IDEALS OF SMOOTH FUNCTIONS AND RESIDUE
CURRENTS

MATS ANDERSSON

ABSTRACT. Let f = (f1,..., fm) be a holomorphic mapping in a
neighborhood of the origin in C*. We find sufficient condition, in
terms of residue currents, for a smooth function to belong to the
ideal in C* generated by f. If f is a complete intersection the
condition is essentially necessary. More generally we give sufficient
condition for an element of class C* in the Koszul complex induced
by f to be exact. For the proofs we introduce explicit homotopy
formulas for the Koszul complex induced by f.

1. INTRODUCTION

Let f = (f1,..., fm) be a nontrivial holomorphic mapping at 0 € C".
It is wellknown, [10] and [11], that if f is a complete intersection, then
a holomorphic function ¢ belongs to the ideal (f) = (f1,..., fi) if and
only if ¢T/ = 0, where T/ is the Coleff-Herrera current
=1 =1
T = [6—/\.../\8—].
fm fl

Consider now the ideal (f)g of smooth functions generated by f. If
¢ =Y, ¥ifj, and 8¢ = 0 /0z*, then

02d = (9291,
J

so if f is a complete intersection it follows that
(1.1) (024)T! =0
for all multiindices «. Also the converse is true.

Theorem 1.1. Let f be a complete intersection. A function ¢ € £ is
in the ideal (f)e at 0 € C" if and only if (1.1) holds for all .

This result follows from the theory of D-modules and Kashiwara’s
conjugation functor, using the fact that 7/ is a regular holonomic cur-
rent, [6] and [7]. We provide an explicit proof of Theorem 1.1 below,
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but our main interest is focused on conditions for lower regularity. For
a complete intersection our result is

Theorem 1.2. Let f be a complete intersection and let M be the order
of the current T/. There is a number c,, only depending on n, such
that if ¢ € C~T2MFE gnd (1.1) holds for |a| < ¢, + M + k, then there
are u; € C* such that . fju; = ¢.

The crucial point is the number of conditions (1.1); the extra differ-
entiability assumption on ¢ is to ensure that (1.1) makes sense.
Remark 1. Assume that M is the order of the current 7/, and that
¢ =" fju; for some u; € C**M. Then ¢ € C*™ and (1.1) holds for
all |a| < k. Thus, asymtotically in k£, Theorem 1.2 is sharp. O

The theorem is proved by integral formulas, but let us indicate a
direct proof in the case when m = 1, i.e., when we have got only one
generator f. If [1/f] is the wellknown principal value current, see, e.g.,
[6] or [2], then f[1/f] =1 and fO[1/f] = 0. If u = ¢[1/f], then the
hypothesis about (1.1) implies that

o2u = (029)| 7]

is a distribution of order at most M for |o| < ¢, + k+ M. If ¢, is ap-
propriately chosen, we can conclude that v is in C*. (For instance, the
assumption on A[1/f] implies that it belongs (locally) to some Sobolev
space WM~ moreover if 01 € W’ then ¢y € W't and thus we
obtain that v € W**  which implies that u € C*.)

In [1] we introduced, for any nontrivial mapping f, a current R/
which coincides with the Coleff-Herrera current in the complete inter-
section case, and such that ¢ belongs to the ideal if ¢ annihilates R/. To
describe this current, let X be a neighborhood of 0 € C* and let £ — X
be a trivial vector bundle with (holomorphic) frame ey, ..., e, and let
E* be its dual bundle and e7, ..., e, the dual frame. We consider f as
the section f =) fi€; to £ and let 0y denote interior multiplication
with 2mif so that 6;: E(X,A*T'E) — £(X,A*E), and 67 = 0. The
more general problem can be formulated: Given ¢ € O(X, AFE) such
that 6;¢ = 0, find v € O(X, A*™E) such that §p1p = ¢. In case k = 0
this just means to solve 27i ), f; = ¢.

Let 0 = .7 fie;/2mi|f|? outside

Y ={z€X; f(z) =0},

so that 6y = 1 there. We consider the exterior algebra of E'&® T*(X),
and therefore §; and 0 anticommute, and if

Vi=6;—-0
it follows that V2 = 0. If

Viaz 1_060_:o’+0A(50')+0'/\(50')2+...+O'/\(50')m71,

u =



IDEALS OF SMOOTH FUNCTIONS AND RESIDUE CURRENTS 3

then Vyu =1in X \'Y, since V} = 0. The main result in [2] is
Theorem 1.3. There is a current extension U of u across Y such that
(1.2) ViU=1-R!,

where
Rf:Rg,p+...+an’m’
R,J;k is a (0, k)-current with values in A*E, and p is the codimension
of Y.
Thus R/ = Rf , if Y is a complete intersection.

