Total Curvature and Rearrangements

Bjérn E. J. Dahlberg*

Abstract

We study to what extent rearrangements preserve the integrability
properties of higher order derivatives. It is well-known that the second
order derivatives of the rearrangement of a smooth function is not neces-
sarily in L'. We obtain a substitute for this fact. This is done by showing
that the total curvature for the graph of the rearrangement of a function
is bounded by the total curvature for the graph of the function itself.

1 Introduction

The purpose of this note is to study the regularity properties of the de-
creasing rearrangement of a function. Let f be a real-valued, bounded and
measurable function on an interval I = [a, b]. Its decreasing rearrangement
f* is characterised by the following properties:

(a) f* is bounded and decreasing on I;
(b) f* is right continuous on [a,b) and left continuous at b;

(c¢) f* and f are equimeasurable, i.e.,
{zel:f*(x) > =Hzel:f(z)>A}
for all A € R.

Here |E| denotes the Lebesgue measure of the measurable set E. We
refer to Hardy, Littlewood and Polya [1] for the classical theory. The
monograph by Polya and Szegd [3] contains a wealth of applications of
rearrangements to symmetrization and isoperimetric inequalities.

We recall that

) [etras= [onas
for all continuous functions ¢. The basic regularity result for rearrange-

ments is that if 1 < p < oo and if the derivative of f belongs to L?(I),
then f* has the same property. More precisely,
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where || f|l, = (/| f|Pdz)"/?.
We shall in this paper study how rearrangements preserve the integra-

bility properties of higher order derivatives. We remark that it is easy to
d2f*

72z does not belong to L.

give examples of smooth functions f such that
For example, letting

flx) =223 -9z + 122, 0<z<3
g(x) = (82° — 362” + 30z + 153)/32

then (see Talenti [4])

wn_ | fB—2z) z€]0,1/2]U[5/2,3]
F@) = { g(x) z €[1/2,5/2)].

Notice however, that in this case ‘—i;i’% is of bounded variation.
For f a bounded function on I = [a, b] let

3 lflle = supf| /fso"dwl 1o € Ci®(a,b) and  |[lplleo <1}

Here C§°(a,b) denotes the class of infinitely many times continuously dif-
ferentiable functions supported in (a,b). We remark that if f is smooth,
then

Iflle = / 1"\ de.

We shall establish the following analogue of (2).

Theorem 1.1. Suppose f is real-valued, bounded and measurable on [a, b].
Then

(4) 1F*lle < [Iflle-

We shall derive (4) by analysing the total curvature of the graphs of f
and f*, respectively.

Let v(t),a < t < b be a simple curve in the plane and let X =
{&,...- &} be a partition of [a,b], ie., a =& < & < ... < &u =D

o (i) =(&i) : _
andslett € = Lga) ey 0SS M -1
e

M-1

B(’Y,X) = Z d;

i=1

where §; is the length of the shortest arc on S = {p € R? : |p| = 1} joining
e;—1 and e;. Finally, the total curvature of v is

(5) B(v) = sup B(v, X),
X

where the supremum is taken over all partitions X of [a,b]. We refer to
Milnor [2] for the basic properties of the total curvature of arcs. We remark



that if -y is a smooth curve with curvature k&, then it can be shown (Milnor
[2] ) that

(6) B(v) = / |k|ds,

where the integration is taken with respect to the arc length of . For
f :[a,b] = R continuous let T'(f) denote the total curvature of the graph
of f.

Theorem 1.2. Suppose f : [a,b] = R is continuous. Then
(7) T(f*) <T(f)-
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2 Preliminary Results

We shall from now on let I = [a, b] be an interval. Let C(I) be the class of
continuous and real-valued functions on I. If f € C(I), then f* denotes
the decreasing rearrangement. Notice that f* € C(I) also. For = € I let
S(z) = a+ b— z. Notice that S maps I onto itself. If g(z) = f(S(z)),
then

(8) g =r
If h(z) = —f(x), then
(9) h*(x) = = f*(5(x))-

Let X = {&,...,n} be a partition of T and let v : I — R? be a simple
polygon with nodes at &;, i.e., v : I — R? is continuous, one-to-one and
its restriction to the intervals [§;, ;1] is linear for 0 <4 < N — 1. Then it
is well known (see Milnor [2] ) that

(10) B(y) = B(y, X).

In particular, if f is piecewise linear with nodes at &;, 0 <i < N, we have

N-1
(11) T(f) =Y lpir1 — il

where ¢; € (—7/2,7/2) is defined by

_ f&) = f&i-1)
(12) tan@; = e

For E C R? we let Int (E) and OF denote the interior and the boundary
of the set E. Let
D={zeR:0<z<7/2}

and define y : D? — D by
coty(z,y) = cotx 4+ coty if (x,y) € Int (D?)

and
v(z,y) =Min (z,y) if (z,y) € oD

Then v is continuous on D2.



Proposition 2.1. The function v has the following properties:

(i) v(z,9) =(y,z) for (z,y) € D*;
(ii) v(z,7/2) = for x € D;
(it)) 0 <v(z,y) < Min (z,y) <z for (x,y) € D*;
(iv) 0< W <1 for (z,y) € Int (D?).
N (z,y)  Ov(z,2)
) Ox < ox

Proof. The first three properties are obvious from the definition of 7. The
last follow from the identity

ifx € Int (D) and 0 <y < z<m/2.

