Discrete Approximation of the Curvature of Arcs

Björn E. J. Dahlberg*†

Abstract

We study a (global) definition of curvature applicable to non-smooth curves, based on the relationship between the curvature vector and the variation of arc length.

1 Introduction

The purpose of this note is to first study the concept of curvature for piecewise linear arcs. Thereafter we consider the situation when a sequence $\{\gamma_{\nu}\}$ of such arcs approximates a smooth arc γ . We discuss the approximation properties of the curvatures of the arcs γ_{ν} to the curvature of the arc γ .

Let $I \subset \mathbf{R}$ be a closed interval [a,b] and let $\gamma:I \to \mathbf{R}^d$ be a smooth arc. Letting $\frac{d}{ds}$ denote the differentiation with respect to arc length, we denote by $T(s) = \frac{d\gamma}{ds}$ and $\kappa(s) = \frac{dT}{ds}$, the unit tangent and the curvature vector of γ , respectively. If the dimension d=2 we recall that if $T(s)=(\xi,\eta)$ then the principal unit normal to γ is given by $(-\eta,\xi)$. Since in this case N(s) and $\kappa(s)$ are parallel, we can write $\kappa(s)=k(s)N(s)$, and the quantity k(s) is called the curvature of γ . We also recall, that if the dimension $d\geq 3$ then the Euclidean norm of the curvature vector is the curvature of γ .

In order to motivate our definition of curvature for non-smooth curves, we recall the relationship between the curvature vector and the variation of arc length. Let $Q: I \to \mathbf{R}^d$ be a smooth vector valued function. Setting $\gamma_{\epsilon} = \gamma + \epsilon Q$ we see that γ_{ϵ} is a smooth arc for ϵ in a neighbourhood of 0. The arc length $L(\epsilon)$ of γ_{ϵ} is given by

$$L(\epsilon) = \int \left| \frac{d\gamma}{ds} + \epsilon \frac{dQ}{ds} \right| ds,$$

where |w| denotes the Euclidean norm of a vector in \mathbf{R}^d . Again, L is a smooth function of ϵ in a neighbourhood of 0. Letting \dot{L} denote the derivative of L with respect to ϵ evaluated for $\epsilon = 0$, we find that

$$\dot{L} = \int <\frac{d\gamma}{ds}, \frac{dQ}{ds} > ds$$

^{*}The author was supported by a grant from the NFR, Sweden.

[†]Björn Dahlberg died on the 30th of January 1998. The results of this paper appeared in his post-humous work. The final version was prepared by Vilhelm Adolfsson and Peter Kumlin, Dept. of Mathematics, Chalmers University of Technology and Göteborg University, SE-412 96 Göteborg, Sweden; email: vilhelm@math.chalmers.se

so that if Q(a) = Q(b) = 0 we have that

(1)
$$\dot{L} = -\int \langle \kappa(s), Q(s) \rangle ds.$$

Here $\langle v, w \rangle$ denotes the scalar product of two vectors in \mathbf{R}^d .

Hence the curvature vector $\kappa(s)$ measures the variation of the arc length.

Let $\mathcal{P} = \{P_0, \dots, P_M\} \subset \mathbf{R}^d$ be an ordered finite set of distinct points and let $\Gamma = \Gamma_{\mathcal{P}}$ be the corresponding piecewise linear arc connecting the nodes P_0, \dots, P_M , in this order. Since Γ may be interpreted as closed or open, we shall mention explicitly what interpretation we are using. In any case, our convention is that $P_0 \neq P_M$. We will also use the convention that indices are counted modulo M+1, so that for instance P_{-1} corresponds to P_M .

We take the relation (1) as our starting point for the definition of a curvature vector for Γ . To this end, let $Q_0, \ldots, Q_M \in \mathbf{R}^d$ and $\epsilon \in \mathbf{R}$. We will use the convention that $Q_0 = Q_M = 0$ if Γ is open. Set $P_i^{\epsilon} = P_i + \epsilon Q_i$ and let Γ^{ϵ} be the corresponding curve. Letting $T_i = (P_i - P_{i-1})/|P_i - P_{i-1}|$ and

$$(2) N_i = T_i - T_{i+1}$$

we see that if $L(\epsilon)$ denotes the arc length of Γ^{ϵ} then

$$\dot{L} = \Sigma < Q_i, N_i > .$$

This formula is valid when Γ is open, because $Q_0 = Q_M = 0$ in that case. Let $PL(\Gamma)$ denote the class of continuous, real valued and piecewise linear functions on γ with nodes at P_0, \ldots, P_M . We notice that we have two natural scalar products on $PL(\Gamma)$. For $\alpha, \beta \in PL(\Gamma)$ they are defined by

