Discrete Approximation of the Curvature of Arcs
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Abstract

We study a (global) definition of curvature applicable to non-smooth
curves, based on the relationship between the curvature vector and the
variation of arc length.

1 Introduction

The purpose of this note is to first study the concept of curvature for
piecewise linear arcs. Thereafter we consider the situation when a se-
quence {v,} of such arcs approximates a smooth arc . We discuss the
approximation properties of the curvatures of the arcs v, to the curvature
of the arc ~.

Let I C R be a closed interval [a, b] and let v : T = R? be a smooth arc.
Letting % denote the differentiation with respect to arc length, we denote

by T'(s) = %sx and k(s) = %, the unit tangent and the curvature vector of
7, respectively. If the dimension d = 2 we recall that if T'(s) = (&,7) then
the principal unit normal to v is given by (—n,&). Since in this case N(s)
and k(s) are parallel, we can write k(s) = k(s)N(s), and the quantity k(s)
is called the curvature of v. We also recall, that if the dimension d > 3
then the Euclidean norm of the curvature vector is the curvature of 7.

In order to motivate our definition of curvature for non—smooth curves,
we recall the relationship between the curvature vector and the variation
of arc length. Let Q : I — R be a smooth vector valued function. Setting
Ye = v + €Q) we see that v, is a smooth arc for € in a neighbourhood of 0.
The arc length L(e) of 7, is given by

dy dqQ
L(e) =/|£ +eg|ds,

where |w| denotes the Euclidean norm of a vector in Rd..Again, Lis
a smooth function of € in a neighbourhood of 0. Letting L denote the
derivative of L with respect to € evaluated for ¢ = 0, we find that

L:/<d—7,@>ds
S S
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so that if @Q(a) = Q(b) = 0 we have that
(1) L= —/ < k(s),Q(s) > ds.

Here < v,w > denotes the scalar product of two vectors in R.

Hence the curvature vector k(s) measures the variation of the arc
length.

Let P = {Py,..., Py} C R® be an ordered finite set of distinct points
and let ' = T'p be the corresponding piecewise linear arc connecting the
nodes Py, ..., Py, in this order. Since I' may be interpreted as closed or
open, we shall mention explicitly what interpretation we are using. In any
case, our convention is that Py # Pps. We will also use the convention that
indices are counted modulo M+1, so that for instance P_; corresponds to
Pyy.

We take the relation (1) as our starting point for the definition of a
curvature vector for T'. To this end, let Qo,...,Qu € R? and € € R. We
will use the convention that Qo = Qa = 0if I is open. Set Pf = P; +€Q);
and let "¢ be the corresponding curve. Letting T; = (P;— P;—1)/|P;— P;—1|
and

(2) Nz = T, — Ti+1
we see that if L(e) denotes the arc length of ' then
(3) L=E<Q,’,Ni>.

This formula is valid when T is open, because Qo = Qs = 0 in that case.

Let PL(T') denote the class of continuous, real valued and piecewise
linear functions on « with nodes at F,..., Py. We notice that we have
two natural scalar products on PL(T). For a, 8 € PL(T') they are defined
by

@) mm=/W@
and
(5) < o, >= Ya(F;)B(F).

In order to find the analogue of (1) we next study the relationship between
these two scalar products. To this end we introduce two operators B and
By. We let B be the symmetric and positive operator on PL(T") for which

(6) (o, B) =< o, BB >

for all o, 8 € PL(T"). Letting PLo(T") be the class of functions f € PL(T)
that vanish at the end points of I, we define By as the positive and sym-
metric operator on PLo(T") for which (6) holds for all , 8 in PLo(T").

