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Abstract

The paper provides a Bayesian method for estimating totals such as
the polluted area or cost of remediation of a possibly contaminated
hazardous waste site. After specifying a prior distribution on the total
polluted area (here expert opinion may be taken into account), its
focus is on how to chose the number of measurements to make in order
to achieve a specified accuracy goal. This paper treats the discrete case
in which the site is partitioned into a finite number of remediation
units (cells). An accompanying paper [4] treats the continuous case.
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1 The problem

In the very early stages of an investigation of a possibly contaminated haz-
ardous waste site, there is often no interest in detailed maps contouring the
contaminant spread with high precision. Instead focus is on estimating quan-
tities such as the total polluted area A, or the total remediation cost C. Often
this kind of problem is handled by Kriging methods, the accuracy of which
depends crucially on the quality of the variogram estimate (as noticed e g
by Myers [3, p 379]). However, if one only is interested in totals, a Bayesian
approach inspired by classical survey sampling theory may be both simpler
to use and more appropriate since it does not rely on the variogram. Also,
Kriging methods may provide bad answers if the range of the variogram (i e,
spatial correlation length) is long compared to the size of the site under in-
vestigation or if the intrinsic hypothesis (see e g Wackernagel [6, p 36]) is
questionable. In the former case, assessing the variogram is difficult, and
both cases may very well turn out true for many hazardous man made waste
sites.

It is supposed in this paper that the site is divided into N cells (reme-
diation units), of which an unknown number T are contaminated, and that
measurements will be made in n randomly selected cells in order to determine
their contamination status. The paper addresses the problem of choosing the
appropriate number n of cells to examine and its purpose is to provide some
tools for making this choice. An accompanying paper [4] addresses the case
when there is no natural division of the site into cells.

The approach of the paper is Bayesian and consists of specifying a math-
ematically convenient prior distribution of the number 7T of contaminated
cells. This is done Section 3. We further in this section specify the measure-
ment model, which conditionally on the value ¢ of T" is hypergeometric, and
calculate the posterior distribution of 7" and the pre-posterior (or predictive)
distribution of the actual result, X, of the measurements. In the section
we also derive an explicit formula for the mean of the pre-posterior variance
V|[T'|X], and show how to calculate other relevant pre-posterior means such
as E[cy(X)], where ¢,(z) is the posterior pth quantile of a cost distribution.
These quantities are of major importance when it comes to making decisions
on n. In Section 2 some plausible cost functions C' are mentioned and studied



to some depth. In Section 4 we provide some faked case studies, the pur-
poses of which are to illustrate the results of this paper and how they may be
used in the process of determining a suitable number n of cells to investigate.
Finally, in Section 5, we summarise and make some general comments.
Whenever the number 7" of contaminated cells is provided with a proba-
bility distribution, the expectation F[T] and variance V[T'] may be calculated
w r t this distribution. These quantities, however are not the only ones that
provide valuable insight into our problem. We thus define the pth quantile

t, =min{t: P(T <t) > p}

and write ¢ instead of to5. Clearly, tp is the unique whole number satisfying
P(T <t,)>pand P(T <t,) <p. We further let

t = arg m?XP(T =)

be the most likely value of T'.

A to this paper central distribution is the beta-binomial, the definition
and some facts of which are given in Appendix A. Included is also a short
appendix quoting some results for the gamma distribution.

2 Some cost functions

Let C be the total cost of remediating the 7" contaminated cells.

21 C=uT

The most obvious way in which C' could be specified is to think of a unit cost
1 per contaminated cell, making C' = pT'. Then

E[C] = nE[T]

and
VIC] = p*VI[T]

Moreover, any quantile in the distribution of C' is just p times the corre-
sponding quantile in the distribution of 7.



2.2 O[T ~ N(uT, 0°T)

The cost of remediating one cell, however, need not be deterministic. It may
very well be random with some mean y and standard deviation o. If the total
number 7' of cells to remediate is large then, by the central limit theorem,
the total cost C' is (approximately) normal with mean pT" and variance o7
If the central limit theorem is not applicable, there is a need for a specific
model for the cost of remediating one cell.