(4)
$$(\alpha, \beta) = \int \alpha \beta \, ds$$

and

(5)
$$\langle \alpha, \beta \rangle = \Sigma \alpha(P_i) \beta(P_i).$$

In order to find the analogue of (1) we next study the relationship between these two scalar products. To this end we introduce two operators \mathcal{B} and \mathcal{B}_0 . We let \mathcal{B} be the symmetric and positive operator on $PL(\Gamma)$ for which

(6)
$$(\alpha, \beta) = <\alpha, \mathcal{B}\beta>$$

for all $\alpha, \beta \in PL(\Gamma)$. Letting $PL_0(\Gamma)$ be the class of functions $f \in PL(\Gamma)$ that vanish at the end points of Γ , we define \mathcal{B}_0 as the positive and symmetric operator on $PL_0(\Gamma)$ for which (6) holds for all α, β in $PL_0(\Gamma)$.

For $0 \le \nu \le M$ we now define $f_{\nu} \in \operatorname{PL}(\Gamma)$ as the functions satisfying $f_{\nu}(P_{\mu}) = 1$ if $\nu = \mu$ and 0 otherwise. The operator \mathcal{B} is represented in the basis $\{f_{\nu}\}_{0}^{M}$ by the $(M+1) \times (M+1)$ -matrix $(B_{\mu\nu})$ where

(7)
$$B_{\mu\nu} = \int f_{\mu} f_{\nu} \, ds, \quad 0 \le \mu, \nu \le M$$

It is easily seen that $\int f_{\mu}f_{\nu} ds = 0$ if $|\mu-\nu| > 1$, $\int f_{\mu}f_{\nu} ds = |P_{\mu}-P_{\nu}|/6$ if $|\mu-\nu| = 1$ and $\int f_{\nu}^2 ds = (|P_{\nu}-P_{\nu-1}| + |P_{\nu}-P_{\nu+1}|)/3$. Setting $a_{\nu} = |P_{\nu}-P_{\nu-1}|/6$ we therefore have that the matrix $(B_{\mu\nu})$, $0 \le \mu, \nu \le M$ is given by

Since $\{f_{\nu}\}_{1}^{M-1}$ is a basis for $\mathrm{PL}_{0}(\Gamma)$ we have that the operator \mathcal{B}_{0} is represented by the $(M-1)\times (M-1)$ -matrix $(B_{\mu\nu}^{0}),\ 1\leq \mu,\nu\leq M-1$, where again

(8)
$$B_{\mu\nu}^{0} = \int f_{\mu} f_{\nu} ds, \quad 1 \leq \mu, \nu \leq M - 1.$$

This matrix has the form

We now denote the inverses of \mathcal{B} and \mathcal{B}_0 by \mathcal{E} and \mathcal{E}_0 , respectively. We extend \mathcal{E} and \mathcal{E}_0 to act on vector valued functions simply by letting them act on each component separately. We define \mathcal{N} as the \mathbf{R}^d -valued piecewise linear function on Γ with knots at P_0, \ldots, P_M for which

(9)
$$\mathcal{N}(P_i) = N_i, \quad 0 \le i \le M,$$

where N_i is defined by (2). We can now define the curvature vector for a closed polygonal curve.

Definition 1.1. Let Γ be a closed polygon in \mathbf{R}^d with nodes at P_0, \ldots, P_M and let \mathcal{N} be defined by (9). The curvature vector \mathcal{K} of Γ is then defined by $\mathcal{K} = \mathcal{E}(\mathcal{N})$.

For Γ a non-closed curve we define \mathcal{N}_0 as the \mathbf{R}^d -valued piecewise linear function on Γ with knots at P_0, \ldots, P_M for which

(10)
$$\mathcal{N}_0(P_i) = \begin{cases} N_i & \text{if } 1 \le i \le M - 1 \\ 0 & \text{otherwise} \end{cases}$$

We can now define the curvature vector \mathcal{K}_0 for a non-closed polygon Γ .

Definition 1.2. Let Γ be a non closed polygon in \mathbb{R}^d with nodes at P_0, \ldots, P_M and let \mathcal{N}_0 be defined by (10). The curvature vector \mathcal{K}_0 of Γ is then defined by $\mathcal{K}_0 = \mathcal{E}_0(\mathcal{N}_0)$.