For 0 < v < M we now define f, € PL(T") as the functions satisfying
fu(P,) =1if v = p and 0 otherwise. The operator B is represented in the
basis {f,}8! by the (M + 1) x (M + 1)-matrix (B, ) where

(7) BuV:/fufudS; 0< v <M



It is easily seen that [ f,f, ds = 0if |u—v| > 1, [ fuf,ds = |P,—P,|/6
if |[u—v|=1and [ f2ds = (|P, — P,_1| + |P, — P,41|)/3. Setting a, =
|P, — P,_1]/6 we therefore have that the matrix (B,,), 0 < p,v < M is
given by

2(&0 + aM) ay .o . . ag
ai 2((11 =+ Cl2) as .
. ap—1 2(aM_1 + aM) apr
ao . .. . am 2(ag + an)

Since {f,}~! is a basis for PLo(') we have that the operator By is
represented by the (M — 1) x (M — 1)-matrix (Bj,), 1 < p,v <M —1,
where again

(8) Bguz/fufudsa 1 SM:VSM_]-

This matrix has the form

2(a1 + a2) as
as 2(a2+a3) as .

. apm—2 2(ap—2+ap—1) apM—1
ap—1 2(aM—l + aM)

We now denote the inverses of B and By by £ and &, respectively.
We extend £ and & to act on vector valued functions simply by letting
them act on each component separately. We define A/ as the R —valued
piecewise linear function on I' with knots at Py, ..., Py for which

9) N(P)=N;, 0<i<M,
where N; is defined by (2). We can now define the curvature vector for a
closed polygonal curve.

Definition 1.1. Let T be a closed polygon in R® with nodes at Py, ..., Py
and let N be defined by (9). The curvature vector K of T is then defined
byK=EWN) .

For T' a non-closed curve we define Ny as the R%valued piecewise

linear function on I' with knots at Py, ..., Py for which
[N ifl1<i<M-1
(10) No(P) = { 0 otherwise

We can now define the curvature vector Ky for a non-closed polygon I'.

Definition 1.2. Let T be a non closed polygon in R with nodes at
Po,..., Py and let Ny be defined by (10). The curvature vector Ko of
T is then defined by Ko = Eo(No) -



2 Approximation

We will next study the approximation properties of the curvature vectors
for polygons. Let I C R be a closed interval [a,b] and suppose 7 : I — R?
is a smooth arc which is at least twice continuously differentiable. A
collection P of points Py,..., Py is called a partition of «y if there are
to,...,tam such that a < tg <t < ... <ty < band P; = (t;). We say
that the partition is closed if tp = a and t)r < b and we say that it is
non-closed if tg = a and tyr = b. We will of course declare the polygon
I" associated to P, closed or non closed simultaneously with P. If P is
closed we set |P| = max |P; — P;_1|, 0 <4 < M and in the case when P
is non-closed we put |P| = max |P; — Pi_1|, 1 <1 < M. We recall that we
count indices modulo M + 1.

We need to compare functions defined on I' and +, respectively. To
this end we define the map R : I — T as follows. If t; <t < t;41 we
can write t = (1 — )t; + 6¢t;11 and we set R(t) = (1 —6)P; + P;4;. This
defines R on I if P is non closed. If P is closed and tpr < t < b we write
t=(1—0)ty + 0b and we set R(t) = (1 — )Py + 6Py. If f € PL(T) we
denote by f(t) the value of f at R(t).

We can now formulate our approximation result.

Theorem 2.1. Let I C R be a closed interval [a,b] and suppose v :
I — R? be a smooth arc which is at least twice continuously differentiable.
Also assume that v is parametrised by the arc length, i.e. |¥'(¢t)| =1 for
all t € I. Let k denote the curvature vector of y.

Suppose that P = P is a sequence of non closed partitions of v with
curvature vectors Ko = IC(()“). If lim |’P(”)| = 0 then for every compact set
F C (a,b) we have that

lim sup{|(t) + K\ (¢)| : t € F} = 0.

Ify is a smooth and closed curve and the partitions P = P®) are closed
with lim [P | = 0 then

lim sup{|&(t) + K (£)| : t € I} = 0.

We will need some preliminary results before giving the proof of the
theorem. We begin by considering two matrices related to B and By. Let
(Buv) and (Bj),) be the matrices defined by (7) and (8). We define the
matrices 8 = (8,,) and 8% = (89,) by

(11) /B;W = BuV/Buua 0<pu,v<M
and
(12) 21/2321//32“7 ]‘SI‘I’JVSM_]-

If £ € R™ is an n—dimensional vector we put ||€||cc = max{|&;|: 1 <
i <n}.

