal{M}_1$$

for k odd and

$$(28) E_n^{\omega,k} \in \mathcal{M}_0$$

for k even.

The following result is an immediate consequence of the previous two lemmas. The verification is left to the reader.

Lemma 3.4. Suppose $n \geq 3$, $\delta_n < 0$ and $D_{n-1} = 0$. Assume $\omega = (x, y, z) \in \Omega_n$ and 1 < k < n. If k is odd, then

$$\delta_n = E_n^{\omega,k}(Max\ (x_{k-1}, x_{k+1}))$$

and if k is even, then

$$\delta_n = E_n^{\omega,k}(Min\ (x_{k-1}, x_{k+1})).$$

If $\theta_k(\omega) = 0$ and 1 < k < n, then

$$\delta_n = E_n^{\omega,k}(t)$$
 for all $t \in [x_{k-1}, x_{k+1}].$

If $\theta_k(\omega) > 0$, then

$$x_k > Max(x_{k-1}, x_{k+1})$$
 for k odd

and

$$x_k \leq Min(x_{k-1}, x_{k+1})$$
 for k even.

We shall next analyse the function $E_n^{\omega,V}$

Lemma 3.5. Suppose $n \geq 3$, $\delta_n < 0$ and $D_{n-1} = 0$. Assume $j \geq 1$ satisfies 2j < n and set $V = \{1, 2, ..., 2j\}$. Let $\xi \in \mathcal{D}$ and assume $\omega = (x, y, z) \in \Omega_n$ satisfies

$$x_1 = x_2 = \ldots = x_{2j} = \xi.$$

If $\xi \leq x_{2j+1}$, then

$$\delta_n = E_n^{\omega,V}(x_{2j+1})$$

so
$$Q_V(\omega, x_{2j+1}) \in \Omega_n$$
.

Proof. We need only treat the case when $\xi < x_{2j+1}$. Setting $\theta_i = \theta_i(\omega)$ we see from Lemma 3.1 that

$$\gamma(\xi, \theta_{2k-1}) > \gamma(\xi, \theta_{2k}), 1 \le k \le j.$$

From Proposition 2.1 follows that for all $t \in \mathcal{D}$

$$\gamma(t, \theta_{2k-1}) \ge \gamma(t, \theta_{2k}), \qquad \frac{\partial \gamma(t, \theta_{2k-1})}{\partial t} \ge \frac{\partial \gamma(t, \theta_{2k})}{\partial t},$$

whenever $1 \leq k \leq j$.

Also $\gamma(\xi, \theta_{2j}) < \Gamma_{2j+1}(\omega)$. Letting

$$a = \sup\{u \in [\xi, x_{2j+1}] : \gamma(t, \theta_{2j}) \le \Gamma_{2j+1}(\omega) \text{ for } \xi \le t \le u\}$$

we have that $\xi < a \le x_{2j+1}$. If $t \in [\xi, a]$, then

$$E_n^{\omega,V}(t) = -2t + 2\sum_{k=1}^{j} (\gamma(t,\theta_{2k}) - \gamma(t,\theta_{2k-1})) + \Phi,$$

where Φ is independent of t. Hence $E_n^{\omega,V}$ is decreasing on $[\xi,a]$ so $\delta_n = E_n^{\omega,V}(a)$ and $Q_V(\omega,a) \in \Omega_n$. In particular, $\gamma(a,\theta_{2j}) < \Gamma_{2j+1}(\omega)$ so we cannot have $a \in (\xi, x_{2j+1})$, i.e, $a = x_{2j+1}$, which yields the Lemma. \square

Lemma 3.6. Suppose $n \geq 3$, $\delta_n < 0$ and $D_{n-1} = 0$. Assume that $j \geq 1$ satisfies 2j < n and put $V = \{2j, 2j + 1\}$. Assume $\omega = (x, y, z) \in \Omega_n$ satisfies

$$x_{2j} = x_{2j+1} \le x_{2j-1}.$$

Then

$$\delta_n = E_n^{\omega,V}(x_{2i-1})$$

so $Q_V(\omega, x_{2j-1}) \in \Omega_n$.

