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Abstract

This paper considers the stationary linear, space-dependent Boltzmann equation
in the case of an interior source term together with an absorption term and gen-
eral boundary reflections. First, mild L'-solutions are constructed as limits of
iterate functions. Then an H-theorem on a relative entropy function of two dif-
ferent solutions is studied. Finally a generalized inequality (of Dorrozes-Guiraud
type) for the boundary terms in the H-theorem is proved.

1 Introduction

The linear Boltzmann equation is frequently used for mathematical modelling in physics,
(e.g. for discribing the neutron distribution in reactor physics, cf. [1]-[4]).

One fundamental question concerns the large time behavior of the function f(x,v,t),
representing the distribution of particles; in particular, the problem of convergence to
a stationary equilibrium solution, when time goes to infinity. In our earlier papers
[5]-[8] we have studied such convergence to equilibrium for the space-dependent linear
Boltzmann equation with general boundary conditions and general initial data, under
the assumption of existence of a corresponding stationary solution. For the proofs we
use iterate functions, defined by an exponential form of the equation together with
the boundary conditions, and we also use a general relative entropy functional for the
quotient of the time dependent and the stationary solutions.

Then a fundamental question in kinetics concerns the existence and uniqueness of
stationary solutions to the space-dependent transport equation, with general collision



mechanism (including the case of inverse power forces), together with general bound-
ary conditions, (including the periodic, specular and diffuse cases). We will study
this problem in the angular cut-off case, using our earlier methods with iterate func-
tions F™(x,Vv), (representing the distribution of particles having undergone at most n
collisions, inside the body or at the boundary).

This will be done in the case of an interior source term oyG(x,Vv), where og > 0 is a
constant and G is a given function, together with an absorption term aF(x,v),a > 0,
and general boundary reflections, (see Section 3). We will also (in Section 4) prove an
H-theorem for a relative entropy function of two solutions with different (absorption)
coefficients; in order to study the problem of convergence, when the coefficients go
to zero. Finally (in Section 5) we give a generalization of an inequality of Dorrozes-
Guiraud type for the boundary terms in the H-theorem.

For bounded gain operators the problem of existence and uniqueness for solutions to
the linear Boltzmann equation has been studied earlier by a different technique, cf. ref.
[3]. But in our approach unbounded operators also are included, e.g. the case of hard
inverse power collision forces.

2 Preliminaries

We consider the stationary transport equation for a distribution function F(x,v), de-
pending on a space variable x = (x1, Z9,x3) in a bounded convex body D with (piece-
wise) C'-boundary I' = 9D, and depending on a velocity variable v = (vy,vy,v3) €
V = R3. The stationary linear Boltzmann equation in the case of given interior source
apG(x,v), where ap > 0 is a constant and G > 0 is a given (measurable) function,
together with an absorption term aF'(x,v), a > 0, is in the strong form

aF(x,v) + vV F(x,v) = aoG(x,V) + (QF)(x, V). (2.1)
The collision term can be written
(OQF)(x,v) = / / [V (x, v ) F(x,v') = Y (%, v.) F(x,v)] - B0, |v — v.|)dfdCdv,
. (2.2)

where Y > 0 is a known distribution function, and B > 0 is given by the collision
process. Here v, v, are the velocities before and v', v. the velocities after a binary
collision, and Q = {(0,¢) : 0 < 0 < §,0 < ¢ < 2r} is the impact plane. In the angular
cut-off case with 8 < 5 the gain and the loss term can be separated

(QF)(x,v) = /VK(X, v = v)F(x,v)dv' — L(x,v)F(x,V), (2.3)



where L is the collision frequency

L(x,v)= //VQB(H,w)Y(x, v,)dOd(dv,, w = |[v — v,]|. (2.4)

In the case of nonabsorbing body we have
L(x,v) = / K(x,v — v")dv". (2.5)
1%

One physically interesting case is that with inverse k-th power collision forces

wao:mmwnyz%gg, (2.6)

with hard forces for £ > 5, Maxwellian for £ = 5, and soft forces for 3 < k < 5.

The equation (2.1) is supplemented with (general) boundary conditions

V]

Rmﬂ:a—mxl R(x,% — v)F, (x, ¥)d¥, (2.7)

|

where 3 is a constant, 0 < 3 < 1. The function R > 0 satisfies
/ R(x,v — v)dv =1, (2.8)
1%

and n = n(x) is the unit outward normal at x € I'. The functions F_ and F,
represent the ingoing and outgoing trace functions corresponding to F'. Furthermore,
in the specular reflection case, the function R is represented by Dirac measure R(x, v —
v) = 6(v — Vv + 2n(nv)), and in the diffuse reflection case R(x,v — v) = [nv|W(x,Vv)
with some given function W > 0 (e.g. Maxwellian function).