2 Approximation

We will next study the approximation properties of the curvature vectors for polygons. Let $I \subset \mathbf{R}$ be a closed interval [a,b] and suppose $\gamma: I \to \mathbf{R}^d$ is a smooth arc which is at least twice continuously differentiable. A collection \mathcal{P} of points P_0, \ldots, P_M is called a partition of γ if there are t_0, \ldots, t_M such that $a \leq t_0 < t_1 < \ldots < t_M \leq b$ and $P_i = \gamma(t_i)$. We say that the partition is closed if $t_0 = a$ and $t_M < b$ and we say that it is non-closed if $t_0 = a$ and $t_M = b$. We will of course declare the polygon Γ associated to \mathcal{P} , closed or non closed simultaneously with \mathcal{P} . If \mathcal{P} is closed we set $|\mathcal{P}| = \max |P_i - P_{i-1}|, \ 0 \leq i \leq M$ and in the case when \mathcal{P} is non-closed we put $|\mathcal{P}| = \max |P_i - P_{i-1}|, \ 1 \leq i \leq M$. We recall that we count indices modulo M+1.

We need to compare functions defined on Γ and γ , respectively. To this end we define the map $\mathcal{R}: I \to \Gamma$ as follows. If $t_i \leq t \leq t_{i+1}$ we can write $t = (1 - \theta)t_i + \theta t_{i+1}$ and we set $\mathcal{R}(t) = (1 - \theta)P_i + \theta P_{i+1}$. This defines \mathcal{R} on I if \mathcal{P} is non closed. If \mathcal{P} is closed and $t_M < t \leq b$ we write $t = (1 - \theta)t_M + \theta b$ and we set $\mathcal{R}(t) = (1 - \theta)P_M + \theta P_0$. If $f \in \mathrm{PL}(\Gamma)$ we denote by f(t) the value of f at $\mathcal{R}(t)$.

We can now formulate our approximation result.

Theorem 2.1. Let $I \subset \mathbf{R}$ be a closed interval [a,b] and suppose $\gamma : I \to \mathbf{R}^d$ be a smooth arc which is at least twice continuously differentiable. Also assume that γ is parametrised by the arc length, i.e. $|\gamma'(t)| = 1$ for all $t \in I$. Let κ denote the curvature vector of γ .

Suppose that $\mathcal{P} = \mathcal{P}^{(\mu)}$ is a sequence of non closed partitions of γ with curvature vectors $\mathcal{K}_0 = \mathcal{K}_0^{(\mu)}$. If $\lim |\mathcal{P}^{(\mu)}| = 0$ then for every compact set $F \subset (a,b)$ we have that

$$\limsup\{|\kappa(t) + \mathcal{K}_0^{(\mu)}(t)| : t \in F\} = 0.$$

If γ is a smooth and closed curve and the partitions $\mathcal{P}=\mathcal{P}^{(\mu)}$ are closed with $\lim |\mathcal{P}^{(\mu)}|=0$ then

$$\limsup\{|\kappa(t)+\mathcal{K}_0^{(\mu)}(t)|:t\in I\}=0.$$

We will need some preliminary results before giving the proof of the theorem. We begin by considering two matrices related to \mathcal{B} and \mathcal{B}_0 . Let $(B_{\mu\nu})$ and $(B^0_{\mu\nu})$ be the matrices defined by (7) and (8). We define the matrices $\beta = (\beta_{\mu\nu})$ and $\beta^0 = (\beta^0_{\mu\nu})$ by

(11)
$$\beta_{\mu\nu} = B_{\mu\nu}/B_{\mu\mu}, \quad 0 \le \mu, \nu \le M$$

and

(12)
$$\beta_{\mu\nu}^0 = B_{\mu\nu}^0 / B_{\mu\mu}^0, \quad 1 \le \mu, \nu \le M - 1.$$

If $\xi \in \mathbf{R}^n$ is an n-dimensional vector we put $||\xi||_{\infty} = \max\{|\xi_i| : 1 \le i \le n\}$.