An example of the latter is the gamma distribution. Suppose that the
cost of remediating one cell is gamma distributed with parameters p > 0,
A > 0. (Refer to Appendix B for the definition and some facts of the gamma
distribution.) If each such cost is independent of all others, then, by the
addition property of the gamma distribution, the total cost C is gamma
distributed with parameters p1" and A. Below it will be assumed that C' is
normal with mean p7T" and variance o?T. Results for the gamma case are
obtained similarly.

Assume, however, first only that E[C|T] = uT and V[C|T] = o*T. (If
C is gamma distributed with parameters pT and A, then y = p/\ and 0% =
p/A%.) Then, by the double expectation formula,

E[C] = E[E[C|T]] = pE[T]
as in Section 2.1, and
VIC] = E[V[C|T]] + VIE[C|T]]
= ?E[T] + p*V[T]

Notice the extra variance component compared to the case studied in Sec-
tion 2.1. Notice also that by letting 0 = 0, we are back in the case studied
in that section.

Next, let C, given T = ¢, be normal with mean ¢ and variance ot. Then

F(c)=P(C <¢)

=Y P(C< T =t)P(T =t)
R _
_Z<I><0\/E)P(T_t)

[ (20
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where ® is the standard normal distribution function, given by

B(2) :/z o(t) dt:/z %etZ/th

—0o0 — 00 Y[
The density f(c) of C' is obtained by derivation of F'(¢). Interchanging the

order of derivation and expectation is permitted, since the support of T is

finite. Thus,
d
fle) =)

-= o () ol
ovVT ) oVT
g [ ! 6(cuT)2/(20’2T)}
V2m o?T

Notice finally that the pth quantile ¢, in the distribution of C' solves
F(c) = p, since F is continuous. Thus the risk of getting a cost bigger than
¢p is 1 —p. One may therefore refer to any quantile ¢, as a value at risk
(VaR) 1 —p if the latter is small. Another quantity, which is of great interest
besides the VaR, is its associated expected shortfall, which by definition is
the conditional expectation of C given that C' > ¢,, to be denoted e,. Thus,

e, = E[C|C > ¢,] = I%p/ cf(c)de

3 Bayesian analysis

3.1 Prior distribution of T

Recall that the site of interest is divided into N cells, of which T are con-
taminated. As prior distribution of 7" we take the beta-binomial distribution
with parameters N and «, 8 > 0, to be referred to as BB(V, «, §) (refer to
Appendix A for the definition and some facts for the beta-binomial distribu-
tion). The prior belief is conveyed in the parameters o, . The interpretation
is that there are o+ 3 — 2 extra hypothetical known cells, of which a— 1 are
contaminated and the remaining #—1 are not. In particular o = = 1 corre-
sponds to no prior knowledge and in this case T is uniform on {0,1,..., N}.

Our reasons for choosing this prior distribution are intrinsically mathe-
matical. It will be seen below that if the measurement model is hypergeomet-
ric, then also the posterior distribution of 7" is beta-binomial. Surprisingly
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also the pre-posterior (or predictive) distribution of X, the number of con-
taminated cells found out of n examined, is beta-binomial.
Write p(t) = P(T = t) for the prior probability mass function of 7. Then

p(t) = ['(a+p) N! I(a+1t) I'(B+ N —1)
F()I(B) I'(a+B+N) ! (N —1)!
fort =0,1,...,N. Moreover, the prior mean and variance are
Q
E[T]=N P
and
V[T] = N Q B a+pB+N

a+pBa+pf a+p+1

respectively. Thus, pc = «/(a + ) is our prior guess of the proportion of
contaminated cells and the sum a+ 3 measures our belief in it. A large value
of a + (3 corresponds to a small prior variance. Moreover, as a + 3 1 oo
holding pc = a/(a + B) fixed, V[T] | Npc(1l — pc), and T converges to a
binomial random variable.