Proof. Put $\xi = x_{2j} = x_{2j+1}$. We need only treat the case when $\xi < x_{2j-1}$. Setting $\theta_i = \theta_i(\omega)$ we find from Lemma 3.1 that

$$\gamma(\xi, \theta_{2j}) < \gamma(\xi, \theta_{2j+1}), \qquad \gamma(\xi, \theta_{2j}) < \Gamma_{2j-1}(\omega).$$

so from Proposition 2.1 it follows that for all $t \in \mathcal{D}$

$$\gamma(t, \theta_{2j}) \le \gamma(t, \theta_{2j+1}), \qquad \frac{\partial \gamma(t, \theta_{2j})}{\partial t} \le \frac{\partial \gamma(t, \theta_{2j+1})}{\partial t}.$$

Suppose now that 2j + 1 = n. Let

 $a = \sup\{u \in [\xi, x_{2j-1}] : \gamma(t, \theta_{2j}) \le \Gamma_{2j-1}(\omega) \text{ for all } t \in [\xi, u]\}.$ If $t \in [\xi, a]$, then

$$E_n^{\omega,V}(t) = 2(\gamma(t,\theta_{2i}) - \gamma(t,\theta_{2i+1})) + \Phi,$$

where Φ is independent of t. Hence $E_n^{\omega,v}$ is decreasing on $[\xi,a]$ so $\delta_n = E_n^{\omega,V}(a)$ and $Q_V(\omega,a) \in \Omega_n$.

In particular, $\gamma(a, \theta_{2j}) < \Gamma_{2j-1}(\omega)$, so we cannot have $a \in (\xi, x_{2j-1})$, i.e., $a = x_{2j-1}$ which establishes the Lemma in this case.

We shall now treat the remaining case, so we assume now that 2j+1 < n. In this case $\gamma(\xi, \theta_{2j+1}) > \Gamma_{2j+2}(\omega)$ so we now set $b = \sup\{u \in [\xi, x_{2j-1}] : \gamma(t, \theta_{2j}) \leq \Gamma_{2j-1}(\omega) \text{ and } \gamma(t, \theta_{2j+1}) \geq \Gamma_{2j+2}(\omega) \text{ for all } t \in [\xi, u]\}$. If $t \in [\xi, b]$, then

$$E_n^{\omega,V}(t) = -t + |t - x_{2i+2}| + 2(\gamma(t,\theta_{2i}) - \gamma(t,\theta_{2i+1})) + \psi,$$

where ψ is independent of t. Hence $E_n^{\omega,V}$ is decreasing on $[\xi,b]$ so $\delta_n = E_n^{\omega,V}(b)$ and $Q_V(\omega,b) \in \Omega_n$. In particular, $\gamma(b,\theta_{2j}) < \Gamma_{2j-1}(\omega)$ and $\gamma(b,\theta_{2j+1}) > \Gamma_{2j+2}(\omega)$, so we cannot have $b \in (\xi,x_{2j-1})$, i.e., $b = x_{2j-1}$. This concludes the proof of the Lemma.

The next lemma will provide the crucial part of the proof of Theorem 3.1. For $\xi \in \mathbb{R}$ we let $Q_n(\xi)$ denote the point in \mathbb{R}^n with all components equal to ξ .

Lemma 3.7. Suppose $n \geq 2$, $\delta_n < 0$ and $D_{n-1} = 0$. Assume $W = (X, Y, Z) \in \Omega_n$. Then there exists a $\xi \in \mathcal{D}$ such that $(Q_n(\xi), Y, Z) \in \Omega_n$.

Proof. Let $\Omega_n(W) = \{\omega = (x,y,z) \in \Omega_n : y = Y, z = Z\}$ and notice $W \in \Omega_n(W)$. For $\omega = (x,y,z) \in U_n$ let $N(\omega)$ be the largest integer $p \in \{1,\ldots,n\}$ such that $x_i = x_1$ for $1 \le i \le p$. Set

$$N = \max\{N(\omega) : \omega \in \Omega_n(W)\}$$

and pick $\omega = (x, y, z) \in \Omega_n(W)$ such that $N = N(\omega)$. Assume that N < n. We shall show that this assumption leads to a contradiction. Note that n is odd by Lemma 3.1, so that $n \ge 3$.

Suppose first that N=n-1. From Lemma 3.2 follows that $\delta_n=E_n^{\omega,n}(x_N)$ so $\zeta=Q_n(\omega,x_N)\in\Omega_n(\omega)$ with $N(\zeta)=n$. This contradicts the definition of N.

Suppose next that N < n-1. Put $\theta_i = \gamma(y_i, z_i)$. From Lemma 3.4 follows that $\delta_n = E_n^{\omega, N+1}(x_N)$ if $\theta_{N+1} = 0$. Hence, if $\theta_{N+1} = 0$ we have $\zeta = Q_{N+1}(\omega, x_N) \in \Omega_n(W)$ with $N(\zeta) \geq N+1$. Again this contradicts the definition of N, so we must have $\theta_{N+1} > 0$.

We can therefore from now on assume $\theta_{N+1} > 0$ and $1 \le N \le n-2$. Also recall that n must be an odd integer.

We first treat the case N is even, say N=2j. Since N+1 must be odd with $\theta_{N+1}>0$ it follows from Lemma 3.4 that $x_{N+1}\geq x_N$. Setting $V=\{1,\ldots,N\}$ it follows from Lemma 3.5 that $\zeta=Q_V(\omega,x_{N+1})\in\Omega_n(W)$. But $N(\zeta)\geq N+1$, which again leads to a contradiction.

