LINEAR RECURRENCES AND CHEBYSHEV POLYNOMIALS

Sergey Kitaev and Toufik Mansour !

Matematik, Chalmers tekniska hdgskola och Goteborgs universitet,
S-412 96 Goteborg, Sweden

kitaev@math.chalmers.se, toufik@math.chalmers.se

ABSTRACT

In this paper we study the recurrence T nim = AmTontm-1 + OmZgnim—2, Wwhere n > 0, ¢ > 1,
0 <m < qg—1. We express the general solution for this recurrence in terms of Fibonacci numbers
and Chebyshev polynomials of the second kind. In particular, we give a generalization for the Pell
polynomials, the Lucas polynomials, and the Fibonacci polynomials.

1. INTRODUCTION AND THE MAIN RESULT

As usual, Fibonacci polynomials Fj,(z), Lucas polynomials L, (z), and Pell polynomials P,(x) are
defined by the second-order linear recurrence

(1) tp+2 = atpy1 + bty,

with given a,b,to,t; and n > 0. This sequence was introduced by Horadam [Ho] in 1965, and it
generalizes many sequences (see [HW, HM]). Examples of such sequences are Fibonacci polynomi-
als sequence (F,(z))n>0, Lucas polynomials sequence (Ln(x))n>0, and Pell polynomials sequence
(Pn(2))n>0, whenone hasa =z, b=t =1, =0;a=t1 =2, b=1,tg =2;anda =22, b=t =1,
to = 0; respectively.
Chebyshev polynomials of the second kind (in this paper just Chebyshev polynomials) are defined by

Un(cosf) = 751n(gn;1)0
for n > 0. Evidently, U, (z) is a polynomial of degree n in z with integer coefficients. For example,
Uo(x) = 1, Uy (x) = 2z, Uz(x) = 42® — 1, and in general (see Recurrence 1 for a = 2z, b= —1, 1ty = 1,
and t1 = 2z), Upga(z) = 22Up41(x) — Up(z). Chebyshev polynomials were invented for the needs of
approximation theory, but are also widely used in various other branches of mathematics, including
algebra, combinatorics, and number theory (see [R]).
Lemma 1.1. Let (tn)n>0 be any sequence that satisfies tpyo = 22 - tyy1 — t, with given to, t1, and
n > 0. Then for alln >0,

th =t1 - Up_1(x) — to - Up—2(2),

where Uy, is the mth Chebyshev polynomial of the second kind.
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Proof. A proof is straightforward using the relation U, 2(z) = 2zU,41(x) — U,(z) and induction
on n. 0

Let A be a tile of size 1 x 1 and B be a tile of size 1 x 2. We denote by £,, the set of all tilings of
a 1 x n rectangle with tiles A and B. An element of £, can be written as a sequence of the letters
A and B. For example, £, = {A}, £» = {AA, B}, and £3 = {AAA, AB, BA}. We denote by |a| the
number of tiles A and B in a. For example, |[AAA| =3 and |[AB| = 2.

Proposition 1.2. The number of tilings of a 1 X n rectangle with tiles A and B is the Fibonacci
number Fny1, that is, |£n] = Fpta.

Proof. The result is immediate for n < 1, so it is sufficient to show that the number of such tilings
satisfies the recurrence F,, = F,,_1 + F,,_2. To do this, we observe that there is a one-to-one
correspondence between the tilings of a 1 x (n — i) rectangle and the tilings of a 1 x n rectangle in
which the rightmost tile has length 7, where i = 1, 2. Therefore, if we count tilings of a 1 x n rectangle
according to the length of the rightmost tile, we find the number of such tilings satisfies the recurrence
F,, =F,_1+ F,_2, as desired. a

Let a be any element of £,,, we define 8 by 8; = 1 if a; = A; otherwise 3; = 2, and we write 8 = x(a).
For example, x(AAABAB) = 111212.

