The Converse of the Four Vertex Theorem
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Abstract

We establish the converse to the four vertex theorem without the pos-
itivity condition.

1 Introduction

Let T denote the unit circle of the complex plane C and let v : T — C
be the parametrisation of a smooth, simple and closed curve. Here the
smoothness condition means that + is infinitely many times continuously
differentiable. If k : T — R denotes the curvature function of y then the
four vertex theorem asserts that if k is not a constant then k has at least
four critical points p; € T', 7 = 1,...,4 ordered counter clockwise such that
p1,p3 are local maxima and ps, ps are local minima and that furthermore
k(p1) > 0, k(ps) > 0 and

max(k(pz), £(p1)) < min(k(p1), £(p3))-

This result was apparently first proved for the case of closed convex curves
by Mukhopadhyaya [4]. For proofs in the case of simple closed curves see
Fog [1], Jackson [3] and Vietoris [5].

The converse of this was studied by Gluck [2], who proved that if &
is a smooth and strictly positive function satisfying the above four vertex
property then « is the curvature function of a smooth, simple and closed
curve. The purpose of this note is to establish the converse to the four
vertex theorem without the positivity condition.

Theorem 1.1. Suppose k : T — R is not a constant and assume that
Kk has at least four critical points ordered counter clockwise p; € T, i =
1,...,4 such that p1,ps are local maxima and ps, ps are local minima with
k(p1) > 0,k(p3s) > 0 and max(k(p2),k(ps)) < min(k(p1),k(p3)). If in
addition k is smooth then k is the curvature function of a smooth, simple
and closed curve.

We remark that a smooth function K : T — R represents the curvature
of a smooth, simple and closed curve parametrised by the arc length if and
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only if the following three conditions are satisfied:

27
(1) Kds =2r
0
27 .
(2) / e ) ds = 0
0
(3) / e ds £0if0<t <7< 2m
¢

Here a(s) = [; K(t)dt and the parametrisation of the associated curve v
is given by

¢
VK (t) =/ i) gs.
0

The above three conditions all have a geometric interpretation. The first
condition expresses that the curve yx has a well determined tangent at
s = 0, the second condition expresses that yx is a closed curve. Finally,
the third condition expresses that vk is simple, that is, without self inter-
sections.

We will say that k is a non—normalised curvature function if

(a) I= 02”/<;dt7é0and
K = 2%k satisfies (2) and (3).

In order to prove the theorem it is enough to show the existence of a
smooth homeomorphism ¢ : T — T such that k o ¢ is a non—normalised
curvature function. For letting 1 denote the inverse of ¢ and setting
K=%Xkop I= f027r ko @dt, then the curve T' parametrised by I'(t) =
2Ty (1(t)) has & as its curvature function.

2 Preliminary Results

The construction of the homeomorphisms required for the proof of theorem
(1.1) will be based on the following observations.

Proposition 2.1. Let E; C T, j = 1,...,4 be non-empty, pairwise
disjoint open intervals that are ordered counter clockwise on the unit circle
with \JE; = T. Let a,b be two positive numbers with a # b and define the
function k by
b= { a on E; UE;
"l bonEyUE,

Suppose furthermore that fOZF kds = 2n. Then k is the curvature function
of a closed convex curve parametrised by the arc length if and only if E3 =
{-w:w € E1} and Ey = {—w : w € E»}.

Proof. We begin by establishing the necessity. Let v be a curve of length
27 whose curvature is given by k = k(s). Since k is strictly positive it is
well known that 7 is convex. Let k = k(1)) represent the curvature of 7



as a function of the angle ¥ the tangent forms with the positive x—axis.
Then it is easily seen that

2 ” 1
(5) / ¢ L g9 —o.
0 K(0)

Let the function F = F() parametrise v with respect to the angle ¥ the
tangent forms with the z—axis. Set now e; = {8 : F(¥) € v(E;)}, j =
1,...,4. Then the e;’s are non-empty, pairwise disjoint open intervals in
T that are ordered counter clockwise and for which |J&; = T. Then k = a
onU=¢e; Uez and k = bon V =ey Uey. Since a # b and f(fﬂewdﬂ =0
it follows from (5) that

(6) / e dy = / e dy = 0.
U 14

Denote by 2l; the length of the interval e; and let ¢; denote its centre. From
(6) follows that e sinly + e**3sinls = 0 and e**2sinly + €*4sinly = 0.

Since [; > 0 for j = 1,...,4 it is easily seen that c3 = ¢; +, ca = ¢4 + T,
I3 =1y and l4 = [y which yields the necessity part of the proposition. The
sufficiency part is an easy consequence of (1), (2) and (3). O

Proposition 2.2. For a € C with |a| < 1 let go denote the restriction to
T of the Mobius transformation

w—a
ga(w) = 1-—aw’
Let E; C T, j =1,...,4 be non-empty, pairwise disjoint open intervals

that are ordered counter clockwise on the unit circle with |J E; = T. Sup-
pose B3 ={—w:w € B} and By = {—~w : w € Ex}. If go(E1) = —gu(E3)
and go(E2) = —go(E4) then o = 0.

Proof. The proof will be carried out by a contradiction argument. We
assume therefore that a # 0. Let z, ( denote the end points of the interval
E;. The assumptions on g, imply that go(—2) = —ga(z) and go(-¢) =
—9a(¢). A straightforward computation shows that therefore @z?> = a and
a¢? = a. Under the assumption that o # 0 follows therefore that 22 = (2
which is impossible since FE; is nonempty with length strictly less than .
This contradiction establishes the proposition. O

We will need an infinitesimal version of the above propositions.