It remains only to treat the case when N is odd and $\theta_{N+1}>0$. Setting $\rho_N=\operatorname{Min}\ (x_N,x_{N+2})$ it follows from Lemma 3.4 that $x_{N+1}\leq \rho_N\leq x_N$. Putting $\eta=Q_{N+1}(\omega,\rho_N)$, we also see from Lemma 3.4 that $\eta\in\Omega_n(W)$. If $\rho_N=x_N$ then $N(\eta)\geq N+1$, which is a contradiction. If $\rho_N< x_N$, then $\rho_N=x_{N+2}$ so if $\eta=(\xi,Y,Z)$, then $\xi_{N+1}=\xi_{N+2}=\rho_N< x_N$. Hence η fulfils the assumptions of Lemma 3.6. Setting $S=\{N+1,N+2\}$, we therefore have $q=Q_S(p,x_N)\in\Omega_n(W)$. But $N(q)\geq N+2$ which again contradicts the definition of N.

So in all cases the assumption N < n is impossible, which yields the Lemma. \Box

We can now prove the main result of this section.

Proof of Theorem 3.1. Since $\Delta_n(0) = 0$, we see that $\delta_n \leq 0$ for all $n \geq 1$. Hence it is enough to show $D_n = 0$ for all $n \geq 1$. From (17) follows $\delta_1 = D_1 = 0$. We shall now proceed by induction.

Suppose $n \geq 2$ and

$$(29) D_{n-1} = 0.$$

We shall prove $D_n = 0$. It is enough to show $\delta_n = 0$. We shall argue by contradiction, so assume

$$\delta_n < 0.$$

Define the mapping $\rho: \mathbb{R}^n \to \mathbb{R}^n$ by

$$\rho(x) = (x_n, \dots, x_1)$$
 for $x = (x_1, \dots, x_n)$.

For $\omega = (x, y, z) \in U_n$ we set

$$R(\omega) = (\rho(z), \rho(y), \rho(x)) \in U_n$$
.

Since $\Delta_n(R(\omega)) = \Delta_n(\omega)$, we have that

$$R:\Omega_n\to\Omega_n.$$

From Lemma 3.7 follows the existence of $\xi \in \mathcal{D}$, $y, z \in \mathbb{R}^n$ such that if $x = Q_n(\xi)$, then $\omega = (x, y, z) \in \Omega_n$.

Since $\rho(x) = x$ in this case, we have that $R(\omega) = (\rho(z), \rho(y), x) \in \Omega_n$. Using Lemma 3.7 one more time, we see that there is an $\eta \in \mathcal{D}$ such that if $p = Q_n(\eta)$, then $V = (p, \rho(y), x) \in \Omega_n$. Hence $W = R(V) \in \Omega_n$. Since W = (x, y, p), we see by setting $\theta = \gamma(\xi, \eta)$ that

$$\delta_n = \Delta_n(W) = y_1 + y_n - (\gamma(y_1, \theta) + \gamma(y_n, \theta)) + \sum_{i=1}^{n-1} (|y_i - y_{i+1}| - |\gamma(y_i, \theta) - \gamma(y_{i+1}, \theta)|) > 0$$

by Proposition 2.1. This contradicts the assumption (30) which completes the proof by induction.

4 Total Curvature of Piecewise Linear Functions

Let I=[a,b] be an interval and let $f\in C(I)$. We will say that f is unimodular if there exists a $c\in [a,b]$ such that the restrictions f|[a,c] and f|[c,b] are both monotone. We shall begin by showing that if f is unimodular and piecewise linear, then $T(f^*) \leq T(f)$.

Lemma 4.1. Let $n \ge 1$ and assume

$$x_n < x_{n-1} < \ldots < x_1 < x_0 \le \xi_0 < \xi_1 < \ldots < \xi_{n-1} < \xi_n$$

Put $a = x_n$, $b = \xi_n$. Suppose $y_0 > y_1 > \ldots > y_n$ and assume f is piecewise linear on [a, b] with nodes $\{x_n, x_{n-1}, \ldots, x_0, \xi_0, \ldots, \xi_n\}$. Assume $f(x_i) = f(\xi_i) = y_i$, $0 \le i \le n$. Then

$$T(f^*) \le T(f).$$

Proof. We define for $1 \leq i \leq n$ the angles $\alpha_i, \beta_i \in (0, \pi/2)$ by

$$\tan \alpha_i = \frac{y_i - y_{i-1}}{x_i - x_{i-1}}, \, \tan \beta_i = \frac{y_{i-1} - y_i}{\xi_i - \xi_{i-1}}.$$