Now using differentiation along the characteristics, the equation (2.1) can formally be
written

a

dt

+ / Kx+tv,v =5 v)F(x+tv,v)dv' — [a+ L(x + tv,Vv)|F(x + tv, V).
v

(F(x+1tv,v)) = apG(x +tv,v) +
(2.9)

Let

ty =ty(x,v) = inf {r:x—7v ¢ D}

T€R+

and x, = X(x,v) = x — t,v. Here ¢, represents the time for a particle going with
velocity v from the boundary point x;, = x — %, v to the point x.



Then we have the following mild form of the stationary linear Boltzmann equation
F(x,v) = F_(x,v) + / "LQF)(x — 7v,v) + 20G(x — 7v,v)dr (2.10)
and the exponential form O
F(x,v)=F_(xp,v)e~ Jo" (a+ L(x—sv,v))ds +

123
+ / e Jo (a+L(x—sv,v))ds [OzoG(X - TV, V) + (211)
0

+ / Kx—1v,v. = v)F(x — 7v,Vv')dv']dr.
v

3 Construction of stationary solutions

We construct mild L!-solutions to our problem as limits of iterate functions F", when
n — oo. Let first F~!(x,v) = 0 for all x,v € R®. Then define, for given function F™~!
the next iterate I, first at the ingoing boundary (using the appropriate boundary
condition), and then inside D and at the outgoing boundary (using the exponential
form of the equation);

F'(x,v) = (1 - f) / MR(X,\? — v)F" Y (x, ¥)d¥, (3.1)
v |nv|
nw<0,xel=0D,veV =R

F" (Xa V) = Ff (X — tbv’ V)e* f(fb(a-FL(xfsv,v))ds +

ty -
+/ ol (a+L(x—SV,V))d5[a/OG(X —TV,Vv)+
0

+/ K(x —71v,v' = v)F" }(x — 7v,Vv)dv']dr, (3.2)
14

xeD\I_(v),veV=R.
Let also F"(x,v) =0 for x € R* \ D.

Now we get a monotonicity lemma, which is essential in the following, and which can
be proved by induction.

Lemma 3.1 F"(x,v) > F""!(x,v),x€ D,veV,neN.

Using differentiation along the characteristics, we get by (3.2) that
d

%(F"(X +tv,v)) = G (x+tv,v) —aF"(x +tv,v) +

(3.3)
+ / K(x+tv,v. = v)F" (x + tv,v)dv' — L(x + tv,v)F"(x + tv, v).
v



Then integrating (3.3), it follows by Green’s formula that

a// F™(x,v)dxdv + // Fl(x,v)lnv|dvdl =
DV %

=y //DV G(x,v)dxdv + //rv F"(x,v)|nv|dvdl + (3.4)
+ //DV L(x,v)[F"'(x,v) — F"(x,V)]dxdv,

where by (2.8) and (3.1)

//FV F*(x,v)|nv|dvdl = (1 — 3) //FV F:&_l(x, v)|nv|dvdl (3.5)

Now by Lemma 3.1 it follows that

a// F"(x,v)dxdv + ﬂ// F(x,v)nv|dvdl’ < ag // G(x,v)dxdv (3.6)
DV n% bV
So, if G € L'(D x V), then we have for all & > 0 that

/ / o F'(x,v)dxdv < % / / . G(x,v)dxdv < oo. (3.7)

Then Levi’s theorem (on monotone convergence) gives existence of a mild (defined
by (2.10)) L-solution F(x,v) = lim,_,. F"(x,Vv) to the stationary linear Boltzmann
equation (2.1) with (2.3), (2.7), and F = F, g, satisfies for all o, a9 > 0,0 < 3 < 1,
the inequality

a//DV F(x, v)dxdv—l—ﬁ//rv Fi(x,v)|nv|dvdl <

<oy // G(x,Vv)dxdv.
DV

Furthermore, if L(x,v)F(x,v) € L'(D x V), then we get equality in (3.8) together
with uniqueness in the relevant function space, cf. [6] and also [3].

(3.8)

So, for instance, if 3= p-a,a9p =a > 0,p > 0, then

J| revaxivep [ Pavpviavar= [[ v, 69

In summary, we have the following existence theorem for solutions to our stationary
linear Boltzmann equation with general boundary reflections.

Theorem 3.2 Assume that K, L and R are nonnegative, measurable functions, such
that (2.5) and (2.8) hold, and L(x,v) € L] (D x V). Let a,cp >0 and 0 < <1 be

loc

constants, and G(x,v) € L'(D x V) with [[ Gdxdv > 0.