Theorem 1.4. If f is a complete intersection, then
RI =TI NetN... Nep.

This was first proved in [12]; a quite simple proof appeared in [2]. In
[2] we also proved

Theorem 1.5. Let ¢ be holomorphic in AE and dy¢ = 0. IfoAR! =0,
then (locally) ¢ is 0s-exact.

Remark 2. The condition ¢ A R/ = 0 is not necessary. More precisely
it is shown in [2] that ¢ is d;-exact if and only if there is a smooth
form w in a neighborhood of ¥ such that V (w A R') = ¢ A R, see
Corollary 2.6 below. O

For a general holomorphic mapping f we have the following result.

Theorem 1.6. Let f be any holomorphic mapping. Suppose that ¢ €
E(X,A"E) and that ;¢ = 0. If

(1.3) (02¢) ART =0

for all o, then ¢ = ;1) for some ¢ € E(X, A" E).

Let M be the order of R and U. There is an integer c, only de-
pending on n such that if ¢ € CT?M¥*(X A"E), 6;¢ =0, and (1.3)
holds for |a| < cn+ M + k, then ¢ = 61 for some ¢ € CF(X, A" E).

Again (probably) the first part follows from Theorem 1.5 and Kashi-
wara’s theorem. If the degree r of ¢ is larger than m — codim(Y'), then
(1.3) is empty. In the other cases it is possible to be more precise and
sharpen the statements by taking into account the degree of ¢ and the

various orders of the components of U and R/ but we leave this to the
interested reader.

In view of Theorem 1.4 it is clear that Theorem 1.6 implies (the if-
part of) Theorem 1.1, since the order of U does not exceed the order
of R/ (at least when f is a complete intersection).

The proof of Theorem 1.4 is based on an integral formula that rep-
resents the desired solution 1. We first make a new construction of
explicit integral operators 7" and S such that any holomorphic ¢ with
values in AF can be written

(1.4) ¢=06;Top+T(0r0) + S0,
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where T'¢ and S¢ are holomorphic in a neighborhood of 0 € X, and
S¢ only depends on R’ A ¢. From this representation Theorem 1.5
immediately follows. We then elaborate the construction to provide
a proof of Theorem 1.6. The idea is to consider a neighborhood X
of X ~ {(z,2)} in C* and apply the formulas in X to an almost
holomorphic extension of ¢ to X.

Decompositions like (1.4) first occured in [3] for f with a regular
singularity and in [11] and [4] for the case of a complete intersection,
and functions ¢. In (1.4), f can be any holomorphic mapping and ¢
taking values in A"E.

I am grateful to Jan-Erik Bjork for valuable discussions on this sub-
ject.

2. EXPLICIT HOMOTOPY OPERATORS FOR THE 5f—COMPLEX

We first recall the construction of weighted representation formulas
for holomorphic functions from [1]. Let X be an open set in C*, and
let

LT(X) = @D Ekpsr(X).

Moreover, let 6., denote interior multiplication with the vector field

0
QWiZ(Cj - Zj)(?—g“j’

and let V¢_, = 6,—, — 9;. Then V,_, maps £"(X) into £™7(X) and
ngz = 0. Moreover, the usual wedge product induces mappings

LN(X) x L7 (X) = LT (X),

and V,_, is an antiderivation with respect to this product. We will use
the following representation formula from [1].

Proposition 2.1. Assume that g = goo+- ..+ gnn € LX) is smooth
and with compact support, z is a fized point, Vi_,g =0, and goo(z) =

1. Then
¢(2) = /9¢=/gn,n¢

for each function ¢ that is holomorphic in X.

It is possible to find such a g that depends holomorphically on z,
locally.
Ezxample 1. Let x be a cutoff function in X which is 1 in a neighbor-
hood of 0, and let s be any smooth (1,0)-form such that §cs # 0 on
the support of Ox. Then also d¢—»8 # 0 for z in a small neighborhood
of 0 and therefore v = s/V_,s will be holomorphic in z in this neigh-
borhood. Moreover, V. _,v = 1 on the support of Jx, so we can take
g=X-— 5)( A .
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A more fancy choice (for z in the unit ball) is
. l+n 1— 2 _ (- l+n
CglC) :( <] +a€glé)
1-¢-% 1-C-z 1-C-z
for integers £. Tt is O(|1 — [¢|?)?) near the boundary and therefore at
least of class C*~'; this will do in this paper if £ is large enough. O
Let f be a holomorphic mapping in X and consider f as a section
to the dual bundle E* of the (trivial) bundle £ — X. Moreover, let
E and E* denote copies of E and E*, respectively, and let f denote

the corresponding section to E*. Let F((,z) = f(¢) + f(z), thinking
of z as a parameter and ( as a variable. Then dp = §; + §; is interior

multiplication with 27iF on A(E @ E). One can find forms h;(, 2) in
L%(X) (Hefer forms) such that

Veihj = f;(C) = fi(2),

where Vi , = 6, , — 0. If X is Stein we can even find holomorphic

such h;. We let
H = Z hj A 6;.
1

g=(1-Vc.