Notice that $f'(x) = \tan \alpha_i$ for $x \in (x_i, x_{i-1})$, and $f'(x) = -\tan \beta_i$ for $x \in (\xi_{i-1}, \xi_i)$. It is easily seen that

$$T(f) = \alpha_1 + \beta_1 + \sum_{i=1}^{n-1} (|\alpha_{i+1} - \alpha_i| + |\beta_{i+1} - \beta_i|).$$

Let $\epsilon = 1$ if $\xi_0 > x_0$ and zero otherwise. From Lemma 2.1 follows

$$T(f^*) = \epsilon \gamma(\alpha_1, \beta_1) + \sum_{i=1}^{n-1} |\gamma(\alpha_{i+1}, \beta_{i+1}) - \gamma(\alpha_i, \beta_i)|.$$

Hence the Lemma follows from Proposition 2.2.

We will need the following variant of Lemma 4.1.

Lemma 4.2. Let $m > n \ge 1$ and assume

$$x_n < x_{n-1} < \dots < x_1 < x_0 \le \xi_0 < \xi_1 < \dots < \xi_{m-1} < \xi_m$$

Put $a = x_n$ and $b = \xi_m$. Suppose $y_0 > y_1 > \ldots > y_m$ and assume f is piecewise linear on [a,b] with nodes $\{x_n, x_{n-1}, \ldots, x_0, \xi_0, \ldots, \xi_m\}$. Assume $f(x_i) = y_i$ for $0 \le i \le n$ and $f(\xi_i) = y_i$ for $0 \le i \le m$. Then

$$T(f^*) < T(f)$$
.

Proof. We define for $1 \le i \le n$ the angle $\alpha_i \in (0, \pi/2)$ by

$$\tan \alpha_i = \frac{y_i - y_{i-1}}{x_i - x_{i-1}}.$$

For $1 \le i \le m$ we define $\beta_i \in (0, \pi/2)$ by

$$\tan \beta_i = \frac{y_{i-1} - y_i}{\xi_i - \xi_{i-1}}.$$

It is easily seen that

$$T(f) = \alpha_1 + \beta_1 + \sum_{i=1}^{n-1} (|\alpha_{i+1} - \alpha_i| + |\beta_{i+1} - \beta_i|) + |\beta_n - \beta_{n+1}| + T(g)$$

where $g = f|[\xi_n, b]$. Let $\epsilon = 1$ if $\xi_0 > x_0$ and zero otherwise. From Lemma 2.1 follows

$$T(f^*) = \epsilon \gamma(\alpha_1, \beta_1) + \sum_{i=1}^{n-1} (|\gamma(\alpha_{i+1}, \beta_{i+1}) - \gamma(\alpha_i, \beta_i)|) + |\beta_{n+1} - \gamma(\alpha_n, \beta_n)| + T(g).$$

Hence the Lemma follows from Proposition 2.2.

We can now analyse the total curvature of the rearrangement of a unimodular piecewise linear function.

Lemma 4.3. Let I = [a, b] be an interval. If $f \in C(I)$ is unimodular and piecewise linear, then

$$T(f^*) \leq T(f)$$

Proof. Let $c \in [a, b]$ be such that f|[a, c] and f|[c, b] are monotone. We may without loss of generality assume f is non-decreasing on [a, c]; otherwise we consider -f instead. The result is trivial if f is also non-decreasing on [c, b] so we may assume f is non-increasing on [c, b]. The result is also trivial if $f(c) \in \{f(a), f(b)\}$, so we will assume f(c) > Max (f(a), f(b)).

Put $x_0 = \inf\{x \in I : f(x) = f(c)\}$ and $\xi_0 = \sup\{x \in I : f(x) = f(c)\}$. Clearly f(x) = f(c) for all $x \in [x_0, \xi_0]$. By approximation, it is enough to treat the case when f is strictly increasing on $[a, x_0]$ and f is strictly decreasing on $[\xi_0, b]$. Also, we may assume $f(b) \leq f(a)$; otherwise we consider g(x) = f(a + b - x). Set $M = \{x \in I : x \text{ is a node for } f\}$ and set $V = \{f(x) : x \in M\}$. Let $y_0 > \ldots > y_m$ be listing of the distinct numbers in V. For $1 \leq i \leq n$ let $x_i = \inf\{x \in I : f(x) = y_i\}$ and $\xi_i = \sup\{x \in I : f(x) = y_i\}$. For $n < i \leq m$ let ξ_i be the unique solution of the equation $f(x) = y_i, x \in I$.

Clearly, f can be viewed as a piecewise linear function with nodes $\{x_n, \ldots, x_0, \dots, x_0, \dots$

 ξ_0, \ldots, ξ_m . If m = n the lemma follows from Lemma 4.1. If m > n, then the lemma follows from Lemma 4.2.