Ov(z,y) cot’z+1 5
= , ,y) € Int (D?),
Oz cot?y+1 (z,y) € Int (D7)

which completes the proof of the proposition. O

The function - will be used for computing the rearrangements of piece-
wise linear functions. The following lemma, gives its basic role.

Lemma 2.1. Let I = (a1,b1) and I = (a2,b2) be two disjoint, open
and bounded intervals of positive length. Let I be an interval of length
|[Ii] + |I2|. Set E =1, Ul and assume f : E — R has a linear restriction
to the subintervals I and I with f(I,) = f(I2). Let (a,B) € Int (D?)
and assume |f'| = tana in Iy and |f'| =tanB in L and set v = v(a, B).
Then there is a decreasing linear function g : I — R such that

g = —tanvy
and
(13) He el:g(x)> A =|{z€E: fx)>A}
for all A € R.

Proof. Let J = (A,B), A < B, the range of f, i.e.,

J=[(E)=f(I) = f(I2).

We may assume f(b;) = B, otherwise we replace f by f(a1 + b1 — ) on
I,. Similarly, we may assume f(az) = B so f(a1) = f(b2) = A.

There is also no loss in generality in assuming a; < by = as < by so
that f is continuous in E = (a1, b2). Elementary geometry shows that if g
is the linear function on E with g(a1) = B and g(b2) = A, then g satisfies
(13) and ¢' = —tan~y. The lemma is proved. O

We shall next show some inequalities involving the function v. We
first define a, : D™ x D" — R and b, : D® x D* = R by ai(z,y) =
v(@,y), bi(z,y) =2z +yif v,y € D.

If n>2and z,y € D", we set

n—1

an(®,y) = ¥(@1,90) + D (@i, v:) — V(@is1, yir)]s
1

n—1

bo(@,y) = &1 +y1 + Y (1@ — zipa| + |yi — yin1])
1



We next define a,, 8, : D™ x D™ x D — R by

al(xayat) :’Y(xay) + |t_7($ay)|a /Bl(xayat) =z+y+ |t—.’L‘|
for z,y,t € D. f n > 2 and if z,y € D", t € D, we set

an(z,y,t) = an(z,y) + [t = ¥(Tn, yn)l,
We can now give some basic inequalities.

Proposition 2.2. Letn > 1 and let x,y € D", t € D. Then

(14) an(z,y) < bn(z,y),

(15) an(2,y,t) < Bn(z,y,t).

We shall base the proof of Proposition 2.2 on the following lemma.
Lemma 2.2. Suppose f : D — R satisfies 0 < f' < 1. Let 0 € D and
A € R and set

9(x) =z + |z — 0| - f(z) — |f(z) — Al
Then g(z) > g(8) for all x € D.
Proof. Let h(z) = f(z) + |f(xz) — A|. Clearly
0<HK <2 in D.

If 0 < 6 < /2, we have that g’ = 2—h' > 0 in the interval (6, 7/2). If 0 <
0 < m/2, we see that ¢’ = —h' < 0in (0,6) so in all cases g(z) > g(¢). O

Proof of Proposition 2.2. We begin by verifying the casen = 1. If z,y,t €
D, we have that

Cll(.Z',y) <z<z+y= b1($7y)

which establishes (14) in this case. If t > v(z,y), we have a1 (z,y,t) =
E<a+lt—a < fi(,9,8). 0 < t < y(z,y), we have ai(z,y,t) =
2v(z,y) —t < 2y(x,y) < z +y < Bi(x,y,t) which establishes (15) when
n = 1. Let now n > 2 and assume that (14) and (15) hold in the range
1,2,...,n—1. For z € R" let £ € R"~! be the vector (z2,23,...,2,) and
set * = (x2,%). Let e, = by —ap, €, = Bn —an. fz,y € D"t € R, it
follows from Lemma, 2.2 that

en(ﬂ},y) Z en(:c*,y*) = en—l(i.ag) 2 0.
Similarly €,(z,y,t) > e (z*,y*,t) = €,—1(&,7,t) > 0. Hence the proposi-
tion follows by induction. O
3 The Main Inequality

We shall in this section develop the main step in the proof of Theorem 1.2.
We begin by defining I' : D> — D by setting

L(z,y,2) =~(2,7(y,2)) for z,y,z€D.



Notice that if (z,y,t) € Int (D?), then

(16) cotI'(z,y,2) = cotx + coty + cot z,

so I' is a symmetric function. We shall now define A,,, B, : D" xD"xD" —
R by setting A; (z,y,2) =z + z + 2I(z,y, 2), Bi(z,y,2) =z + 2y + 2. It
is easily seen that

(17) A, < By.

For n > 2 and z,y,z € D™ we now set

n—1
An(@,y,2) = 21+ D(w1) + D [D(wir1) = D@i)] +T(wn) + 2n,
i=1
n—1
Bu(z,9,2) = _ (Iwit1 — @il +1git1 — vil +1zi01 — 2i)) + Tty +yn+21-
i=1

Here w; = (z;,y;,25), 1 < j <mn.
We can now formulate the main result of this section.