Now, let us fix an integer s and a natural number g such that ¢ > 1. Let ag, a1,...,a¢-1,b0,b1,...,b4—1
be 2¢ constants and a = (ag,a1,...,aq-1), b = (b, b1,...,b4—1). For any o € £, we define v(n;s) =
Va(n; @, q,5) = [1,, k(8;) where
a ) if ;=1
k(B;) = (s+B1+:-+Bi) mod ¢» ) i y
(8) { b(8+51+"'+ﬂ1‘)m0d‘1’ if B =2,
and 8 = x(a). For example, if ¢ =3, a, =nand b, = 1forn =0,1,2,s =0, and « = AABAB,
then we have Ua,b(maa%s) = @1 mod 392 mod 304 mod 345 mod 307 mod 3 = @1G2b1G2b1 = ala% =4. We
will be interesting in the sum of all van(n;a,q,s) over all a € £,, which is denoted by V(n;s) =
Vanb(n;q,5), that is, V(n;s) = > co vab(n;a,q,s). For example, V(1;8) = a(;41)modq and
V(2;8) = a(s541) mod ¢%(s+2) mod q T b(s+2) mod q- We extend the definition of V(n;s) as V(0;s) = 1
and V(n;s) =0 for n < 0.
The main result of this paper can be formulated as follows.
Theorem 1.3. Let (z,)n>0 be any sequence (r, = Tnyy(a, b)) that satisfies

(2) Tgn+d = Ad * Tgntd—1 + bd *Ton+d—2,
foralln >1,0<d<q—1, with given x9,21,...,2q—1. Then forn > 1, x4p1q is given by
n—2
V=g (mq+dv —Jg:aUn—1(Wga) + (T2g4d — Ig;aTgrd) - Un72(wq;d)) )

for all n > 1, where Uy, is the mth Chebyshev polynomial, x,1q =V (d+ 1;-1)z,_1 + bV (d; 0)z4_2,
Zogrd = V(g+d+1;-1zg_q1 + bV (g +d;0)z4—2, and

Woeq = Ig;a
q; 2 /_Jq;d’
(3) Iya = bay1) modq " V(e — 2;d + 1) + V(g; d),

Jq;d = b(d+1) modq * (V(q - ]-;d + l)V(q - lvd) - V(qad)V(q - 2;d+ 1)) .
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The paper is organized as follows. In Section 2 we give a proof of Theorem 1.3, and in Section 3 we
give some applications for Theorem 1.3.

2. PROOFS

Throughout this section, we assume that ¢ is a natural number (¢ > 1) and s is an integer. Also, let
agp,0a1,...,0q-1, bo, bl, ey bq_l be 2q constants and a = (ao,al, cee ,aq_l), b= (bo,bl, cee ,bq_l). We
start from the following lemma.

Lemma 2.1. Let £ be an integer such that £ > s+ 2. Then

V(€ —558)=armedqg VI —5—1;5) +bymodq - V(£—5—2;5).
Proof. To verify this lemma, we observe that there is a one-to-one correspondence between the tilings
of a1 x (£ — s — 1) rectangle and the tilings of a 1 x (£ — s) rectangle in which the rightmost tile has

length i, where i = 1,2. Hence V(£ —5;58) = aymody - VI —5—1;8) + bymod g - V(£ — 5 — 2, 5), where
the first term corresponds to the case ¢ = 1 and the second one to the case ¢ = 2. d

Now, let us apply this lemma to find Z¢p4q4m in terms of xgp4q and Tgnya—1.
Proposition 2.2. Letg—1>d >0 andn > 1. Then for allm > 0,

Tgntdtm = V(m;d) - Tgnta + bay1) modq - V(M —1;d+ 1) - Tgnia—1-
Proof. Let us prove this proposition by induction on m. Since Znpid+o =1 Tnpt+d+o + b(ay1) modq -