Let I = [a, b] be an interval. We let $\mathcal{N}(I)$ denote the class of functions $f \in C(I)$ that satisfy the following two properties:

(i) There are two points $c_1, c_2 \in I$ such that $a < c_1 < c_2 < b$ and the restrictions $f|[a, c_1], f|[c_1, c_2]$ and $f|[c_2, b]$ are all monotone.

(ii) Set m = Min (f(a), f(b)) and M = Max (f(a), f(b)). Then m < f(x) < M for all $x \in (a, b)$.

We shall next establish the inequality $T(f^*) \leq T(f)$ for the case when $f \in \mathcal{N}(I)$ and f is piecewise linear.

Lemma 4.4. Let $n \ge 1$ and assume $x_0 < \dots < x_n$, $\xi_n < \dots < \xi_0$, $\eta_0 < \dots < \eta_n$ and $y_0 > \dots > y_n$. Assume $x_n \le \xi_n$, $\xi_0 \le \eta_0$, $a < x_0$ and $\eta_n < b$. Suppose $f \in C([a,b])$ is piecewise linear with nodes $\{a, x_0, \dots, x_n, \xi_n, \dots, \xi_0, \eta_0, \dots, \eta_n, b\}$. Suppose furthermore that $f(a) > y_0$ and $f(b) < y_n$ and $y_i = f(x_i) = f(\xi_i) = f(\eta_i)$ for $0 \le i \le n$. Then

$$T(f^*) \leq T(f)$$
.

Proof. Let $y_{-1} = f(a), x_{-1} = a, y_{n+1} = f(b), \eta_{n+1} = b$ and define $a_i, b_i, c_i \in (0, \pi/2)$ by

$$\tan a_i = \frac{y_i - y_{i-1}}{x_{i-1} - x_i}, \ \tan b_i = \frac{y_i - y_{i-1}}{\xi_i - \xi_{i-1}}, \ \tan c_i = \frac{y_i - y_{i-1}}{\eta_{i-1} - \eta_i}.$$

It is easily seen that

$$T(f) = |a_1 - a_0| + \sum_{i=1}^{n-1} (|a_{i+1} - a_i| + |b_{i+1} - b_i| + |c_{i+1} - c_i|) + b_1 + c_1 + a_n + b_n + |c_{n+1} - c_n|.$$

Let $\theta = |a_0 - \Gamma(a_1, b_1, c_1)|$ if $\xi_0 = \eta_0$ and $a_0 + \Gamma(a_1, b_1, c_1)$ otherwise. Let $\varphi = |c_{n+1} - \Gamma(a_n, b_n, c_n)|$ if $x_n = \xi_n$ and $c_{n+1} + \Gamma(a_n, b_n, c_n)$ otherwise. From the definition of Γ and Lemma 2.1 follows that

$$T(f^*) = \theta + \sum_{1}^{n-1} |\Gamma_{i+1} - \Gamma_i| + \varphi,$$

where $\Gamma_i = \Gamma(a_i, b_i, c_i)$, $1 \le i \le n$. We now set $\omega = (a_1, \ldots, a_n, b_1, \ldots, b_n, c_1, \ldots, c_n) \in U_n$. We find by Theorem 3.1 that

$$T(f) - T(f^*) \ge \Delta_n(\omega) + |a_0 - a_1| + |c_{n+1} - c_n| - a_0 + a_1 - c_{n+1} + c_n$$

 $\ge \Delta_n(\omega) \ge 0$

which establishes the Lemma.

We can now study rearrangements of piecewise linear functions of the class $\mathcal{N}(I)$.

Lemma 4.5. Let I = [a, b] and suppose $f \in \mathcal{N}(I)$ is piecewise linear. Then

$$T(f^*) \le T(f)$$
.

Proof. Let $a < c_1 < c_2 < b$ be such that f has a monotone restriction to each of the intervals $[a, c_1], [c_1, c_2]$ and $[c_2, b]$. We may assume f is non-increasing on $[a, c_1]$ since otherwise we consider -f.

We may also assume that the restriction of f is not monotone on any of the intervals $[a, c_2]$ of $[c_1, b]$ since otherwise f is unimodular and the result follows from Lemma 4.3. Hence f must be non-increasing on the intervals $[a, c_1]$ and $[c_2, b]$ and non-decreasing on $[c_1, c_2]$. Consequently,

$$f(b) < f(c_1) < f(c_2) < f(a)$$
.