Theorem 3.1. Let n > 1 and suppose w € D" x D™ x D™. Then
(18) An(w) < Bp(w).

We will next introduce some notation. Let U, = D" x D™ x D" and
let

(19) A, =B, —A,.
Put

(20) On = min A,
and let

D, = min{dy,...,0,}.
From (17) follows
(21) 6, =D, =0.
Also set
O, ={welU,: Ap(w) =6}

and notice Q,, # ¢ since A, is continuous on U,. For w = (z,y,2) € U,
and 1 < j <nlet [';(w) =T'(z;,y;,2;).

Lemma 3.1. Supposen > 2,6, < 0 and D,y = 0. Then n is odd and
for all w € 0,

(22) Iyj(w) < Min (Taj—1(w),Taj41(w)), 2<2j <n.
(23) I (w) >T2(w), Ta(w)>Th-1(w)
(24) F2j+1 (CU) > Maz (I‘2j(w),I‘2j+2(w)), 2<25<n—2.



Proof. Let w = (z,y,2) € Uy, x,y,2 € D".
For p = (p1,.-.,0n) € R let p = (pa,...,pn). Let © = (Z,9,2) €
Unfl. If I‘l(w) S Fg(w), then using that Anfl((:)) Z D",1 =0

Ap(Ww)=An1(®) + 2+ |21 — 22| — 21 + Y1 + |y1 — y2| — 92
+21 =2+ |21 — 22| 20

Similarly, if I'y(w) < I'h—1(w), then A,(w) > 0, which shows (23). Let
now 1 <i<mn andlet W = (X,Y,Z) where X,Y,Z € D*!

Xj=ug;
Y =y,
Zj = zj
for 1 <j<iand
Xj =2t
Y =yjn1
Zj = zjn

fori <j<n-—1. IfT;(w)is between I';_; (w) and T';y; (w), then

Ap(w) = Ap 1 (W) + |zim1 — x| + |75 — Tia| — |Tic1 — Tipa [+
+ |yim1 = ¥l + yi — yita| = [yim1 — Yira |+
+ |zim1 = 2i| + |z — zig1| = |zi1 — 2ig1| > 0.
Using (23), we now see that (22) holds. Again using (23), we see that n

must be odd. Finally (23) yields (24), which completes the proof of the
lemma. O

For f € C(D) we let m(f) denote the minimum of f on D, i.e.,

m(f) = min{f(z) : « € D}.

We shall now consider functions g € C'(D) of the form

(25) 9(z) = |z —af + |z - B| = [f(2) —a| - |f(z) - D[ +¢,

where a, 3 € D and a,b,c € R. If (25) holds, we will say that g has the
function f as its base. We say that g € Mg if g € C(D) has the form (25)
and

f(§) <Min (a,b)
whenever g(&) = m(g). If

f(§) > Max (a, b)

whenever g(§) = m(g) we will say that g € M;.
For p € R set f,(x) = pz. Let A be the class of all f € C(D) such that
f is continuously differentiable on Int (D) with

0<f'<1 on Int (D).

Lemma 3.2. Suppose g € M1 has f as its base function. Let £ € D. If
f = fo, then g(€) = m(g) if and only if € € [0, B]. If f = f1, then g(€) =
m(g) if and only if Maz (o, 8) <& <w/2. If f € A, then g(§) = m(yg) if
and only if £ = Maz (o, 8). Here the parameters o and 8 are defined by
the relation (25).



Proof. We may without loss of generality assume o < 8 and set h(z) =
|z —al + |z — Bl

If f = fo, then g = h + C for some constant C, which concludes the
lemma in this case. Suppose now that g(&§) = m(g) and f € AU {f1}.
Since f is increasing, we have for x > £ that

f(z) > f(§) > Max (a,b)
so from (25) follows that
9(z) = h(z) - 2f(x)+C, =z =&

Since f is strictly increasing and h is non-increasing on (—oo, 3), we see
that if £ were less than 3, then

a(B) < 9(6),

which contradicts the definition of {&. Hence £ > Sif f € AU{f;}. If
z > f = Max («,3), then h(z) = 22 — a — 3. If now f € A, then g is
strictly increasing on (8,7/2), so g(§) = m(g) if and only if £ = 8 in this
case. If f = fi, then it is easily seen that g(x) = g(8) for x > 8 which
completes the proof of the lemma. O

A straightforward modification of the proof of Lemma 3.2 yields the
following result.

Lemma 3.3. Suppose g € Mg has f as its base function. Let & € D.
If f = fo, then g(€) = m(g) if and only if € € [a,B]. If f = fu, then
9(€) =m(g) if and only if 0 < € < Min (o, B). If f € A, then g(€) = m(g)
if and only if € = Min (o, 8). Here the parameters o, 3 are defined by the
relation (25).

Let V C {1,2,...,n},x € R* and t € R. We define gy (z,t) as the
point y € R® with y; = z; fori ¢ V and y; = ¢t wheni € V. Ifw =
(-T,y,Z) € Un7 we put QV(w7t) = (QV(w7t)7y7z) and

(26) EZY (1) = An(Qv (w,1)).