RM+1

Lemma 2.1. The matriz B = (Bu) is invertible on and

(13) lI€lloc /2 < [1B€]loo < 3[I€]loc/2-

Furthermore, there are universal constants a and b such that if a = (ay.)
denotes the inverse of § then

la,| < aebllr—vIl

4



Here ||z|| denotes the distance from the integer x to 0 modulo M + 1, i.e.
||z|| = inf{|z + s(M +1)| : s € Z}.

Proof. We first observe that 8,, > 0 and £,6,, = 3/2, which yields
the right hand side of (13). Let the matrix @ = (ay,) be defined by
auy = 0 and oy, = B, if p # v. Since ¥,a,, = 1/2 it follows that
[|0€]loo < ||€]loo/2. Since BE = £+ af it follows from the triangle inequality
that ||B¢||leo > ||€]loo = [|0€]leo = ||€]loo/2- Hence the invertability follows,
together with the left hand side of (13).

Define the sequence {r;} by 7o = Bopr and r; = 841 for 1 < i < M.
Extend next {r;} to be (M + 1)—periodic on the integers Z and set r} =
1/2 —r;. Let A = (\,,) be the infinite matrix defined by A\,, 1 = 74,
Aupt1 = 1, and Ay, = 0 otherwise. Let AN be the N-th power of A
and denote by ()\,(f,y)) the coefficients of AV. Since the coefficients of A
are non negative and X, ),, = 1/2 it follows that enyy1 < en where
en = sup{A\u : p,v € Z}. Using that e; < 1/2 it therefore follows by
induction that

(14) 0< A\ <27V,
We now claim that
(15) A < 2710771

The inequality is obviously true for N = 1 and we proceed by induction.
Clearly (14) verifies (15) when g = v. From the definition of A follows that
N+1 (N) 3 (V)
)‘;(U/ ) S Tu)‘u—lu + ru)‘u—i-ll/‘
Assuming that (15) holds for N we see that if g > v then )\LI,YH) <
27 Im=vl(2r, 477 /2) = 2711=7I(3r,, /24 1/4) and since 0 < r,, < 1/2 we see
that (15) holds in this case. If u < v we see that /\L’X“) < 27 le=vi(r, /2 +
2ry) = 27 1#=¥l(1—3r,/2) and using that r, > 0 we see that (15) holds also
in this case, which completes the induction argument. Multiplying (14)
and (15) and taking the square root gives that A\ < 2~ (#—vI+N+1)/2,
Let Z denote the identity operator on Z and let A denote the inverse of
7T + A. Since we have that A is given by the Neumann series

A=T+ 3%, (-1D)NVAN

we have that the coefficients a,, of A satisfy the bound |a,| < c2~lu—vl/2
for some universal constant c. If now 0 < p,v < M +1 we have that oy, =
Ysa(s(M+1)+u)v> Where the summation is taken over all integers. With b =
log v/2 we therefore have that lopn | < c(3e‘b‘ ] +2Eszzeb(‘“_"|_s(M+1)).
Adding, we therefore see that there is a constant ¢; > 0 such that |a,,| <
c(3e~blr=rll ¢ e~ (M+1)) Since ||u—v|| < M +1 we see that (13) follows,
which completes the proof of the lemma. O

Lemma 2.2. The matriz 3° = (89, is invertible on RM~" and

(16) [1€1100/2 < 118%]lo0 < 3[1&]]o0/2-

Furthermore, there are universal constants b and c such that if a® = (a?“,)
denotes the inverse of 5° then

|a2,,| < cePIn—vl,



Proof. Let the matrix o = (0y,,) be defined by o, = 0 and oy, = 85, if
p # v. Since ¥, 0, < 1/2 it follows that ||ad]|se < [|€]|c0/2. Since € = {+
af it follows from the triangle inequality that ||3||co > ||€]lco — ||@€]|co >
[1€llo /2 and [|B¢]|c0 < [€]loo +[[e€]lc0 < 3[|€]loo/2, Which establishes (16).
The arguments leading to (14) and (15) can be used for the matrix a to
show that

0< al(f,\f) < min(z—(N-H),Q—IM—VI) < 2—(|H—V\+N+1)/2)7

where a%\,’) denotes the coefficients of the N-th power ¥ of a. We have
the Neumann representation

a® =T +35°(-1)Nal,

so |af, | < 27Ik=vI/2(1 4 £502-(N+1)/2) ' which completes the proof of the
lemma. O

We will need the following elementary estimates for the matrices 8 and
B
Lemma 2.3. Let 3 and 3° be as above. If {€}) is an (M +1)-dimensional
vector with w = max{|§; — &—1| : 0 <i < M} then

1B — 36/2[|oc < w/2.