3



a) Then there exists a mild L'-solution F(x,v) to the problem (2.1)-(2.4) with (2.7).
This solution, depending on «, cy and (3, satisfies the inequality (3.8).

b) Moreover, if L(x,v)F(x,v) € L'(DxV), then the trace of the solution F satisfies
the boundary condition (2.7) for a.e. (x,v) € ' x V. Furthermore, mass con-
servation, giving equality in (3.8), holds, together with uniqueness in the relevant
L'-space.

Remarks:

1) For the case o = o9 = 0, 3 = 0, we have in an earlier paper obtained uniqueness
of mild L'-solutions to the stationary linear Boltzmann equation, using a general
entropy functional cf. [8]; cf. also Section 4 in this paper.

2) The statement in Theorem 3.2 (b) on existence of traces follows e.g. from Propo-
sition 3.3, Chapter XI, in [3].

3) The assumption LF € L'(DxV) is for instance, satisfied for the solution F in the
case of inverse power collision forces, cf. (2.6), together with specular or diffuse
boundary reflections. This follows from a statement on global boundedness of
higher velocity moments, cf. Theorem 4.1 in [9],

// (140?72 F(x,v)dxdv < C, < o0,
DV

o >max(0,7),-1<y=(k—5)/(k—1) <1,
if (14 v2)72G(x,v) € L*(D x V).

(3.10)

For a proof of (3.10) we can multiply equation (3.3) by (1+v2?)?/2, and integrate, (using

Green’s formula) getting an equation analogous to (3.4). Then the gain and loss terms
can be estimated, using an inequality for the velocities in a binary collision, cf. [5],

(1 + (01)2)0/2 _ (1 + UZ)U/Z <
S Clw COS 0(1 + ’U*)ma‘x(lag_l)(l + 1}2)0’772 o
a—1

— Cywcos® O(1 +v*) 7,

with constants C,Cs > 0 and o > 0, together with some elementary estimate,
~+1

—w"T < (14w =27 (1 +0%) 2

The function Y in (2.2) is here assumed to satisfy the following conditions

/ (1+ U*)7+max(2’a) sup (Y (x, v,))dv. < oo,
\4

zeD

/V;ing)(y(x’ v,))dv, > 0.



For further details on boundedness of higher velocity moments, see [9], and also our
earlier papers [5]-[8].

4 An H-theorem (for a Relative Entropy function)

In this section we will prove an entropy theorem for the quotient of two solutions from
Section 3, F' and F', with coefficients a, ag, 8 and «, ay, 8 respectively. So we start
from the equations

%[F(x +tv,v)] = aG(x +tv,v) — aF(x +tv,v) +

+ /K(x +tv, v = V)F(x + tv,v)dv' — L(x +tv,v)F(x + tv,v), (4.1)
Fev) = (1) [ (2 Rx,9 = ) P, 90,

and
d
%[F(x +tv,v)]| = a0G(x+tv,v) —aF (v+tv,v) +

+ /K(X +tv, v 5 v)F(x +tv,v)dv' — L(x + tv,v)F(x + tv, V), (4.2)

V]

F_(x,v)=(1-0) R(x,Vv — v)F,(x,V)dv

v |

To prove an H-theorem for the convex function ¢(z) = (2 — 1)?,z = F//F, we begin
with the following calculations

i[(%_ly.mmv,vﬂ _

Edi[_ _) —2F+F](x—i_—tv,v)5
=Py~ () G 2+ e =

:2[%—1} [aOG—aF+/KF Ndv' — LF] +
[ ( )]-[aOG—aF—i—/Kdev’—LF],

where we have shortened the notations to the essential variables.



Now some (elementary) calculations give

A1) o -
= (@ —1) apG — (% - Z—z)2a0G+
2 a

F—(Zii—a)(_%— >2F—
—/K(v'—>v) %—%
+/K(v'—>v)(FE::; — 1)2F(v’)dv’_

F
—L(v) (% - 1)2F(v) (4.3)

a—a«o

F(v')dv' +

— ¥

where L(v va—)v)dv

Then by integration of (4.3) using Green’s formula, and also by the relation

//VV K(v— v')dv_’(% - 1)2F(V)dv = w
/ . K(v' =) (5( ) _ 1) 2F(v')dvdv',

it follows that

2
// F+ V) _ (x, v)|nv|dvdl —
v F+ V)
// (x v) (x, v)|nv|dvdl +
v (x V)
+ap // (X v)_ % G(x,v)dxdv +
pv \F(x,v)