In the special case when V = {k}, 1 < k < n, we will write E<'Y as E“k.
For w = (z,y,2) € U, we set

0i(w) = v(yi, 2:), Aiw () = 7(t,0;(w)).

We observe that E,‘;”k has A, as its base function. We remark that if
w € Q,, then under the conditions of Lemma 3.1 we have

(27) B2k e My
for k£ odd and
(28) E:’k € M

for k even.
The following result is an immediate consequence of the previous two
lemmas. The verification is left to the reader.



Lemma 3.4. Suppose n > 3,8, < 0 and D,_; = 0. Assume w =
(z,y,2) € QA and 1 < k <n. If k is odd, then

Op = E‘T‘:’k(Max (Th—1,ZTh+1))
and if k is even, then
On = E*(Min (21, Th41))-
If 01, (w) =0 and 1 < k < n, then
§n = E¥*(t) for all t € [zr_1,Tr11]-
If Or (w) > 0, then
Tk > Max (xg_1,2Tk11) for k odd

and
zr < Min (xp—1,%p41) for k even.

We shall next analyse the function E<Y

Lemma 3.5. Suppose n > 3,6, < 0 and D1 = 0. Assume j > 1
satisfies 2j < n and set V = {1,2,...,25}. Let £ € D and assume w =
(z,y,2) € Q, satisfies

$1=$2=...=$2j:£.

If £ < 29541, then
(Sn = E;)’V(.’L'gj_f_l)

50 Qv (w,T2j4+1) € Q.

Proof. We need only treat the case when & < z9j41. Setting 6; = 6;(w)
we see from Lemma 3.1 that

Y, 02k-1) > y(§,021), L < k < 5.
From Proposition 2.1 follows that for all t € D

07(t,025-1) S 0v(t,0a1)
ot = ot ’

Y(t, 02k-1) > (t,021),

whenever 1 < k < j.
Also v(&,62;) < T'yjy1(w). Letting

a = sup{u € [§,2941] : Y(t,602;) < Tojp1(w) for £ <t <wu}

we have that £ < a < xj41. If t € [€,a], then

J
E2V(t) = =2t +2) (y(t,021) — (t,025-1)) + P,
k=1

where @ is independent of t. Hence E¥*V is decreasing on [£,a] so 6, =
E¢“V(a) and Qv(w,a) € Q,. In particular, y(a,f;) < Iyjt1(w) so we
cannot have a € (§,z2j41), i-e, a = T2j41, which yields the Lemma. O



Lemma 3.6. Suppose n > 3,6, <0 and D,,_1 = 0. Assume that j > 1
satisfies 25 < n and put V. = {24,2j + 1}. Assume w = (z,y,2) € Qp
satisfies

T2j = Tojp1 S Toj-1-

Then
6n = EZ’V(.Z'Qj,l)

S0 Qv(w,m‘z]‘,l) € Qn

Proof. Put £ = x2; = x2j41- We need only treat the case when £ < x2;_1.
Setting 6; = 6;(w) we find from Lemma 3.1 that

V(&5 025) < V(& 02541), (€, 095) < T2j_1(w).
so from Proposition 2.1 it follows that for all ¢t € D

0 (t,025) < 0y(t,02541)
ot - ot

v(t,025) < (2, 02541), :
Suppose now that 2j + 1 = n. Let
a = Sup{u € [67 .ng,l] : ’Y(t7 02]) S F2j*1(w) for all t € [fau]} Ift e [&7 a]7
then

EV (1) = 2(y(t, 025) — (t,02541)) + 9,

where ® is independent of ¢t. Hence E%+? is decreasing on [{,a] so &, =
E“V(a) and Qv (w,a) € Q.

In particular, y(a,62;) < I'2j—1(w), so we cannot have a € (£, z25-1),
i.e., @ = w2j_1 which establishes the Lemma in this case.

We shall now treat the remaining case, so we assume now that 25 +1 <
n. In this case y(, 02j+1) > I'2j+2(w) so we now set
b = sup{u € [§,22j-1] : V(t,02;) < Taj-1(w) and ¥(t,02j41) > Tzjt2(w)
for all ¢t € [€,u]}. If ¢ € [€,D], then

BV (1) = —t + [t — wajpa| + 2(7(t, 025) — ¥ (t,02541)) + 9,

where 1 is independent of t. Hence E“:V is decreasing on [£,b] so 6, =
E“V(b) and Qy(w,b) € Q,. In particular, v(b,02;) < T[j_1(w) and
(b, 62j41) > Tajy2(w), so we cannot have b € (§,z2j_1), i.e., b = Za;_1.
This concludes the proof of the Lemma. O

The next lemma will provide the crucial part of the proof of Theorem
3.1. For £ € R we let Q,(&) denote the point in R with all components
equal to &.

Lemma 3.7. Suppose n > 2,6, < 0 and D,_1 = 0. Assume W =
(X,Y,Z) € Q. Then there exists a £ € D such that (Qn(£),Y,Z) € Q,.