0- Zppra—1, V(0;d) =1 and V(m;d) = 0 for m < 0, we have that the proposition holds for m = 0.
By Recurrence 2 we get

Tqn+d+1 = G(d41) mod ¢ * Tantd + O(at1) mod ¢ * Tan+d—1

=V(1;d)- Tgn+d + b(d+1) mod g ° V(0;d+1)- Lon+d-1,

therefore the proposition holds for m = 1. Now, we assume that the proposition holds for 0,1,...,m—
1, and prove that it holds for m. By induction hypothesis we have

Tgntdtm—2 = V(m —2;d) - Tppia + b(d+1) modq ° V(m —3;d+1) - Tgnia-1,
and

Tyntdtm—1 =V (m — 1;d) - Tgntd + bay1ymodq - V(M — 25d + 1) - Tgnya-1,
hence, by Equation 2 we get

Tgntd+m = Q(d+m)mod q * Tgn+d+m—1 + B(dtm) mod ¢ * Tgn+m+d—2
= (a(d—i-m) mod g * V(m -1 d) + b(d—i—m) mod g * V(m -2 d)) Tan+d
+b(d+1) mod q (a(d+m) modq " V(m —2;d+ 1) + baymymodq - V(m — 3;d + 1)) Tqntd—1-
Using Lemma 2.1 for { =m +d, s =d and for £ = m + d, s = d + 1, we get the desired result. d

Now we introduce a recurrence relation that plays the crucial role in the proof of the Main Theorem.
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Proposition 2.3. Let q—1>d > 0. Then for alln > 2,
Ty(n+1)+d = (b(d+1) modgq * Vig=2d+1)+ V(g d)) Zan+d

Bty modg - (V(q L+ V(g - 1id) = V(g d)V (g — 2d+ 1))xq(n1)+d.

Proof. Using Proposition 2.2 for m = p — 1 we get
(4) To(nt1)+d—1 — O(a+1)modq " V(€ — 25d + 1) - Tgnta—1 = V(g — 1;d) - Tgntd,
and for m = p we have
(5) Tyns1)+d = V(G d) * Tontd + Dar1)ymodq - V(@ — L;d+ 1) - Tgnia—1.
Hence, Equation 4 yields
To(nt1)+d — O(a+1) modq " V(2 —25d + 1) - Tgnya =
=V(g;d) - { Tgnt+d — bla41)modq - V(g —2;d + 1) -qu+d>

+b(q+1) mod q * V(q - Lid+ 1) : (an+d1 - b(d+1) modgq ° V(q —2;d+ 1) : xq(n—l)—i—d—l) )
and by using Equation 4 we get the desired result. O
Proof of Theorem 1.3. Recall the definitions in 3. Now we are ready to prove the main result of
this paper. Using Proposition 2.3 we have for n > 2,
Ty(n+1)+d = I id " Tantd + J, id - Lg(n—1)+d-
If we define t,, = z4p44 for n > 1, then we get
thy1 = Iq;d “tn + Jq;d “tp—1,
therefore, by defining (—Jq;d)"/Qt’n = t, we have for n > 2,
t' 1 = 2wgat'n — 6.

Let us find expressions for #¢ and t';. By the recurrence for ¢, we can define ty as ty = I .qt1 +
q7

Jy.ato, which means that t'g = to = ﬁ(mgﬁd — I,.4%4+q)- By definitions, #; = —ﬁ% Using
Proposition 2.2, we get xq4q = V(d+1; —1)xq_1 + bV (d; 0)x4—2 and z2q4q = V(g+d+1;-1)ze_1 +
boV (g + d;0)x,_». Hence, using Lemma 1.1 we get the desired result. d

3. APPLICATIONS

There is a connection between the sequences which are defined by Recurrence 2, and the sequences
which are define by Recurrence 1. Indeed, from Theorem 1.3 we get the following result.