Let $I_1 = [a, c_2]$ and $I_2 = [c_1, b]$. Put $A_k = \inf\{x \in I_k : f(x) = f(c_k)\}$ and $B_k = \sup\{x \in I_k : f(x) = f(c_k)\}$. Then

$$a < A_1 \le B_1 < A_2 \le B_2 < b.$$

By approximation it is enough to treat the case when f is strictly monotone on the intervals $[a, A_1], [B_1, A_2]$ and $[B_2, b]$. Let A_0 solve the equation $f(x) = f(c_2), x \in [a, A_1]$ and let B_3 solve the equation $f(x) = f(c_1), x \in [B_2, b]$. Let $R = \{\xi_0, \dots, \xi_m\}$ be the set of nodes of f and let $\hat{a} = \sup\{\xi \in R : \xi < A_0\}, \hat{b} = \inf\{\xi \in R : \xi > B_3\}.$

It is easy to see that possibly after introducing additional nodes, we have that $g = f|[\hat{a}, \hat{b}]|$ satisfies the assumptions of Lemma 4.4. Let $f_1 = f|[a, A_0]|$, $f_2 = f|[B_3, b]$. Then

$$T(f) = T(g) + T(f_1) + T(f_2)$$

and

$$T(f^*) = T(g^*) + T(f_1) + T(f_2)$$

which yields the Lemma.

5 Proof of the Main Results

We shall in this section finish the proofs of our main results. We begin with the following lemma.

Lemma 5.1. Let I = [a, b] be an interval. If $f \in C(I)$ is piecewise linear, then

$$(31) T(f^*) \le T(f).$$

Proof. Let $n \geq 2$ be the number of nodes of f. The result is trivial if n = 2. If n = 3, the result follows from Lemma 4.3. We shall prove (31) by induction over the number of nodes of f.

We shall therefore assume that $n \geq 4$ and that (31) holds for all piecewise linear functions with less than n nodes.

Let $V=\{1,\ldots,n\},\,V^*=\{2,\ldots,n-1\},\,$ and let $\xi_1=a<\xi_2<\ldots<\xi_n=b$ be the nodes of f. Set $\eta_i=f(\xi_i),\,m=\min\{\eta_i:i\in V\},\,M=\max\{\eta_i:i\in V\},\,m^*=\min\{\eta_i:i\in V^*\}\,$ and $M^*=\max\{\eta_i:i\in V^*\}.$ We will first treat the case when $M^*=M.$ Pick $j\in V^*$ such that $\eta_j=M=M^*.$ Set $g_1=f|[a,\xi_j],\,g_2=f|[\xi_j,b].$ Let G_1 be the increasing rearrangement of g_1 , and put $G_2=g_2^*.$ Define $\theta,\varphi\in[0,\frac{\pi}{2})$ by

(32)
$$\tan \theta = f'(\xi_j -), \qquad \tan \varphi = -f'(\xi_j +).$$

Then

$$T(f) = T(g_1) + T(g_2) + \theta + \varphi.$$

Define $\theta^*, \varphi^* \in [0, \pi/2)$ by

(33)
$$\tan \theta^* = G_1'(\xi_i - 1), \qquad \tan \varphi^* = -G_2'(\xi_i + 1).$$

Set
$$G(x) = G_1(x)$$
 if $a \le x \le \xi_j$, $G_2(x)$ if $\xi_j \le x \le b$. Now

$$T(G) = T(G_1) + T(G_2) + \theta^* + \varphi^*.$$

By the induction assumption $T(G_1) \leq T(g_1)$, $T(G_2) \leq T(g_2)$. Since $0 \leq \theta^* \leq \theta$, $0 \leq \varphi^* \leq \varphi$, we find $T(G) \leq T(f)$. Because G and f are equimeasurable, $f^* = G^*$. Since G is unimodular, we have $T(f^*) = T(G^*) \leq T(G) \leq T(f)$, which establishes the induction step in this case.

If $m^* = m$, the previous reasoning applied to -f shows again that $T(f^*) \leq T(f)$. We are now left with the case $m < m^* \leq M^* < M$. We may assume $f(\xi_n) < M^*$, since otherwise we consider -f. Pick $j \in V^*$ such that $\eta_j = M^* < M$. Set $g_1 = f|[a, \xi_j], g_2 = f|[\xi_j, b]$, and let $\theta, \varphi \in [0, \pi/2)$ be defined by (32). Then

$$T(f) = T(g_1) + T(g_2) + \theta + \varphi.$$

Let g(x) = f(x) for $a \le x \le \xi_j$, $g(x) = g_2^*(x)$ for $\xi_j \le x \le b$. Then g and f are equimeasurable so $f^* = g^*$. Furthermore, $g \in C(I)$ is piecewise linear. Let $\varphi^* \in [0, \pi/2)$ be defined by $\tan \varphi^* = -g'(\xi_j +)$. Since $0 \le \varphi^* \le \varphi$, we have from the induction assumption that

(34)
$$T(g) = T(g_1) + T(g_2^*) + \theta + \varphi^* \le T(f).$$

Set $\mu = \text{Min } \{f(x) : x \in [a, \xi_j]\}$. Then $\mu \leq M^*$ and if $\mu = M^*$, we must have $f(x) = M^*$ for $\xi_2 \leq x \leq \xi_j$ and consequently g is decreasing on [a, b]. Hence, if $\mu = M^*$, we have $f^* = g$ so (31) follows from (34) in this case.