We also let
V:VF—i—éC,z :ngz+(5p :5C*Z+5f+5f_54'
Notice that

(2.1) V(r+ H)=0.
In fact,
(2:2) e =Y (£;(C) = f(2))e]; = =6 H,

from which (2.1) follows.

We consider the exterior algebra over the direct sum of every bundle
in sight, i.e., E, E, T*(X) etc. For any form « we introduce the integral

€

which is defined as the unique form o' such that o' A (3_; € Ae;)™/m!
is the term of o which has full degree in both e; and e;. The integral is
invariant, i.e., independent of the choice of frame e;, linear and it acts

fiber-wise. Let
T = Ze;‘ N (ej - éj)
1

Lemma 2.2. If « is any form with values in AE (i.e., no é; only e;),
then

(2.3) /Tm Noa=a,
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where T,, = 7™ /m! and & is the corresponding form where e; is replaced
by €;.

j

Proof. We may assume, with no loss of generality, that o = e; A.. . A e,.
Then

/Tm/\a:/e‘{/\(el—él)/\.../\efn/\(em—ém)/\a:
e

e

(—1)1”/@1‘/\é1/\...e;/\é,,/\e;+1/\ep+1/\...e;‘n/\em/\el/\.../\ép.
€

We now just have to interchange €, A... A€, and e; A ... Ae, and this
gives rise to the factor (—1)7. d
Our main result in this section is

Theorem 2.3. Let f be any holomorphic mapping and let U and R'
be as in Theorem 1.3 above. Moreover, let g be a smooth weight with
compact support as in Proposition 2.1, with respect to the point z. For
any holomorphic ¢ with values in AE we have

(2.4) q}(z)zaf//eT+HAUAg/\¢Jr
ed X

+// eT+H/\U/\g/\5f¢+// et ANRIAgA .
edJ X edJ X

It is natural to define

(2.5) To(z) = /e/X eTEANUNgA G,
and

(2.6) Sp(z) = /e/X AR ANgA g,
and we then have that

(2.7) ¢ =06,T¢+T5p+ So.

If H and g depend holomorphically on z locally it follows that 7'¢ and
S¢ are holomorphic there.

Corollary 2.4. If §;¢ =0 and ¢ A R/ =0, then §;T¢ = ¢.
Proof of Theorem 2.3. From (2.1) it follows that

(2.8) (Ve o+ 0p) (e AU) = A (1 - RY).
We can rewrite this as

Sp(e™ T AU)+ e AR =™ -V _,(e"t AD).
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Now,
//eTJ’H/\g/\qﬁ—//VC_Z(6T+HAU)AQA¢=
edJ( eJ ¢

/e/ngAgMb_/e/gVC_Z(eT+HAUAgA¢) :/efm/\qa—o:(g(z),

where we have used Proposition 2.1, Lemma 2.2, and Stokes’ theorem.
On the other hand it is easy to verify that

//(5p(eT+H/\U)+eT+H/\Rf)/\g/\qb
ed¢

is equal to the right hand side of (2.4), and thus the theorem is proved.
O

If ¢ is a section to APE it follows from degree considerations that T'¢
is a section to APT1E, whereas S¢ is a section to APE. In fact, to begin
with we need full degree in e} so we must have from e 3 factor like
Tm—k N\ Hi. To match the differentials in ¢ we must then combine with
Uk+1,- If ¢ has degree p this gives us a total degree n+1 in e, €. After
integration we are left with degree p + 1 in é. The argument for S¢ is
goes along the same lines. It follows that

Tqﬁ:/e/XQ/\g/\qﬁ

and
so=[ [ wagns.
edJ X

where

(2.9) Q= Tk ANHp AUpsrp

k=0

and

(2.10) W =Y Tmi NH. AR,

k=1

The first explicit solution formula for division problems appeared in
[3] in the case when f has no zeros, or a regular zero set. Formulas
with f being a complete intersection have been used by several au-
thors starting with [11] and [4]; see [5] for more references. Formulas
allowing ¢ to take values in A*E have not appeared before as far as we
know. Another novelty in this paper is that f may be any holomorphic
mapping.