3.2 The measurement model

Let X be the number of contaminated cells found by examining n randomly
selected cells. Write p(z|t) = P(X = z|T =t). Then

() ()
()

for max[0,n — (N —t)] < z < min(n,t). This is the simplest possible mea-
surement model. We emphasise that it is crucial for the method of this paper
to be applicable that the n cells are randomly sampled. Notice also that it
is assumed that it is possible to determine with certainty the contamination
status of each cell. Notice finally that the conditional mean and variance of
X are

p(zft) =

t
EX|t|=n—
X1 =
and t N—t N
— —-n
X|tl=n— ———
VX =n g =~ N3
respectively.



3.3 The posterior distribution of T
Let p(t|z) = P(T = t|X = z). An appropriate use of Bayes’ rule yields

Fa+t) T(B+ N —1)
(t—z)! (N—n+z—1)!

p(tlz) o
for x <t < N —n+ z. Hence, conditionally on X = z,
T—xz~BBN —-n,a+z,0+n—1)

Therefore,

I'(a+p+n) (N—n)! T(a+t) T(B+N-1t)
Fla+z)[(B+n—z) (a+B+N) (t—2)! (N—-—n+z—1)!

p(tlr) =

for x <t < N —n+ z, and the posterior mean and variance are

a+x

E[T|z] =z + (N—n)m

and
a+zr [f+n—-z a+F+N

a+pB+na+pf+na+pf+n+1
respectively. Other posterior quantities of interest are the pth quantile

V[Tla] = (N — n)

tp(x) = min{t : P(T < t|X =z) > p}
(e g the median (z) = to5(z)) and the most likely value of T,
t(z) = arg mtaxp(t|x)

Next, let C' be the total remediation cost. Assume first that E[C|T] = uT
and V[C|T] = o®T (cf Section 2.2). Then the posterior expectation and
variance of C are

E[C|x] = pE[Ta]

and
V[C|z] = o?E[T|z] + p*V[T|z]

respectively.



Finally, assume that C, conditionally on 7" = ¢, is normal with mean
ut and variance o2t as in Section 2.2. Write F(c|z) and f(c|z) for the dis-
tribution function and density of the posterior cost distribution (i e, the
distribution of C' w r t the posterior distribution of T'). Then,

F(cz) = E [CD (C - “T)

and

c 1
clz) =F X=z
Fle [w<o\/27)a\/f‘ }
Some cost quantities of interest in addition to the posterior mean E[C|z] and

variance V[C|z] mentioned already, are the posterior VaR 1 — p, ¢,(x), and
the associated expected shortfall

ep(x) = ﬁ cf(c|z) de

cp(7)

3.4 The pre-posterior (or predictive) distribution of X

Pre-posterior to doing the actual measurements, their outcome, X, is ran-
dom with probability mass function p(z) = P(X = x). Since p(z)p(t|z) =
p(t)p(zlt),

I(a+B) n! MNa+z) T(B+n—1)
F()I'(B) T(a+B+n) 2! (n —z)!

p(z) =

for 0 < 2 < n. Thus X ~ BB(n,a, (), so the pre-posterior mean and
variance of X are

Qo
EX]=n P
and
VIX] = n « B a+p+n
a+Ba+pa+p+1
respectively.



3.5 Some further pre-posterior means

A purpose of this section is to derive an explicit formula for the mean
E[V[T|X]] of the pre-posterior variance V[T|X]. Notice, however, first that

EIE[T|X]] = E[T]

by the double expectation formula. Thus, in practise by finding = contami-
nated cells when examining n randomly sampled, a new (posterior) mean of
T is obtained. However, if the prior distribution is reasonably well chosen,
this updated mean can not be expected to be different from E[T.
Contrary to this,
E[V[T|X]] < V[T]

VIT] = E[V[T|X]] + V[E[T|X]]
and
E[T|X]=X + (N - n) %
making
VIE[T|X]] >0

Indeed, E[V[T'|X]] is a strictly decreasing function of n that equals 0 when
n = N, as we now shall see.
First notice,

a+X [f+n—-X a+B+N
a+pf+na+pB+na+pF+n+1

VIT|X] = (N —n)