We suppose now that $\mu < M^*$ and pick $k, 1 \le k < j$ such that $\eta_k = \mu$. Put $h_1 = f|[a, \xi_k], h_2 = f|[\xi_k, \xi_j]$. Let H_1 be the decreasing rearrangement of h_1 , H_2 the increasing rearrangement of h_2 . Define H by

$$H(x) = \begin{cases} H_1(x) & \text{for } a \le x \le \xi_k \\ H_2(x) & \text{for } \xi_k \le x \le \xi_j \\ g(x) & \text{for } \xi_j \le x \le b. \end{cases}$$

Then H and f are equimeasurable, $H \in C(I)$ is piecewise linear and arguing as in the derivation of (34) one finds

$$T(H) \le T(g) \le T(f)$$
.

By the construction the function $H \in \mathcal{N}(I)$ so $T(f^*) = T(H^*) \leq T(H) \leq T(f)$. The proof of the induction step is complete, which establishes the Lemma.

Proof of Theorem 1.2. Let $X = \{\xi_0, \dots, \xi_n\}, n \geq 1$, be a partition of I. For $f \in C(I)$ let

$$T(f,X) = \mathcal{B}(\gamma,X),$$

where γ is the graph of f. Let $\theta_i \in (-\pi/2, \pi/2)$,

$$\tan \theta_i = \frac{f(\xi_i) - f(\xi_{i-1})}{\xi_i - \xi_{i-1}}, \quad 1 \le i \le n.$$

Then

$$T(f,X) = \sum_{i=1}^{n-1} |\theta_{i+1} - \theta_i|.$$

Notice that if $f_n \in C(I)$, $f_n \to f$ uniformly, then $T(f_n, X) \to T(f, X)$. Also $f_n^* \to f^*$ uniformly.

Pick $f_n \in C(I)$ such that $f_n \to f$ uniformly and f_n is a piecewise linear function for all n. Then $T(f_n) \leq T(f)$ so

$$T(f^*, X) = \lim_{n \to \infty} T(f_n^*, X) \le \limsup_{n \to \infty} T(f_n^*) \le T(f)$$

by Lemma 5.1. Since

$$T(f^*) = \sup T(f^*, X),$$

where X ranges overall partitions of I, we have proved the Theorem.

Lemma 5.2. Suppose $f \in C(I)$, I = [a, b] is piecewise linear. Then

$$\|f\|_C = \lim_{\epsilon \downarrow 0} \frac{1}{\epsilon} T(\epsilon f).$$

Also

$$||f^*||_C \le ||f||_C.$$

Proof. Let $a = \xi_0 < \xi_1 < \ldots < \xi_n = b$ be the nodes of f. Set

$$Q_i = \frac{f(\xi_i) - f(\xi_{i-1})}{\xi_i - \xi_{i-1}}, \quad 1 \le i \le n.$$

Now

$$\frac{1}{\epsilon}T(\epsilon f) = \frac{1}{\epsilon} \sum_{i=1}^{n-1} |\arctan(\epsilon Q_{i+1}) - \arctan(\epsilon Q_i)|$$

$$\to \sum_{i=1}^{n-1} |Q_{i+1} - Q_i| = ||f||_C$$

as $\epsilon \downarrow 0$. Since f^* is piecewise linear, the lemma follows from Theorem 1.2.

We shall next prove Theorem 1.1 in the case of smooth functions. We will use the Green function

(35)
$$G(x,\xi) = \begin{cases} (1-\xi)x & x \le \xi \\ (1-x)\xi & x \ge \xi. \end{cases}$$