Lemma 2.1. The matrix $\beta = (\beta_{\mu\nu})$ is invertible on \mathbf{R}^{M+1} and

(13)
$$||\xi||_{\infty}/2 \le ||\beta\xi||_{\infty} \le 3||\xi||_{\infty}/2.$$

Furthermore, there are universal constants a and b such that if $a = (a_{\mu\nu})$ denotes the inverse of β then

$$|a_{\mu\nu}| \le ae^{-b||\mu-\nu||}.$$

Here ||x|| denotes the distance from the integer x to 0 modulo M+1, i.e. $||x||=\inf\{|x+s(M+1)|:s\in \mathbf{Z}\}.$

Proof. We first observe that $\beta_{\mu\nu} \geq 0$ and $\Sigma_{\mu}\beta_{\mu\nu} = 3/2$, which yields the right hand side of (13). Let the matrix $\alpha = (\alpha_{\mu\nu})$ be defined by $\alpha_{\mu\mu} = 0$ and $\alpha_{\mu\nu} = \beta_{\mu\nu}$ if $\mu \neq \nu$. Since $\Sigma_{\mu}\alpha_{\mu\nu} = 1/2$ it follows that $||\alpha\xi||_{\infty} \leq ||\xi||_{\infty}/2$. Since $\beta\xi = \xi + \alpha\xi$ it follows from the triangle inequality that $||\beta\xi||_{\infty} \geq ||\xi||_{\infty} - ||\alpha\xi||_{\infty} \geq ||\xi||_{\infty}/2$. Hence the invertability follows, together with the left hand side of (13).

Define the sequence $\{r_i\}$ by $r_0 = \beta_{0M}$ and $r_i = \beta_{ii-1}$ for $1 \leq i \leq M$. Extend next $\{r_i\}$ to be (M+1)-periodic on the integers \mathbf{Z} and set $r_i^* = 1/2 - r_i$. Let $\Lambda = (\lambda_{\mu\nu})$ be the infinite matrix defined by $\lambda_{\mu\mu-1} = r_{\mu}$, $\lambda_{\mu\mu+1} = r_{\mu}^*$ and $\lambda_{\mu\nu} = 0$ otherwise. Let Λ^N be the N-th power of Λ and denote by $(\lambda_{\mu\nu}^{(N)})$ the coefficients of Λ^N . Since the coefficients of Λ are non negative and $\Sigma_{\mu}\lambda_{\mu\nu} = 1/2$ it follows that $e_{N+1} \leq e_N$ where $e_N = \sup\{\lambda_{\mu\nu} : \mu, \nu \in \mathbf{Z}\}$. Using that $e_1 \leq 1/2$ it therefore follows by induction that

$$(14) 0 \le \lambda_{\mu\nu} \le 2^{-N-1}.$$

We now claim that

$$\lambda_{\mu\nu} \le 2^{-|\mu-\nu|}.$$

The inequality is obviously true for N=1 and we proceed by induction. Clearly (14) verifies (15) when $\mu=\nu$. From the definition of Λ follows that

$$\lambda_{\mu\nu}^{(N+1)} \le r_{\mu}\lambda_{\mu-1\nu}^{(N)} + r_{\mu}^*\lambda_{\mu+1\nu}^{(N)}.$$

Assuming that (15) holds for N we see that if $\mu > \nu$ then $\lambda_{\mu\nu}^{(N+1)} \leq 2^{-|\mu-\nu|}(2r_{\mu}+r_{\mu}^*/2) = 2^{-|\mu-\nu|}(3r_{\mu}/2+1/4)$ and since $0 \leq r_{\mu} \leq 1/2$ we see that (15) holds in this case. If $\mu < \nu$ we see that $\lambda_{\mu\nu}^{(N+1)} \leq 2^{-|\mu-\nu|}(r_{\mu}/2+2r_{\mu}^*) = 2^{-|\mu-\nu|}(1-3r_{\mu}/2)$ and using that $r_{\mu} \geq 0$ we see that (15) holds also in this case, which completes the induction argument. Multiplying (14) and (15) and taking the square root gives that $\lambda_{\mu\nu}^{(N)} \leq 2^{-(|\mu-\nu|+N+1)/2}$. Let $\mathcal I$ denote the identity operator on $\mathcal I$ and let $\mathcal A$ denote the inverse of $\mathcal I + \Lambda$. Since we have that $\mathcal A$ is given by the Neumann series

$$\mathcal{A} = \mathcal{I} + \sum_{N=1}^{\infty} (-1)^N \Lambda^N$$

we have that the coefficients $a_{\mu\nu}$ of \mathcal{A} satisfy the bound $|a_{\mu\nu}| \leq c2^{-|\mu-\nu|/2}$ for some universal constant c. If now $0 \leq \mu, \nu \leq M+1$ we have that $\alpha_{\mu\nu} = \sum_s a_{(s(M+1)+\mu)\nu}$, where the summation is taken over all integers. With $b = \log \sqrt{2}$ we therefore have that $|\alpha_{\mu\nu}| \leq c(3e^{-b||\mu-\nu||} + 2\sum_{s\geq 2} e^{b(|\mu-\nu|-s(M+1))}$. Adding, we therefore see that there is a constant $c_1 > 0$ such that $|\alpha_{\mu\nu}| \leq c(3e^{-b||\mu-\nu||} + c_1e^{-b(M+1)})$. Since $||\mu-\nu|| < M+1$ we see that (13) follows, which completes the proof of the lemma.