Proof. Let Q,(W) = {w = (z,y,2) € Q, : y = Y,z = Z} and notice
W e Q,(W). For w = (z,y,2) € U, let N(w) be the largest integer
p € {1,...,n} such that z; = z; for 1 <i < p. Set

N = max{N(w) : w € Q, (W)}

and pick w = (z,y, 2) € Qn(W) such that N = N(w). Assume that N < n.
We shall show that this assumption leads to a contradiction. Note that n
is odd by Lemma 3.1, so that n > 3.

10



Suppose first that N = n — 1. From Lemma 3.2 follows that §,, =
E“™(zn) 50 ¢ = Qn(w,zn) € Qp(w) with N(¢) = n. This contradicts the
definition of N.

Suppose next that N < n —1. Put §; = v(y;, 2;). From Lemma 3.4
follows that §, = E<N*l(zy) if On11 = 0. Hence, if Ox41 = 0 we have
¢ = Qnt1(w,zn) € Qu(W) with N(¢) > N + 1. Again this contradicts
the definition of N, so we must have 81 > 0.

We can therefore from now on assume fy41 >0and 1 < N <n —2.
Also recall that n must be an odd integer.

We first treat the case N is even, say N = 2j. Since N 41 must be odd
with On41 > 0 it follows from Lemma 3.4 that 41 > . Setting V =
{1,...,N} it follows from Lemma 3.5 that ( = Qv (w,zn41) € Qu(W).
But N(¢) > N + 1, which again leads to a contradiction.

It remains only to treat the case when N is odd and n41 > 0. Setting
pN = Min (zn,zn42) it follows from Lemma 3.4 that xn4+1 < pv < ZN-
Putting n = Qny1(w, pn), we also see from Lemma 3.4 that n € Q,(W).
If py = zn then N(n) > N + 1, which is a contradiction. If py < zn,
then py = zn42 soif = (§,Y, Z), then En41 = {ni2 = pv < zn. Hence
7 fulfils the assumptions of Lemma 3.6. Setting S = {N + 1, N + 2}, we
therefore have ¢ = Qs(p,zn) € Q,(W). But N(q) > N + 2 which again
contradicts the definition of N.

So in all cases the assumption N < n is impossible, which yields the
Lemma. ([l

We can now prove the main result of this section.

Proof of Theorem 3.1. Since A, (0) = 0, we see that d, < 0 for all n > 1.
Hence it is enough to show D, = 0 for all n > 1. From (17) follows
61 = Dy = 0. We shall now proceed by induction.

Suppose n > 2 and

(29) Dp_y =0.

We shall prove D,, = 0. It is enough to show §, = 0. We shall argue by
contradiction, so assume

(30) dn < 0.
Define the mapping p : R* — R" by
p(x):(mna"'awl) for SU:(SEl,...,SL'n).

For w = (z,y,2) € U, we set

Since A, (R(w)) = A, (w), we have that

R:Q, — Q,.
From Lemma 3.7 follows the existence of £ € D, y,z € R® such that if
z = Qn(£), then w = (2,9, 2) € Q.

Since p(x) = z in this case, we have that R(w) = (p(2), p(y),z) € Q.
Using Lemma 3.7 one more time, we see that there is an 1 € D such that

11



if p=Qnn), then V = (p,p(y),z) € Q,,. Hence W = R(V) € Q,,. Since
W = (z,y,p), we see by setting 6 = y(£,n) that

On = An(W) =91 +yn — (7(y1,0) + v(yn,0))+

n—1

+ ) (yi = yir1l = 173, 0) = Y(¥ir1,6)])

1
>0

by Proposition 2.1. This contradicts the assumption (30) which completes
the proof by induction. O

4 Total Curvature of Piecewise Linear Func-

tions
Let I = [a,b] be an interval and let f € C(I). We will say that f is
unimodular if there exists a ¢ € [a,b] such that the restrictions f|[a,c]

and f|[c,b] are both monotone. We shall begin by showing that if f is
unimodular and piecewise linear, then T'(f*) < T'(f).

Lemma 4.1. Let n > 1 and assume
Tp <Tp1<...<21<20<& <& <. <€ <&pe

Put a = x,, b = &,. Suppose yo > y1 > ... > y, and assume [ is

piecewise linear on [a,b] with nodes {x,, Tn_1,...,%0,&0,---,&n}. Assume
(i) = f(&) = yi, 0<i <n. Then
T(f*) <T(f)
Proof. We define for 1 < ¢ < n the angles a;, 3; € (0,7/2) by
tan a; = YiZYi1 ,tan B8; = Y1 Y yi.
Ti—Ti-1 &i—&i1
Notice that f'(z) = tanq; for z € (x;,z;—1), and f'(z) = —tanp; for

z € (&i-1,&). Tt is easily seen that

n—1

T(f)=ai+ b1+ Z(|ai+1 —a;| + |Biy1 — Bil)-
1

Let e =1 if £ > z¢ and zero otherwise. From Lemma, 2.1 follows

n—1
T(f") = ev(a1, 1) + Z Iv(@iy1, Birr) = v(as, Bi)l-
i=1

Hence the Lemma, follows from Proposition 2.2. [l
We will need the following variant of Lemma 4.1.
Lemma 4.2. Let m > n > 1 and assume
Tp<Tp 1<...<21<20<&E<E <<€ <&