Cf Section 3.3.
Lemma 1 Let X ~ BB(n,a, 3). Then

Ella+X)(+n—-X)] = aﬁ(a(zi;?()o(z?;iﬁfﬂ)

Proof Notice

Ella+X)B+n—-X)] =E[(a+X)(a+B+n— (a+ X))]
= (a+ B+ n)Ela+ X] - E[(a+ X)?
= (a+ f+n)E[a+ X]| — E[la + X|* = V[X]
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The remaining part of the proof consists of straightforward algebraic manip-
ulations. O

Hence, by Lemma 1,
N—-n a+0
N a+08+n

Notice also that in spite of the fact that we have no closed form expression for
the pre-posterior mean of the pth quantile, ¢,(X), it can readily be calculated
numerically by means of the formula

Elt,(X)] =) ty(@)p(z)

EVIT|X]] = VIT]

where p(x) is the probability mass function of X ~ BB(n, «, 3).
Next, let C be the total remediation cost. If E[C|T] = pT and V[C|T] =
o?T as in Section 2.2, then the pre-posterior variance of C is

V[C|X] = ¢®E[T|X] + p*V[T|X]
from which we conclude,
E[V[C|X]] = o*E[E[T|X]] + p*E[V[T'|X]]
N-n a+p
N a+p+n

Notice that it is only the variance component that depends on the uncertainty
in T, that can be reduced by means of taking further samples. Notice also
that if

= 0?E[T] + 12

VIT]

_ N(a+ B)(?V[T] — 0*E[T])
~ u2(a+ B)V[T] + No2E[T]
then both variance components are approximately equal, and

EV[C|X]] ~ 20*E|[T]

Finally, in the case when C' is normal with mean pT and variance 02T,
we may calculate the posterior VaR 1 —p, ¢,(z) and the associated expected
shortfall e,(z). The pre-posterior means of these quantities may readily be
calculated by means of the formula

E[A(X)] =) h(x)p(z)

where h is either ¢, or e,.
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Figure 1: Prior probability mass function of 7 ~ BB(100,5,2) in Case
study A (E[T] = 71.4, V[T] = 273.0 = 16.5%, i = 74, § = 80, togs = 98,
to.os = 94, to.9 = 91, tor5 = 84).

4 Some faked case studies

4.1 Case study A

In Case study A, the site of interest is divided into N = 100 equally sized
cells. The aim was to provide a sufficiently good prediction of 7. Local
experts were of the opinion that E[T/N| = 0.7 and that it is very likely that
T/N > 0.5. Thus the probability ¢ = P(T'/N > 0.5) was considered to be
large.

The first of these subjective facts, says that 3o ~ 73. Notice then that a
value close to one of the probability ¢ corresponds to a large value of o + (3
and to a strong belief in the opinion of the experts. In order to put not too
much nor too less faith in the experts opinion, the compromise ¢ ~ 0.9, which
is obtained for o + 8 =~ 7, was accepted. Therefore a = 5, 5 = 2 seems to be
a reasonable specification of the prior information and as prior distribution
of T we thus take BB(100, 5, 2), which is plotted in Figure 1. Its mean and
variance are E[T] = 71.4 and V[T] = 273.0 = 16.5% respectively. Moreover,
EI 74, f: 80 and t().gg = 98, t0.95 = 94, t()_g =91 and t0.75 = 84.

It was decided that a reasonable goal of the measurements is to reduce
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Figure 2: Plot of E[V[T|X]] vs n in Case study A. For n = 20, E[V[T|X]| =
56.6.

the variance of T' by a factor of four to below 70. In order to determine how
many cells that need to be examined, E[V|T'|X]] was plotted as a function
of n. See Figure 2. The plot reveals that E[V[T'|X]] < 70 for n > 16.

Figure 3 furthermore shows a plot of Eltge5(X)] vs n.