Lemma 2.2. The matrix $\beta^0 = (\beta^0_{\mu\nu})$ is invertible on \mathbf{R}^{M-1} and

(16)
$$||\xi||_{\infty}/2 \le ||\beta^0 \xi||_{\infty} \le 3||\xi||_{\infty}/2.$$

Furthermore, there are universal constants b and c such that if $a^0 = (a^0_{\mu\nu})$ denotes the inverse of β^0 then

$$|a_{\mu\nu}^0| \le ce^{-b|\mu-\nu|}.$$

Proof. Let the matrix $\alpha = (\alpha_{\mu\nu})$ be defined by $\alpha_{\mu\mu} = 0$ and $\alpha_{\mu\nu} = \beta_{\mu\nu}^0$ if $\mu \neq \nu$. Since $\Sigma_{\mu}\alpha_{\mu\nu} \leq 1/2$ it follows that $||\alpha\xi||_{\infty} \leq ||\xi||_{\infty}/2$. Since $\beta\xi = \xi + \alpha\xi$ it follows from the triangle inequality that $||\beta\xi||_{\infty} \geq ||\xi||_{\infty} - ||\alpha\xi||_{\infty} \geq ||\xi||_{\infty}/2$ and $||\beta\xi||_{\infty} \leq ||\xi||_{\infty} + ||\alpha\xi||_{\infty} \leq 3||\xi||_{\infty}/2$, which establishes (16). The arguments leading to (14) and (15) can be used for the matrix α to show that

$$0 \leq \alpha_{\mu\nu}^{(N)} \leq \min(2^{-(N+1)}, 2^{-|\mu-\nu|}) \leq 2^{-(|\mu-\nu|+N+1)/2}),$$

where $\alpha_{\mu\nu}^{(N)}$ denotes the coefficients of the N-th power α^N of α . We have the Neumann representation

$$a^0 = \mathcal{I} + \Sigma_1^{\infty} (-1)^N \alpha^N,$$

so $|a_{\mu\nu}^0| \leq 2^{-|\mu-\nu|/2} (1 + \Sigma_1^{\infty} 2^{-(N+1)/2})$, which completes the proof of the lemma.

We will need the following elementary estimates for the matrices β and β^0 .

Lemma 2.3. Let β and β^0 be as above. If $\{\xi\}_0^M$ is an (M+1)-dimensional vector with $\omega = \max\{|\xi_i - \xi_{i-1}| : 0 \le i \le M\}$ then

$$||\beta \xi - 3\xi/2||_{\infty} \le \omega/2.$$

If $\{\xi\}_1^{M-1}$ is an (M-1)-dimensional vector with $\omega = \max\{|\xi_i - \xi_{i-1}| : 2 \le i \le M-1\}$ and $\eta = \beta^0 \xi$ then

(17)
$$|\eta_i - 3\xi_i/2| \le \begin{cases} |\xi_1|/2 + \omega/2 & \text{if } i = 1, \\ \omega/2 & \text{if } 2 \le i \le M - 2, \\ |\xi_{M-1}|/2 + \omega/2 & \text{if } i = M - 1. \end{cases}$$

Proof. Letting η = βξ we have in the closed case that $|η_i - 3ξ_i/2| = |β_{ii-1}(ξ_{i-1} - ξ_i) + β_{ii+1}(ξ_{i+1} - ξ_i)| ≤ ω/2$ since the sum of the off-diagonal elements of β equals 1/2 for each row. The same argument also gives the middle part of the inequality for $β^0$. Furthermore, $|η_1 - 3ξ_1/2| = |β_{12}^0(ξ_2 - ξ_1) + (1/2 - β_{12}^0)ξ_1| ≤ ω/2 + |ξ_1|/2$ and $|η_{M-1} - 3ξ_{M-1}| = |β_{M-2M-12}^0(ξ_{M-2} - ξ_{M-1}) + (1/2 - β_{12}^0)ξ_{M-1}| ≤ ω/2 + |ξ_{M-1}|/2$. □

We can now give the proof of the theorem.