If {€YM =1 is an (M — 1)-dimensional vector with w = max{|§; — &_1| :
2<i< M-—1} and n = B° then

|&1]/2 +w/2 ifi =1,
(17) Ini — 36:/2| < { w/2 ifo<i<M—2,
|épr—1]/2 4+ w/2 ifi=M —1.

Proof. Letting n = € we have in the closed case that |n; — 3¢;/2| =
|ﬂiz’—1(£i—1 — f,) ~+ Biit1 (£i+1 — €z)| < UJ/Q since the sum of the off-diagonal
elements of f§ equals 1/2 for each row. The same argument also gives
the middle part of the inequality for 4°. Furthermore, |1 — 3&1/2| =
1B2(62 = &) + (1/2 = BR)&| < w/2 + |&1|/2 and [par—1 — 3Ep—1| =
1B% —anr—12(Em—2 — Emr—1) + (1/2 = BY)Em—1| S w/2 + |Enr—1]/2. 0

We can now give the proof of the theorem.

Proof of Theorem (2.1). We begin by considering N; as defined by (2).
Let Q(r) = maz|y"(t) — 7" (u)|, where the maximum is taken over all
t,u € [a,b] for which |u—t| < r. Also, let m = max{|y"(¢)| : ¢t € [a,b]} and
set w(r) = Q(r) + (1 + m)r. We have from Taylor’s formula that

(18) Y(t+h) = y(t) = hy'() + By (t)/2 + h°q

where |g| < Q(|h]). Since we have assumed that |y/(t)] = 1 we have that
< 4'(t),7"(t) >= 0. Hence

(19) [yt +h) = ()] = [A|(1 + hes)
where |e1| < Cw(|h]) for some constant C. Consequently, we have that

y(t+h) —~(t)

e D O]

= sign(h)y'(t) + |hly"(£)/2 + hes



where |e2| < Cw(|h]) for some constant C. Here sign(h) equals 1 if o > 0
and —1 otherwise.

We will now consider the case when the polygon {P; = v(t;)} is closed.
We set 0; = tj41 —ti—1 for 1 < i < M -1, =t1 —to+b—ty and
drm = b—tpr—1. Using the above, we see that N; = —d;v"(¢;) + d;e3, where
les] < Cw(d;). Since we have by (7) that By; = (|P; — Pi—1|+|Piy1 — Pi]) /3
it follows from (19) that

(21) (5,/Bu =3+ E,

Letting K denote the the curvature vector we therefore find that K =
—3£/2 + e3, where & = ~4"(t;) and |eg| < Cw(|P|. From Lemma (2.3)
follows that ||8¢ — 3£/2||c < Q(|P|). Using Lemma (2.1) we therefore
have that || + &||cc < Cw(|P|), which proves the theorem in the closed
case.

We briefly outline the modifications of the above argument for the
non-closed case. The only difference is the analysis at the endpoints. Pro-
ceeding as above one finds that B%(K° + &) = es + f, where |les]|o <
Cw(|P|) and ||f]lec < Cm, where m = max{|y"(t)| : t € [a,b]}. Fur-
thermore, f; = 0 whenever 2 < i < M — 2. If a denotes the inverse
of 8% we have that if » = af and 2 < i < M — 2 then by Lemma
(2.2), |ni| < Cm(ei=t 4 e=blit1=M]) Tet now a < a’ < b’ < b and
set 6 = min(a’ — a,b — b'). It is easily seen that if ¢; € [a',d'] then
li —1||P| > 6 and |i + 1 — M||P| > 4, so that |p;| < Ce"/IPI. Hence
max{|K? + &| : t; € [a/, 1]} < C(w(|P]) + e~*/IP| which yields the theo-
rem in the non-closed case. O
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