Puta = x, and b = &,,. Suppose yo > y1 > ... > Yy, and assume [ is
piecewise linear on [a, b] with nodes {zn, Tn—1,...,Z0,&0,..-,&m}. Assume
f(@i) =y; for 0<i<mn and f(§) =y; for 0 <i <m. Then

T(f*) <T(f)-

12



Proof. We define for 1 < i < n the angle a; € (0,7/2) by

Yi —Yi-1

tanq; = .
Ti — Ti-1

For 1 < i < m we define g; € (0,7/2) by

Yi1—Yi;
tan p; = ————.
b & —&i—1
It is easily seen that
n—1
T(f)=a1+p1 + Z(|ai+1 — ;| +|Biv1 — Bil) + |Bn — Bnr1| + T(g)
i=1

where g = f|[n,b]. Let € = 1 if £ > x¢ and zero otherwise. From Lemma
2.1 follows

n—1

T(f*) = ey(a1, B1) + Y ([¥(aita, Bir1) — (o, Bi))+

|/8n+1 - ’7(an7/3n)| + T(g)
Hence the Lemma follows from Proposition 2.2. |

We can now analyse the total curvature of the rearrangement of a
unimodular piecewise linear function.

Lemma 4.8. Let I = [a,b] be an interval. If f € C(I) is unimodular and
piecewise linear, then

T(f*) <T(f)

Proof. Let ¢ € [a, b] be such that f|[a, c] and f|[c, b] are monotone. We may
without loss of generality assume f is non-decreasing on [a, c|; otherwise
we consider —f instead. The result is trivial if f is also non-decreasing
on [c,b] so we may assume f is non-increasing on [c, b]. The result is also
trivial if f(c) € {f(a), f(b)}, so we will assume f(c) > Max (f(a), f(b)).

Put zg = inf{z € I : f(z) = f(c)} and §& =sup{z € I : f(z) = f(c)}.
Clearly f(z) = f(c) for all z € [z9,&]. By approximation, it is enough
to treat the case when f is strictly increasing on [a, zg] and f is strictly
decreasing on [£p,b]. Also, we may assume f(b) < f(a); otherwise we
consider g(z) = f(a+b—1z). Set M = {z € I : z is a node for f} and
set V.= {f(z) : z € M}. Let yo > ... > ym be listing of the distinct
numbers in V. For 1 < i < nlet 2; = inf{x € I : f(z) = y;} and
& =sup{z € I: f(z) =y;}. For n <i < mlet & be the unique solution
of the equation f(z) =y;, z € I.

Clearly, f can be viewed as a piecewise linear function with nodes

{zn,..., %o,
&0, -+, &m}- If m = n the lemma follows from Lemma 4.1. If m > n, then
the lemma follows from Lemma 4.2. O

Let I = [a,b] be an interval. We let A(I) denote the class of functions
f € C(I) that satisfy the following two properties:

(i) There are two points ¢i,¢2 € I such that a < ¢; < ¢2 < b and the
restrictions f|[a, ¢1], f|[c1,cz] and f|[ca, b] are all monotone.
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(ii)) Set m = Min (f(a), f(b)) and M = Max (f(a), f(b)). Then m <
f(z) < M for all z € (a,b).

We shall next establish the inequality T'(f*) < T'(f) for the case when
f € N(I) and f is piecewise linear.

Lemma 4.4. Letn > 1 and assume Tg < ... < Zp, &y < ... < &, o <
o< Mpandyo > ... > yp. Assume x, < &, Lo < Mo, a < xo and 1, < b.
Suppose f € C([a, b)) is piecewise linear with nodes {a, Tg,. . . Tn,&n,y- - - €0,
N0,---,Mn,b}. Suppose furthermore that f(a) > yo and f(b) < yn and
yi = f(@i) = f(&) = f(ni) for 0 <i<n. Then

T(f*) < T(f)-
Proof. Let y—1 = f(a),z—1 = a,ynt1 = f(b), Mnt1 = b and define
ai,bi,ci € (0,71'/2) by

tana; = LTYEL panp, = Y TYimL = YT VinL

Tio1 — T & — & Ni—1 = Mi
It is easily seen that

n—1
T(f) = |ar — ao| + > _(laips — @il + birs — bil + |civa — i)+
1
+b+c1+an+by+ |Cngr —cal

Let 0 = |ag — ['(a1,b1,c1)| if & = no and ag + I'(a1, b1,¢1) otherwise.
Let ¢ = |ent1—T(an, bn, ¢n)| if 2, = &, and ¢, 11 +T(an, by, ¢,) otherwise.
From the definition of I' and Lemma, 2.1 follows that

n—1
T(f*) =60+ [Tip1 —Til + ¢,
1

where T'; = T'(a;, b;,¢;), 1 <i <n. Wenow set w = (a1,-..,an, b1,---,bn,
Cly---5¢n) € Up. We find by Theorem 3.1 that

T(f) - T(f*) > An(w) + |ao - 611| + |Cn+1 - Cn| — Qo+ a1 — Cht1 T Cn
> Ap(w) >0

which establishes the Lemma. O

We can now study rearrangements of piecewise linear functions of the

class N(I).