Next the risk of getting a posterior variance bigger than 70 was calculated
for some selected values of n. Table 1 shows the range z; < z < x5 of
outcomes x of X for which V[T'|z] > 70 and the probability P(V[T'|X] > 70)
for 13 < n < 22. For n > 22, P(V[T|X] > 70) = 0.

n | x| 2o | risk n | x1 | 2o | risk
131 0 |11 ]0.778 18| 3 |12 | 0.411
14| 0 | 11 | 0.657 19| 4 |12 | 0.344
15| 1 | 11 | 0.550 20| 5 | 12| 0.286
16 | 1 | 12| 0.580 21| 7 |11 0.163
17| 2 | 12| 0.489 22| - | - 10.000

Table 1: Tabulation of the range x; < x < x5 of outcomes = of X for which
V[T|z] > 70 and the risk P(z; < X < z,) of obtaining V[T'|X] > 70 for
13 < n < 22 in Case study A. For n > 22, P(V[T|X] > 70) = 0.
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Figure 3: Plot of E[t95(X)] vs n in Case study A. For n = 20, Ety5(X)] =
82.8.

The final decision was to examine n = 20 cells, and that if 5 <z < 12, in
which case the posterior variance of T’ still is bigger than 70, perhaps examine
some more cells until the posterior variance is smaller than 70.

The result of the measurements was x = 15, so there was no need to do
further examinations. The posterior distribution of 7" is 15 + BB(80, 20, 7),
which is plotted in Figure 4. The posterior mean and variance of T are
E[T|X = 15] = 15+ 59.3 = 74.3 and V[T|X = 15] = 58.7 = 7.7, re-
spectively. Moreover, the posterior median, mode and some quantiles are
5(15) = 75, 'E(15) = 76 and t0.99(15) = 89, t0.95(15) = 86, t0_90(15) = 84 and
to.75(15) = 80.

4.2 Case study B

A small site is divided into 48 cells of which 4 ‘hopefully’ randomly selected
already are known to be contaminated and 3 not. Prior to invoking this
knowledge, assume 7" ~ BB(48,1,1) (this is a uniform distribution on 0 <
t < 48). Then, after invoking it, 7' — 4 ~ BB(41,5,4).

Next, after doing measurements in n randomly selected cells, T'—4 —z ~

13
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Figure 4: Posterior probability mass function of 7" ~ 15+ BB(80, 20, 7) after
observing x = 15 contaminated cells out of n = 20 randomly selected in
Case study A (E[T|X = 15] = 74.3, V[T|X = 15] = 58.7 = 7.7%, #(15) = 75,
t(15) = 76, t9.99(15) = 89, tp.95(15) = 86, to.00(15) = 84, ty.75(15) = 80).

BB(41 — n,5+ 2,44+ n — x). The pre-posterior mean of V[T'|X] is

41 —-n 9
—VI[T
41 9+nv[ ]

EVIT|X]] =
where V[T| = 50.6.

4.3 Case study C

Assume that the site of interest is divided into, say N = 50, cells and that
the remediation of a cell is quite expensive and variable. Say that the mean
cost is 4 = 10 with a standard deviation of o = 10/3 in some monetary unit.
Assume further that there is no prior information, so &« = # = 1 making,
prior to any measurement, 7' ~ BB(50, 1, 1).

Then E[T] = 25 and V[T] = 216.7 = 14.7% so that, E[C] = 250 and
V[C] = 21944.4 = 148.1% (cf Section 2.2). If ¢ = 0, V[C] = 21666.7 =
(147.2)2. Thus, in spite of the fact that o seems to be relatively large com-
pared to u, the randomness in the cost of remediating one cell does not
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contribute much to the prior calculation of the uncertainty in the total cost
C.

Referring to Sections 2.2 and 3.5, we next see that the means of E[C|X]
and V[C|X] are

E[E[C|X]] = E[C] = 250
and
0—n 2
50 2+n

Notice that making measurements does not decrease the uncertainty compo-
nent that is due to the fact that o > 0. Notice also that the two variance
components are approximately equal and that

E[V[C|X]] = 277.8 + 21666.7

E[V[C|X]] = 566.7 ~ 2 - 277.8

if n = 37.