For a measure μ on (0,1) set

$$G\mu(x) = \int_0^1 G(x,\xi) d\mu(\xi).$$

Lemma 5.3. Let I = [a, b]. Suppose f is twice continuously differentiable on I. Then

$$||f^*||_C \le ||f||_C.$$

Proof. By rescaling there is no loss in generality in assuming that I = [0, 1]. Let h = f''. Then

$$f(x) = (1 - x)f(0) + xf(1) - Gh(x)$$

and $||f||_C = \int_0^1 |h(x)| dx$. Let $X = \{\xi_0, \dots, \xi_n\}$, $0 = \xi_0 < \dots < \xi_n = 1$ be a partition of I. Let $F = A_X(f)$ denote the piecewise linear function in I whose set of nodes equals X and $F(\xi_i) = f(\xi_i)$. We claim that

$$||A_X(f)||_C \le ||f||_C.$$

If g is twice continuously differentiable with $g'' \geq 0$, then $G = A_X(g)$ is convex. Hence

$$||A_X(g)||_C = G'(1-) - G'(0+) = g'(p) - g'(q)$$

for some $p, q \in (0, 1)$. Since $g'' \geq 0$, we have that $g'(p) - g'(q) \leq g'(1) - g'(0) = \int g'' dx = ||g||_C$. Hence $||A_X(g)||_C \leq ||g||_C$. Notice that we can write $f = f_1 - f_2$ where f_1, f_2 are both twice continuously differentiable, convex and

$$||f||_C = ||f_1||_C + ||f_2||_C.$$

Hence (36) is proved. By selecting a suitable sequence $X^{(m)}$ of partitions we conclude the existence of a sequence $\{f_m\}_1^{\infty}$ of piecewise linear functions in C(I) such that $\|f_m\|_C \leq \|f\|_C$ and $f_m \to f$ uniformly. If $\varphi \in C_0^{\infty}(0,1)$ with $|\varphi| \leq 1$, then the previous lemma gives that

$$|\int \varphi'' f^* dx| = \lim_{m \to \infty} |\int \varphi'' f_m^* dx|$$

$$\leq \limsup_{m \to \infty} ||f_m^*||_C \leq ||f||_C.$$

Hence $||f^*||_C \leq ||f||_C$ which shows the Lemma.

Proof of Theorem 1.1. By rescaling we may without loss of generality assume I = [0,1]. Suppose $f \in C(I)$ with $||f||_C < \infty$. Then there is a measure μ on (0,1) such that

(37)
$$f(x) = (1-x)f(0) + xf(1) - G\mu(x), x \in [0,1].$$

In addition $||f||_C$ equals the total variation of μ . Notice that G is defined for all $x, \xi \in \mathbb{R}$ by (35). From (37) follows that f can be extended to a function F on \mathbb{R} such that $|\int \varphi'' F dx| \leq ||\varphi||_{\infty} ||f||_C$ whenever $\varphi \in C_0^{\infty}(\mathbb{R})$. Let $\varphi \in C_0^{\infty}(-1, 1)$ be nonnegative with $\int \varphi dx = 1$. For $\epsilon > 0$ set

$$\varphi_{\epsilon}(x) = \frac{1}{\epsilon} \varphi(\frac{x}{\epsilon}).$$

Let $F_{\epsilon} = F * \varphi_{\epsilon}$ be the convolution of F with φ_{ϵ} . Putting $f_{\epsilon} = F_{\epsilon}|I$, we have that

$$||f_{\epsilon}||_C \leq ||f||_C$$
.

and $f_\epsilon \to f$ uniformly on I. If $\varphi \in C_0^\infty(0,1)$ with $|\varphi| \le 1$, then the last lemma implies that

$$|\int arphi'' f^* dx| = \lim_{\epsilon \downarrow 0} |\int arphi'' f_\epsilon^* dx| \leq \|f\|_C.$$

The Theorem is proved.

We conclude with the following corollary.

Corollary 5.1. Let $n \geq 3$ and let $a = (a_1, \ldots, a_n) \in \mathbb{R}^n$. Let $a^* \in \mathbb{R}^n$ be the decreasing rearrangement of a. For $1 \leq k \leq n-1$ set

$$\delta_k = a_{k+1} + a_{k-1} - 2a_k,$$

$$\delta_k^* = a_{k+1}^* + a_{k-1}^* - 2a_k^*.$$

Then

$$\sum_{1}^{n-1} |\delta_k^*| \le \sum_{1}^{n-1} |\delta_k|$$

Proof. Let I = [1, n] and let $f \in C(I)$ be piecewise linear with nodes $\{1, \ldots, n\}$ and $f(i) = a_i$. Then $||f||_C = \sum_1^{n-1} |\delta_k|$ and $||f^*||_C = \sum_i |\delta_k^*|$ so the result follows from Theorem 1.1.

References

- [1] Hardy, G.H., Littlewood, J. E. and Polya, G., *Inequalities*, Cambridge University Press, 1952.
- [2] Milnor, J. W., On the total Curvature of knots, Ann. of Math., 52 (1950), 248-257.
- [3] Polya, G. and Szegö, G, Isoperimetric inequalities in mathematical physics, Princeton University Press, 1951.
- [4] Talenti, G., Assembling a rearrangement, Arch. Rational Mech. Anal. 98 (1987), 285-293.

Björn E. J. Dahlberg Department of Mathematics Chalmers University of Technology SE-412 96 Göteborg Sweden