Lemma 4.5. Let I = [a,b] and suppose f € N(I) is piecewise linear.
Then

T(f*) <T(f)-

Proof. Let a < ¢; < ¢z < b be such that f has a monotone restriction
to each of the intervals [a,c1],[c1,ca] and [c2,b]. We may assume f is
non-increasing on [a, ¢;] since otherwise we consider —f.

We may also assume that the restriction of f is not monotone on any
of the intervals [a, ca] of [c1,b] since otherwise f is unimodular and the
result follows from Lemma 4.3. Hence f must be non-increasing on the
intervals [a, ¢1] and [c2, b] and non-decreasing on [c1, ¢3]. Consequently,

f(0) < fler) < flea) < f(a).
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Let I = [a,c¢2] and Ir = [c1,b]. Put Ay = inf{x € I : f(z) = f(ck)} and
B =sup{z € I, : f(z) = f(ck)}. Then

a< A <B; <Ay <By<b.

By approximation it is enough to treat the case when f is strictly monotone
on the intervals [a, A1],[B1, A2] and [B,,b]. Let Ay solve the equation
f(z) = f(e2), z € [a, A1] and let Bs solve the equation f(z) = f(c1), z €
[B2,b]. Let R = {&,...,&m} be the set of nodes of f and let & = sup{¢ €
R:6< Ao}, b=inf{é € R: £ > Bs}.

It is easy to see that possibly after introducing additional nodes, we
have that g = f|[a, b] satisfies the assumptions of Lemma 4.4. Let f; =
fl[a7A0]7 fa= f|[B37b] Then

T(f)=T(9) +T(f1) +T(f2)
and
T(f*)=T(g") +T(fr) +T(f2)
which yields the Lemma. O

5 Proof of the Main Results

We shall in this section finish the proofs of our main results. We begin
with the following lemma.

Lemma 5.1. Let I = [a,b] be an interval. If f € C(I) is piecewise linear,
then

(31) T(f*) <T(f)-

Proof. Let n > 2 be the number of nodes of f. The result is trivial if
n = 2. If n = 3, the result follows from Lemma 4.3. We shall prove (31)
by induction over the number of nodes of f.

We shall therefore assume that n > 4 and that (31) holds for all piece-
wise linear functions with less than n nodes.

Let V.= {1,...,n}, V* = {2,...,n— 1}, and let §§ = a < & <
... < &, = b be the nodes of f. Set n; = f(&), m = min{n; : 4 € V},
M =max{n; : 1 € V}, m* = min{n; : ¢« € V*} and M* = max{n; : i €
V*}. We will first treat the case when M™* = M. Pick j € V* such that
n; =M = M*. Set g1 = fl|[a,&], 92 = fl[€;,b]- Let G1 be the increasing
rearrangement of g1, and put Go = g5. Define 0,¢ € [0, T) by

(32) tanf = f'(§;—),  tanp = —f(§+).

Then
T(f) =T(g1) +T(g2) + 6 + .

Define 6*,p* € [0,7/2) by
(33) tand" = G1(§—),  tang® = —Gy(§+).
Set G(z) = G1(z) if a <z <&, Go(x) if § <z < b. Now

T(G)=T(G1) +T(Ga) + 6" + ¢".
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By the induction assumption T(G1) < T(g1), T(G2) < T(g2). Since
0 <0 <0,0 <¢* <y, wefind T(G) < T(f). Because G and f
are equimeasurable, f* = G*. Since G is unimodular, we have T(f*) =
T(G*) <T(G) <T(f), which establishes the induction step in this case.

If m* = m, the previous reasoning applied to —f shows again that
T(f*) < T(f). We are now left with the case m < m* < M* < M. We
may assume f(&,) < M*, since otherwise we consider —f. Pick j € V*
such that n; = M* < M. Set g1 = f|[a,&;], g2 = f|[§;,b], and let 0, ¢ €
[0,7/2) be defined by (32). Then

T(f)=T(g1) +T(g2) +6 + .

Let g(z) = f(z) for a <z < &, g(z) = g5(x) for §; <z <b. Then g and f
are equimeasurable so f* = g*. Furthermore, g € C(I) is piecewise linear.
Let ¢* € [0,7/2) be defined by tan¢* = —g'(§;+). Since 0 < ¢* < ¢, we
have from the induction assumption that

(34) T(g) =T(91) +T(g3) +0+¢* <T(f).

Set u = Min {f(z) : z € [a,§;]). Then pp < M* and if p = M*, we must
have f(z) = M* for & < z < &; and consequently g is decreasing on [a, b].
Hence, if p = M*, we have f* = g so (31) follows from (34) in this case.

We suppose now that u < M* and pick k, 1 < k < j such that n; = pu.
Put hy = fl[a, &), he = f|[&k, &;]- Let Hy be the decreasing rearrangement
of hqi, H» the increasing rearrangement of ho. Define H by

Hy(z) for a<z <&
H(z) =< H(z) for & <z <¢
g(z) for & <z <b.