Corollary 3.1. For given xg and x_1, and the recurrence Typyo = aoZTpt1 + boTyn, an explicit solution
for this recurrence is given by

n—2 ag ao
n=1v-b V —b box—1)Un— boxoUp_ ,
o =V [l sl (72 ) + et (5727 )

where U, is the mth Chebyshev polynomial.
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Proof. Using Theorem 1.3 for ¢ = 1 with the parameters d = 0, 11,0 = ag, J1,0 = bo, £1 = apTo+boz_1,

Ty = (a2 + bo)zo + apbozr_1, and w0 = 2\;‘—3—1)—0, we get the explicit solution for the recurrence
Tpt2 = GTpy1 + boZy,, as requested. O

The first interesting case is ¢ = 2. Then Recurrence 2 gives

(6) Tan = aoTan—1 + boT2n 2

Tan+1 = Q1%T2n + b1Tan-1,
with given z¢ and z;. In this case we have two possibilities: either d = 0 or d = 1. Let d = 0, so
the parameters of the problem are given by I»g = agai + bo + b1, Jo;0 = —bob1, weyo = %,

Ty = apT1 + boTo, and x4 = (ada1 + agb1 + agbo)x1 + (agboai + b3)wo. Hence, Theorem 1.3 gives the
following result.
Corollary 3.2. The solution s, for Recurrence 6 is given by

n—2 apay +bg+0b aga; +bo +0b
vV bob1 VvV bobi(aoz1 + bozo)Up—1 (%) — bobizoUpn—2 (%)] ;
b1 b1

where Uy, is the mth Chebyshev polynomial.

Example 3.3. If 1o =0, z1 = 1, ag = x, a; = zy, and by = by = 1, then the explicit expression to
Zoy for the Recurrence 6 is given by zU,, 1 (1 + %ny) Hence, by definitions it is easy to see that in
the case y = 1, we have that the Finbonacci polynomial Fyy(z) is given by xUp—q (1 + %wz)

If xg =2, 1 =1, a0 = x, a1 = xy, and by = by = 1, then an explicit expression to o, for the
Recurrence 6 is given by (z + 2)U,—1 (1 + %a:Zy) —2Up-2 (1 + %a:Zy) Hence, in the case y = 1 we
have that the Lucas polynomial Loy (z) is given by (z +2)U,_1 (1 + 32?) — 2U,_» (1 + 12?).

If 2o =0, z1 = 1, a9 = 2z, a1 = yx, and bg = by = 1, then an explicit expression to T2, for the
Recurrence 6 is given by 2zU,_1(1 + x2y). Hence, in the case y = 2 we have that the Pell polynomial
Py, () is given by 22U, _1(1 + 222).

Another example for Theorem 1.3 is when ¢ = 3 and d = 0. In this case the parameters of the
problem are given by .[3;0 = agaiaz2 + bpai + bras + agbs, Jg;o = bob1bs, T3 = apx2 + box1, and
x6 — I3;0x3 = bobi(z2 — asx1). Therefore, we get the following result.

Corollary 3.4. The solution za, for Recurrence 2, when q = 3, is given by

n—2
V/ —bob1b2 (\/ —bob1b2(aoz2 + box1)Un—1(w) + bob1 (x2 — (12331)Un—2(w)) )

for all m > 1, where w = aoalaggs‘fi(ﬁﬁizﬁblag, and Uy, is the mth Chebyshev polynomial.

For example, if we interested in solving the recurrence

T3n = Z3n—1 + T3n—2
T3n+1 = T3n + T3n—1
T3nt+2 = YT3n+1 + T3n,

with £p = 0 and z; = 2 = 1, then by the above corollary we get that the solution zs3, for this
recurrence is given by

2" Un 1 (=i(149)) +i" (1 = y)Uno(=i(1 +9)),

where i2 = —1. In particular, if y = 1 then we have that the (3n)th Fibonacci number, F3,, is given
by 2i" U, _1(—2i).
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