Remark 3. One can derive our division formula in an alternative way
when f is nonvanishing. If

G= (71— V¢.(HANo))"/ml,
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then Goo(2) = 7, and by Lemma 2.2 therefore

(2.11) gg(z)z/e/CG/\g/\qﬁ.

Now,

TV (HANo)=T+6pT Ao+ HA0Jo =
Sp(TAo+HANoANJo)=6bp(cA(T+HADo)).
and since o A 0 = 0 therefore
G= (5F(0/\ (T+H/\50))m/m!) = 0rQ),

where € is the form in (2.9). It now follows from (2.11) that

)=16; //Q/\g/\¢+//9/\g/\5f¢

which is the same as (2.4) since R = 0.
If f has zeros, then G has no obvious meaning, whereas in the proof
of Theorem 2.3 only the welldefined expressions U and R appear. O

Remark 4 (The case when k = 0). If ¢ is a function, i.e., kK = 0, and
again for simplicity f is nonvanishing, then we claim that (2.4) becomes

(2.12) o) = [Grgns
¢
where =
-0
=1—- L —
“ VeI H 90

if we use - for the natural pairing of E* with E (and E). It is maybe
worthwhile to point out that this is not the same formula as in [3]; in
fact it could not be since in [3] only weights of the form (expressed in
the notation from [1]) 1 + V_,q, where ¢ is a (1, 0)-form, occur. The
formula in [3] is defined by

G = (1 - vazH : 0')a

for an appropriate integer «, and this gives “unnecessary” factors f(z).

We omit the tedious computation needed to verify the claim. Let us
just indicate directly that (2.12) provides a division formula. To this
end first notice that the very equality (2.12) holds in view of Propo-
sition 2.6 (since H - Oo has even degree the quotient makes sense). A
simple computation shows that

f(z) -0 -0
T 1+H- 8o+f() (1+H-50)2’
and thus “divisible” by f(z). O

One can apply the operator S to any smooth form w defined in a
neighborhood of Y with values in A(E & Tj ).
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Theorem 2.5. If w is a smooth form defined in a neighborhood of Y
and with values in A(E ©Tg,), then

5fS’LU = S(Vfw)
Proof. We have that

S¢ = / / e INV p(RAW)Ag = / / (Vr+oc_.) [eT T ARAwAg] =
eJX eJX

=5f5w+/e/xvg_z( )+/8/X5f( ),

and both the last integrals vanish for degree reasons and Stokes’ theo-
rem. (|

Corollary 2.6. Let ¢ be holomorphic with values in A"E. If there is a
smooth form w defined in a neighborhood of Y such that V;(w A R') =
@, then ¢ is dp-exact, and a (holomorphic) solution is provided by

v=T¢+ Sw.

Proof. Since ¢ is holomorphic, d;¢p = V¢ = Viw = 0 close to Y
and hence globally. Now, the corollary follows from Theorems 2.3 and
2.5. U

Ezample 2 (Interpolation). Let f be any nontrivial holomorphic map-
ping. We claim that if ¢ is any germ of a holomorphic function at Y,
then S¢ provides a holomorphic function in the whole domain (where
it is holomorphic), such that ¢ — S¢ belongs to the ideal I/. In fact, if
® is any such extension, then it follows from Theorem 2.3 that

O =6TD+SP=6TP+S(®—¢)+ So.
Since ¢ — ® = 6,1 for some holomorphic 7, Theorem 2.5 now implies
that S(® — ¢) = §;S1 and thus S¢ — ¢ belongs to the ideal as claimed.

For instance, let f be holomorphic in a neighborhood of the closed
unit ball, If we take the weight g from Example 1 for the ball, with a
sufficiently high power «, so that g A R/ ¢ is welldefined, then S¢ is a
holomorphic extension to the entire ball. O

Further study and applications of this interpolation formula will be
the topic of a forthcoming paper.

3. DIVISION FORMULAS FOR SMOOTH FUNCTIONS

The definitions (2.5) and (2.6) make sense even if ® is a smooth form
in £°(X) with values in AF, and if V._,® = 0 for some z, then

(3.1) (I)O,o(z) = 5f(T(I)) + T(dfq)) + SO.