After discussions similar to those indicated in Case study A (cf Sec-
tion 4.1), it is decided to examine n = 7 cells. For this n, E[V[C|X]] =
4418.5 = 66.5%2. Thus the fact that ¢ > 0 contributes considerably more to
the pre-posterior mean of V[C|X] than to V[C].

4.4 Case study D

Here N = 800 and the experts have agreed on using BB(800,4.5,1.5) as
prior distribution for 7. Their argument was that then a/(a+ 3) = 0.75 and
P(T > 400) = 0.912. Tt implies E[T] = 600 and V[T| = 17271.4 = 131.4%.

It is assumed that the total cost of remediating 7' cells is normal with
mean 7" and variance 0?7 as in Section 2.2. The aim of this case study is
to illustrate how the parameters of the prior and posterior cost distributions
vary as a function of o/u. The results are stated in units of p or p?. It is
assumed that n = 80 randomly selected cells are examined and that z = 60
are found to be contaminated, so that posterior 7' ~ 60+ BB(720, 64.5, 21.5).
Notice, E[T|X = 60] = 600 and V[T'|X = 60] = 1250.7 = 35.6°.

Figure 5 show plots of the prior and posterior distributions of 7". Figure 6
show plots of the prior and posterior distributions of the cost C' in the case
when o/pu = 1/5. In both figures, the posterior distribution is concentrated
around the value 600.
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Figure 5: Plots of the prior (BB(800,4.5,1.5)) and posterior (60 +
BB(720,64.5,21.5)) distributions of 7" in Case study D.
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Figure 6: Plots of the prior and posterior cost distributions for the case
o = /5 in Case study D.
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Figure 7: Plot of E[T|(c/u)?/V[T] as a function of o/p in Case study D.
The upper curve is w r t the posterior distribution of 7', given that X = 60,
while the lower is w r t the prior distribution.

Next notice,

V[C] = (600 (%)2 + 17271.4) 12

2
V[C|X = 60] = (600 (%) + 1250.7) 12

Refer to Figure 7 for plots of the ratios 600(c/u)?/17271.4 and 600(c /)2 /1250.7
as functions of o/u. Table 2 further tabulates some quantiles in the prior
and posterior distributions of C' for various values of o/u. Table 3 finally
tabulates the VaR 0.05 (i e, cg95) and the corresponding expected shortfall
€g.95 W I t the prior and the posterior distribution of C, for various values of

o/ .

5 Summary, some conclusions and extensions

In this paper we have shown that if the prior distribution on the number
T of contaminated cells is BB(N, «, 3) (see Appendix A), where N is the

17



o/i | cogge | Co.99 C0.95 €0.90 Co.75 C C

1 844.4 | 812.7 | 778.3 | 755.3 | 704.0 | 621.8 | 696.6
1/2 | 816.6 | 797.4 | 772.8 | 753.2 | 704.2 | 622.9 | 698.8
1/3 | 808.6 | 793.9 | 772.0 | 752.9 | 704.2 | 623.0 | 699.9
1/4 | 805.0 | 792.6 | 771.8 | 752.8 | 704.2 | 623.1 | 700.2
1/5 | 803.1 | 792.0 | 771.7 | 752.8 | 704.3 | 623.1 | 700.4
1/10 | 797.1 | 791.3 | 771.6 | 752.7 | 704.3 | 623.2 | 700.7
799 791 771 753 704 623 700

~ A

g / M| Co.999 | Co0.99 C0.95 €0.90 Co.75 C c

1 727.0 | 697.0 | 669.6 | 654.7 | 629.4 | 600.7 | 602.0
1/2 | 704.4 | 681.4 | 659.5 | 647.2 | 626.0 | 601.2 | 603.8
1/3 |1 699.4 | 678.0 | 657.3 | 645.7 | 625.3 | 601.4 | 604.3
1/4 | 697.5 | 676.8 | 656.6 | 645.1 | 625.1 | 601.4 | 604.3
1/5 | 696.6 | 676.2 | 656.2 | 644.9 | 625.0 | 601.4 | 604.4
1/10 | 695.4 | 675.4 | 655.7 | 644.5 | 624.8 | 601.5 | 604.5
695 675 656 644 625 601 605

Table 2: Tabulation of some quantiles (values at risk) for various values
of the ratio o/p in units of y in Case study D. The last line shows the
corresponding quantiles in the distribution of 7. The upper table is w r t the
prior distribution, while the lower is w r t the posterior distribution of C.