Proof of Theorem (2.1). We begin by considering N_i as defined by (2). Let $\Omega(r) = \max|\gamma''(t) - \gamma''(u)|$, where the maximum is taken over all $t, u \in [a, b]$ for which $|u - t| \le r$. Also, let $m = \max\{|\gamma''(t)| : t \in [a, b]\}$ and set $\omega(r) = \Omega(r) + (1 + m)r$. We have from Taylor's formula that

(18)
$$\gamma(t+h) - \gamma(t) = h\gamma'(t) + h^2\gamma''(t)/2 + h^2q$$

where $|q| \le \Omega(|h|)$. Since we have assumed that $|\gamma'(t)|=1$ we have that $<\gamma'(t),\gamma''(t)>=0$. Hence

(19)
$$|\gamma(t+h) - \gamma(t)| = |h|(1+he_1)$$

where $|e_1| \leq C\omega(|h|)$ for some constant C. Consequently, we have that

(20)
$$\frac{\gamma(t+h) - \gamma(t)}{|\gamma(t+h) - \gamma(t)|} = \operatorname{sign}(h)\gamma'(t) + |h|\gamma''(t)/2 + he_2$$

where $|e_2| \leq C\omega(|h|)$ for some constant C. Here sign(h) equals 1 if h > 0 and -1 otherwise.

We will now consider the case when the polygon $\{P_i = \gamma(t_i)\}$ is closed. We set $\delta_i = t_{i+1} - t_{i-1}$ for $1 \leq i \leq M-1$, $\delta_0 = t_1 - t_0 + b - t_M$ and $\delta_M = b - t_{M-1}$. Using the above, we see that $N_i = -\delta_i \gamma''(t_i) + \delta_i e_3$, where $|e_3| \leq C\omega(\delta_i)$. Since we have by (7) that $B_{ii} = (|P_i - P_{i-1}| + |P_{i+1} - P_i|)/3$ it follows from (19) that

$$(21) \delta_i/B_{ii} = 3 + E,$$

Letting \mathcal{K} denote the the curvature vector we therefore find that $\beta \mathcal{K} = -3\xi/2 + e_3$, where $\xi_i = \gamma''(t_i)$ and $|e_3| \leq C\omega(|\mathcal{P}|)$. From Lemma (2.3) follows that $||\beta \xi - 3\xi/2||_{\infty} \leq \Omega(|\mathcal{P}|)$. Using Lemma (2.1) we therefore have that $||\mathcal{K} + \xi||_{\infty} \leq C\omega(|\mathcal{P}|)$, which proves the theorem in the closed case.

We briefly outline the modifications of the above argument for the non-closed case. The only difference is the analysis at the endpoints. Proceeding as above one finds that $\beta^0(\mathcal{K}^0+\xi)=e_4+f$, where $||e_4||_\infty\leq C\omega(|\mathcal{P}|)$ and $||f||_\infty\leq Cm$, where $m=\max\{|\gamma''(t)|:t\in[a,b]\}$. Furthermore, $f_i=0$ whenever $2\leq i\leq M-2$. If a denotes the inverse of β^0 we have that if $\eta=af$ and $1\leq i\leq M-2$ then by Lemma (2.2), $|\eta_i|\leq Cm(e^{-b|i-1|}+e^{-b|i+1-M|})$. Let now $1\leq i\leq M-2$ then by Lemma (1.2), $|\eta_i|\leq Cm(e^{-b|i-1|}+e^{-b|i+1-M|})$. Let now $1\leq i\leq M-2$ then by Lemma (2.2), $|\eta_i|\leq Cm(e^{-b|i-1|}+e^{-b|i+1-M|})$. Let now $1\leq i\leq M-2$ then by Lemma (1.2), $|\eta_i|\leq Cm(e^{-b|i-1|}+e^{-b|i+1-M|})$. Let now $1\leq i\leq M-2$ then by Lemma (1.3), $1\leq i\leq M-2$ then by Lemma (1.3), $1\leq i\leq M-2$ then by Lemma (1.4), $1\leq i\leq M-2$ then by Lemma (1.5), $1\leq i\leq M-2$ then by L

Björn E. J. Dahlberg Department of Mathematics Chalmers University of Technology SE-412 96 Göteborg Sweden