This follows from precisely the same argument as in the holomorphic
case. Therefore, if §;® = 0 and ® A Rf =0, then ®g(z) = 6;(,)(TP).
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A first attempt to find such a % for the point z would be to take
* = ¢ —v* A 09,
where v*(() is a (scalar-valued) current such that V._,v* =1 — [z] for
each z; e.g., the Bochner-Martinelli form

L b+bAOb+--+bA(Ib)",
Vb

where b = 9¢|¢ — z*/2mi|¢ — 2|2, cf,, [1]. Then V . ,®* = 0, but
unfortunately ®* is not smooth. Therefore, although (3.1) holds for
each z outside Y it will not hold across Y.
Remark 5. If we could find, given a smooth function ¢, with d;¢ = 0,
(with values in AF), a smooth form &7 for each z, depending smoothly
on z, such that V,_,®* = 0 and ®f, = ¢, then it would follow from
(3.1) of course that ¢ is smoothly ds-exact. On the other hand, then
0(¢) = 0:B54(¢) = 6c—.®71(¢,2), and taking z = ¢ we find that
0¢(z) = 0. Since z is arbitrary it follows that in fact ¢ is holomorphic
then. 0

Instead we identify X with the set {(¢,{) € C**; ¢ € X} and let X
be an open neighborhood of X in C?". If ¢ is a smooth function (with
values in AF) on X, then we consider the following almost holomorphic

extension to X,

(3.2) d(C,w) = (986)(C)

o

(w

#Oax(xw - (),

where Yy is a cutoff function in C* which is 1 in a neighborhood of 0, and
Ag are positive numbers. If Ay — oo fast enough, the series converges
to a smooth function in X such that

(¢, ) = 8(¢),
and 3
06(¢,w) = O(lw — ¢I).
If ¢ is realanalytic one can take A\, = 1 for all £ and then ¢ is the

holomorphic extension of ¢. If ¢ is in C»*2M+* 35 in the second half
of Theorem 1.6, then we take instead just

(33 o= Y @oo¥

la|<en+M+k )
which is then of class CM in )Z'; again gz~5(§, ¢) = ¢(¢), and at least
(34) 96(C,w) = O(|jw — (| HMTH),

Proposition 3.1. Let ¢ be a form in X, let v* denote the Bochner-
Martinelli form in X with respect to the point (z,Zz), and let

(I)z(<7 w) = Q;(Ca (4)) - 5& A%



IDEALS OF SMOOTH FUNCTIONS AND RESIDUE CURRENTS 11

If ¢ is smooth (and ¢ as in (3.2)) then ®* is smooth in C,w,z. If
¢ is in CtMtE (and ¢ as in (3.3)), then ® is of class CM in (,w
even after taking up to k derivatives with respect to z. In any case
Vw2 = 0.

Moreover, if 6;¢ = 0, then ;0% = 0 and if (1.3) holds (for all o in
the smooth case, for all |a| < ¢, + M + k in the differentiable case),
then ®* A (R ® 1) = 0.

Proof. Since
b

V(gw)~(22)0
where b= >"1(( — 2)d¢; + Y7 (wj — Z;)dw;, we have that

- . Ojw — ™)
(¢, w) = $(C,w) + A
; (|C _ z|2 + |w _ z|2)e 1/2

if ¢ is smooth, and thus ®* is smooth. In the differentiable case, (3.4)
ensures that one can take up to k derivatives with respect to z and still
remain in CM(X).

If 6(¢)¢(C) = 0, we have that 67 (97 ¢)(¢) = 0 for all & (all |af <
M + ¢, + k in the differentiable case) and therefore (5f(o<5(g“,w) = 0.
In the same way, 6 (04)(¢,w) = 0. Finally, if (82%25) AR =0 for
all a (for |a| < ¢, + M + k), then also (82—*(%5) A R =0 for all « (for
lo| < e, +M+k—1~ ¢, + M+ k, with a small redefinition of ¢,)
and therefore ¢ A R/ and d¢ A Rf = 0. O

V¥ =

Proof of Theorem 1.6. Consider f(g) in X, and notice that the corre-
sponding current R/ in X is just the tensor product R/ ® 1. If now T

and S denote the operators from the previous section but in X instead
of X, we have that

if @ is any smooth form such that V(¢ .)_(,,z) = 0; in fact since U and
R/ have order M it is enough that ® is in C™. We can thus apply to
the forms ®* from the proposition and get

(3.5) d(2) = b(2,2) = §;T®* 4 T(6;0%) + SP°.
If also the other assumptions on ¢ are fulfilled, it follows from the
proposition that

(b(z) = 5f(z)T(I)Z;
thus ¢(z) = T®*(z) is a smooth solution to 0,9 = ¢ if ¢ is smooth,
and a solution in C* if ¢ € C»*M+k Thus the proof is complete. [

Notice that the final division formula depends on the almost holo-
morphic extension ¢ and it is thus not linear. However, for ¢ in some
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given differentiable or ultradifferentiable class one can use the same A,
and therefore get a linear formula.
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