Prior Posterior
g / M| Co.99 €0.99 €0.99 €0.99
1 778.3 | 799.4 | 669.6 | 686.4
1/2 772.8 | 788.0 | 659.5 | 672.9
1/3 772.0 | 785.5 | 657.3 | 670.0
1/4 771.8 | 784.6 | 656.6 | 668.9
1/5 771.7 | 784.2 | 656.2 | 668.4
1/10 771.5 | 783.6 | 655.7 | 667.8

Table 3: Tabulation of the VaR 0.05 (i e, cg95) and the corresponding ex-
pected shortfall ey95 w r t the prior and the posterior distribution of C', for
various values of the ratio o/p in units of p in Case study D.

18



total number of cells and «,3 > 0, and x contaminated cells are found
by examining n randomly selected cells, then the posterior distribution of
the remaining number 77 = T — z of contaminated cells out of now totally
N' = N — n unknown cells is BB(N —n,a+z,8+n — ).

We next showed that the pre-posterior (or predictive) distribution of the
number X of contaminated cells to be found in an investigation of n randomly
selected cells, is BB(n, «, ).

We were then able to calculate explicitly the mean of the pre-posterior
variance V[T'|X]| w r t this distribution,

N-n a+p

EVITIX]) = N a+0+n

VIT]

Another pre-posterior quantity of interest is the pth quantile ¢,(X), the mean
of which may easily be calculated according to the formula

Elty(X)] =) ty(@)p(z)

where p(x) is the probability mass function of X ~ BB(n, a, 3).

We also showed how to calculate the prior and posterior distribution of
the total cost C in the case when C' is normal with mean 7" and variance
o?T. We gave explicit formulae for how to calculate V[C] w r t the prior
distribution,

V[C] = oE[T] + p*V[T]
and for how to calculate the mean of the pre-posterior variance V[C|X] in
terms of the prior quantities E[T] and V[T,
N—-—n a+p
N a+p8+n
Notice that these two formulae hold true if only E[C|T] = pT and V[C|T] =
oT. Other pre-posterior means of interesting posterior quantities like the

VaR 1 —p, ¢p(z), and the associated expected shortfall e,(x) may readily be
calculated by means of the formula

E[h(X)] = h(z)p(z)

E|V[C|X]] = 0?E[T] + p?

VIT]

where p(z) is the probability mass function of X ~ BB(n,«, ) and h is
either ¢, or e,.

19



These results were illustrated in 4 faked case studies. The purpose of Case
study A was to indicate how expert knowledge can be summarised in the
parameters o and (3, and to show how pre-posterior means and probabilities
can assisst in determining the value of the number n of randomly sampled
cells to examine.

In Case study B, notice that if the 7 known cells are not randomly sam-
pled, then the prior mean of 7" may be biased. In such a case, it may still
be a good idea to let the knowledge from the known cells carefully influence
the choice of prior distribution. However, one must be aware of the direction
of the biasedness. Notice also that in such a case it is important that the
number n of randomly sampled cells is not too small, since the influence of
the (perhaps biased) prior decreases with n. Moreover, the basis of posterior
(economic) descisions may be in doubt if n is small.

Case study C next demonstrates the fact that initially the almost only
contributor to the randomness in the total cost C' is the uncertainty due to
T and that if one wants to reduce this uncertainty to the same size as the
uncertainty in C' that is due to the fact that o > 0, than one needs to make
very many measurements.