Then H and f are equimeasurable, H € C(I) is piecewise linear and
arguing as in the derivation of (34) one finds

T(H) <T(g9) <T(f)

By the construction the function H € N'(I) so T(f*) =T(H*) <T(H) <
T(f). The proof of the induction step is complete, which establishes the
Lemma. [l

Proof of Theorem 1.2. Let X = {&,...,&.}, n > 1, be a partition of I.
For f € C(I) let
T(f,X) = B(v,X),

where « is the graph of f. Let 0; € (—7/2,7/2),

(&) = f(&i-1)
&—&1

tanf; = 1<i<n.

Then )
T(f,X) = 01— bil-
1

Notice that if f, € C(I), f, = f uniformly, then T(f,,X) — T(f, X).
Also f — f* uniformly.

Pick f, € C(I) such that f, — f uniformly and f, is a piecewise linear
function for all n. Then T'(f,) < T(f) so

T(f*,X) = lim T(f7, X) <limsupT(f3) < T(f)

n—00
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by Lemma 5.1. Since
T(f*) =supT(f*, X),
where X ranges overall partitions of I, we have proved the Theorem. [
Lemma 5.2. Suppose f € C(I), I = [a,b] is piecewise linear. Then
I flle = lim *T(ef).
el €
Also
1f*lle < [Iflle-
Proof. Let a =§& < & < ... < &, = b be the nodes of f. Set

f(&) — f(&i1)

Qi = & — &1

1<i<n.

Now

n—1

%T(e )= % 21: | arctan(eQsp1 ) — arctan(eQs)|
n—1

=Y 1Qir1 — Qil = Iflle
1
as € | 0. Since f* is piecewise linear, the lemma follows from Theorem
1.2. ([l

We shall next prove Theorem 1.1 in the case of smooth functions. We
will use the Green function

(35) cwo-{ G790 158

For a measure p on (0,1) set

() = /0 G(z, €)du(€).

Lemma 5.3. Let I = [a,b]. Suppose f is twice continuously differentiable
on I. Then

1£*lle < llflle-

Proof. By rescaling there is no loss in generality in assuming that I = [0, 1].
Let h = f". Then

f@) =1 —-2)f(0) +2f(1) - Gh(x)
1
and ||fllc = [y |h(z)|da.
Let X = {&,...,&n}, 0 =& < ... < &, =1 be a partition of I. Let
F = Ax(f) denote the piecewise linear function in I whose set of nodes

equals X and F(&) = f(&)- We claim that

(36) 1Ax (Nlle < Nflle-
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If g is twice continuously differentiable with ¢g" > 0, then G = Ax(g) is
convex. Hence

IAx(9)lle = G'(1-) = G'(0+) = ¢'(p) — 9'(9)

for some p,q € (0,1). Since g" > 0, we have that ¢'(p) — ¢'(¢) < ¢'(1) —
g'(0) = [¢"dz = ||g|lc. Hence ||[Ax(g)|lc < |lgllc. Notice that we can
write f = f1 — fo where fi, f2 are both twice continuously differentiable,
convex and

Iflle = lfille + [ f2llo-

Hence (36) is proved. By selecting a suitable sequence X (™) of parti-
tions we conclude the existence of a sequence {fp,}5° of piecewise linear
functions in C(I) such that ||fmllc < ||fllc and f, — f uniformly. If
v € C§°(0,1) with |p| < 1, then the previous lemma gives that

< limjupr:;LHC <Ifllc-

Hence ||f*||c < ||f|lc which shows the Lemma. O

Proof of Theorem 1.1. By rescaling we may without loss of generality as-
sume I = [0,1]. Suppose f € C(I) with ||f|lc < oo. Then there is a
measure g on (0,1) such that

(37) f@) = (1 —-2)f(0) +2f(1) - Gu(z), z € [0,1].

In addition ||f||c equals the total variation of u. Notice that G is defined
for all z,£ € R by (35). From (37) follows that f can be extended to a
function F on R such that | [ ¢"Fdz| < ||¢||el| f||c Whenever ¢ € C§°(R).
Let ¢ € C§°(—1,1) be nonnegative with [ ¢daz = 1. For € > 0 set

1 =z
¢e(z) = —p(2)-

€

Let F, = F x . be the convolution of F' with .. Putting f. = F.|I, we
have that

Ifelle <[ fllc-

and f. — f uniformly on I. If ¢ € C§°(0,1) with |p| < 1, then the last
lemma implies that

| [ rasl =tim| [ o szdal < 1
The Theorem is proved. O

We conclude with the following corollary.

Corollary 5.1. Letn > 3 and let a = (a1,...,a,) € R*. Let a* € R be
the decreasing rearrangement of a. For 1 <k <n—1 set

Op = Gpq1 +ag—1 — 2ay,
* % * *
6k = ak+1 =+ ak—l bt 2G/k.

Then

n—1 n—1
DI <D 10kl
1 1
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Proof. Let I = [1,n] and let f € C(I) be piecewise linear with nodes

{1,...,n} and (i) = a;. Then |[fllc = 377" |84 and | f*llc = 3 |67 so
the result follows from Theorem 1.1. O
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