Proposition 2.3. For a € C with |a| < 1 let go denote the restriction to
T of the Mobius transformation

w—uo

ga(w) = 1-—aw’
Let f : T — R denote the function defined by f(e*®) = 1 whenever |0—3%| <

Z or |0 — 3| < T and zero elsewhere. Let a and b be two positive numbers
such that a # b and set & = a(1 — f) + bf. Furthermore, let a and b be
normalised so that [," kdt = 21 and define I, = [.™ k0 go. Let Ay be
defined by Ao (0) = 0 and A, = ko go. Suppose that o depends smoothly
on a real parameter t such that a(0) = 0. Letting & denote the derivative
with respect to the t—variable evaluated at t = 0 we have that I =0 and
27

A(t)eto®) dt = zo(E21 + n2za).
0



Here & and 1 are defined by & = & + in and 2y = 2v/2i(b — a)e’™°, wy =
(a+2b)/4, 21 = (™% —1)/b and z = (e"*% — 1)/a. Furthermore the
vectors z1 and zs are linearly independent over R.

Proof. We begin by selecting a smooth branch of the argument for points
in a neighbourhood of {e? : g < 6 < 6}, where 0 < 6y < 6; < 2. Let
now G, denote the argument of the inverse of g,. It is easily seen that

0 ifo<t<?
(a—b)G(T) if T <t<3m
At) = (@-b)(G(F) -GED) if <t <
(a=b)(G(F) -G +G() if 5 <t< Tt
(a-b)(G(Z) -G +G(3E) - G(Tr)) it <t<2r

Since the inverse of g, is given by g—o it is also easily seen that G( ) =
2Im(de %), where Im(w) denotes the imaginary part of w. Hence GO+
m) = —G(t), so that

0 fo<t<ZorF<t<2m
Alt) = (a— b)G(g) _ ifT<t<ix
") @=b)(G(5) -GER) i <t< o
(b-a)G(3r) if 3 <t<Im

In particular, we see that since I, = A,(2r) we have that I = 0. By using
that Ag(t + 7) = m + Ag(t) and integrating it is easy to verify that the
expression for A(t) holds. It remains to verify that the vectors z; and
zo are linearly independent over R. If not, then there would exist a real
number ¢ # 0 so that

™

c(l1—e®2)=¢l7% — 1

The normalisation f027r kdt = 2m means that a + b = 2, so we find after
some simplification that csinbZ = e(@+7 sinaZ. Since a,b € (0,2) it
follows that ¢ must equal 0. This contradicts the assumption of linear
dependence, which yields the proposition. [l

3 Proof of the plane case

Let f : T — R denote the function defined by f(e?) = 1 whenever
0 — 2| < Zor|f— 3L < T and zero elsewhere.

The proof of the theorem will be carried out in two steps. First one
chooses a homeomorphism 7 of the circle such that for some positive num-
bers a,b we have that k* = kon ~ a(1 — f) + bf on T. This step is an
easy consequence of the four vertex condition. The second step consists in
showing the existence of a complex number § with |G| < 1 such that if g
denotes the fractional transformation

gow) = o, we T

then K = k* o gg satisfies (4).

We need some definitions in order to construct the first preliminary
homeomorphism. For j = 1,...,4 let §; = (j — 1)3 and set ¢; = €*,
Aj ={e? : 10 —6;| < T — €} for a small positive number e.

4



By continuity there are pointsr; € T, j = 1,...,4 also ordered counter
clockwise and positive numbers a,b such that 0 < a < b and &(r;) =
k(r3) = a, k(rz) = k(rs) = b. Pick intervals B; C T,j = 1,...,4 such
that r; € B; and |x(w) — k(r;)| < € for all w € B;. Let 7 be any smooth
orientation preserving C'*°—diffeomorphism of the circle such that n(A;) C
B; for j =1,...,4. It is now easily seen that kon = a(l — f) + bf +e,
where e is bounded with f02 " le|dt < Ce and C independent of e.

We now claim that if € has been chosen small enough then there is an
BeC,|p < % such that k* o gg is a non—normalised curvature function.
To see this set k* = k* o gg, k =a(l — fogg) +bf o gg and let

27 27

I={ kdt, I'=/[ ka
0 0

K* = 22k* and K = 27k.

If € has been chosen small enough then clearly I* # 0 whenever |3] < %
Set F*(B,¢) = fOZW e (5) ds and F(B) = f027r ei(s) ds, where a,a* are
defined by a(0) = a*(0) = 0 and ' = K, o*' = K*. It follows from
propositions (2.1) and (2.2) that F(8) # 0 whenever 8 # 0,|8] < 1.
Noticing that F(0) = 0 we see from proposition (2.3) that the restriction
of F' to a sufficiently small circle centred at 0 has non vanishing winding
number around 0. By a standard topology argument and the fact that
lim. o F*(8,€) = F(B) it follows that if €y has been chosen sufficiently
small then for all € € (0,¢9) there is a 3, || < % such that F*(8,¢) = 0.

Since the curve y(t) = fot et dy is simple and closed and | — a*| < Ce
it follows that [, tT e (8) ds # 0 whenever 0 < t < 7 < 2, which completes
the proof of the theorem.
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