Case study D finally studies how some important parameters of the prior
and posterior distributions of the total cost C' vary with the ratio o/u, where
o is the standard deviation and p is the mean of the cost of remediating
a cell. Figure 7 demonstrates the fact that while almost negligible w r t
the prior distribution, the component of the posterior variance of C' that is
due to the fact that o > 0 (i e, 0?E[T]) needs to be taken into account
even when the ratio o/p is not too large. Notice next that the prior and
posterior distributions of 7" and C are very alike when o/ is small. This
is demonstrated in Figures 5 and 6 and in Table 2. Table 3 finally is an
example of the fact that the expected shortfall e, may be considerably larger
than its lower bound c,.

There are two natural extensions of the results of this paper, one of which
is how to treat remediation sites with more than one contaminant of concern
and another is concerned with the case when the cells are partitioned into
two or more strata depending on what is known about the type of activities
that has been going on in the area. We plan to return to both extensions in
forthcoming publications. Recall that the method of this paper pressumes
that the status of each cell can be determined with certainty. We therefore
plan to invoke detection errors in forthcoming work.
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A The beta-binomial distribution

Let n be a strictly positive integer, and let o, 3 > 0. The beta-binomial Dis-
tribution with parameters n, «, 3 (referred to as BB(n, «, 3)) has probability
mass function

(2) = I'a+ B) n! MNa+z) I'(B+n—x)
g T(@I(B) D(a+B8+n) a (n— )]
for x =0,1,...,n, where I' is the Euler gamma function defined by

[(x) :/ t* e tdt
0

Notice, I'(1) = 1. Moreover, I'(z) = (z — 1)I'(x — 1) for x > 1 as can
be seen by a straightforward integration by parts argument. In particular,
['(k) = (k — 1)! for positive integers k.

The beta-binomial distribution is sometimes called the negative hyper-
geometric or compound binomial distribution. Our earliest reference to this
distribution is Skellam [5], who in addition to calculating moments and the
maximum likelihood estimates also used it in a study of the secondary asso-
ciation of chromosomes in Brassia. The beta-binomial distribution have also
been used in many toxicological studies (an example of this is Williams [7]), in
analysing consumer purchasing behaviour (see Chatfield and Goodhardt [1])
and in analysing point quadrant data (Kemp and Kemp [2].

Plots of beta-binomial distributions can be seen in Figures 1, 4 and 5.

The mean and variance of a BB(n, «, 3)-variable are

. «
M_na+ﬁ
and
g O B a+pB+n
a+Bfa+pfa+pB+1
respectively.
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To see that g(x) is a probability mass function for a discrete random
variable X taking on the values 0,1,...,n, such that E[X] = u and V[X] =
o?, let
MNa+p
9(0) = Hatf)

INCYINE)

(this is a beta distribution with parameters a, 3 > 0) and let X conditionally
on # be binomial with parameters n and 6, so that

Pt (1-0)" 0<0<1

g(z]0) = (Z)em—e)"—x, 2=0,1,...,n

Then
P =a) = [ gw0)a(0) s

— F(Q-+-ﬂ) n ' a+r—1 _ p\B+n—z—1
=t (o) [ aopta
= g(z)

Moreover,

E[X] = E[E[X|6]] = E[nf] = p
and

V[X] = E[V[X|0] + V[E[X0]]
— E[né(1 — )] + V[nd]

by well known facts for the beta distribution.
B The gamma distribution

The density of any gamma distributed random variable is

p—1 —Ax

g9(z) = T - e
for z > 0. Here, p > 0 and A > 0 are parameters. Any random variable with

this density will be referred to as a I'(p, A)-variable in this appendix. The
gamma function I" is defined in Appendix A.
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The mean and variance of a I'(p, A)-variable are

and

,u:B

A
2o D
V]

respectively. Moreover, the sum of n independent I'(p;, A\)-variables is a
I'(>_, pi, A)-variable. Notice finally that g(z) reduces to the exponential den-
sity if p = 1, and to the x?(k)-density if p = k/2 and A = 1/2.
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