2
+(2a—« //DV Fix,v) 2a — F(x,v)dxdv +

V)2, .
/ / / py VY ‘F(x,v') - F(x,v)‘ Fx, v)dxdvdv' =
2

_ W / Gl )y + (g‘@__ai / / F(x )y, (45)

where (right-hand side)

RHS < [(ao ao // G(x,v)dxdv,
2a a DV

8




because of the massrelation
a// F(x,v)dxdv + ﬂ// F(x,v)|nv|dvdl < ao/ G(x,v)dxdv. (4.6)
DV v DV

For the boundary terms we use, if 3 = 3 = 0, a Darrozes-Guiraud inequality,

/V (% — 1)2F_|nv|dv < /V (% — 1) F,|nv|dv. (4.7)

More generally, for 3 = ap > 0,3 = ap > 0, it follows from Theorem 5.1 (Section 5)
with ¢(z) = (z —1)? and K = 1, that

/v (i_g; B 1>2F(V)\nv\dv <

<(1- 5)/V [% —1]°F, (v)|av]dv.

Now, in the case 3 = 3 = 0, the following H-theorem (on relative entropy) holds, cf.

(4.5), (4.7)
Ao\ 2
ap // X’V — %) G(x,Vv)dxdv +

+(2a — // V) __@ >2F(x v)dxdv +
a-a DV xv) 20—« ’

I v>\§E§: ) i i
= [(040 p aO) a)2 //DV X, v)dxdv. (4.9)

o - a)

(4.8)

Furthermore, let now ay = a, @& = @&, and define § by @ = (1 —6), i.e. § =1- 2,
and suppose that 0 < § < 1/2.

Then, after division by « = ¢ in the H-theorem (4.9), it follows that

1,5
—_ 2
+(1 - 24) // F(x,v) 11 255) S
DV X V _
’ F(X, V') F’(x, V) 2 ) ,
a N <
///va Kx,v' — v)‘F(X V) Fxv) F(x,v")dxdvdv' <
<7 1—-26 4.1
dl 1+1—25 //DVGXVdXdV (4.10)

2
) G(x,v)dxdv +




Further calculations (among others using an intermediate step through «, ag between
a, ap and @, @) give the following version of the H-theorem (when p = 0)

I, (B Yo
+//DV (Zg :; - 1)2F(x, v)dxdv +

i [ 0 9 B ~ | o <
<C-¢§ //DVG(X, v)dxdv, (4.11)

with constant C' > 0.

In the rest of this section we will study a sequence of stationary solutions { Fiy (%, v) }%_,
by choosing the coefficients a and @ as follows. Let

1
= =—— N=223,4,... 4.12
(0% ON+1 N+1’ ) 9y ) ( )

_ —1_a _ _1
sod=0y=1 «= i

Then the H-theorem (4.11) with F' = Fy 1, F = Fy can be written (for N =2,3,...)
as

2
// FNH Fyn(v) 1) G(x,v)dxdv +
DV

Frn(x,v)

2
// FNH Fxn(ov) 1) Fy(x,v)dxdv +
DV

Frn(x,v)

FN—|—1(X7 vl) FN-I—I (X7 V) 2 ! !
+N/// Kx,vi = v — Fy(x,v)dxdvdv' <
oo OV TR o) T Few) | Y

C
< N2 // G(x,v)dxdv. (4.13)
DV
From (4.13) it follows (among others), if 0 < G(x,v) € L*(D x V) that

lim Fyia(x,v)
Nooco Fy(x,Vv)

1, (4.14)

where ay = % — 0 when N — oo.

Furthermore, we get (from (4.13) when p = 0) also the following theorem for the
sequence of our solutions {Fy(x,v)}¥_,. The case p > 0 can be proved in the same
manner, cf. (4.8).

10



Theorem 4.1 Let Fy(x,v) be the solutions from Theorem 3.2 corresponding to (ab-
sorption) coefficients « = ap = 1/k,k =2,3,..., and let ag = a, 3 = ap,p > 0, and
assume that G(x,v), L(x,v)Fy(x,v) € L*(D x V). Then the following estimates hold

a)
b)

g//m/ (L;:z}(:’v‘)r) — 1>2Fk(x, v)dxdv < %
c)

s ol

Bl (x,v)dxdvdv' < %

(4.15)

with positive constants C1, Cy, Cs.

Remark: We observe that

an = an-1(1 = 6x) = as [Ti_s(1 — 6k) = azexp(3_; In(1 — 6;))
= agexp(— Y g0k + O(1) Yo, 62), using MacLaurin’s formula, where O(1) is a
bounded function, when N — oco. So we find that ay — 0, when N — oo, if and only

5 An inequality (of Dorrezes-Guiraud type) for the
boundary terms (in an H-theorem)

We will here prove a generalization of an inequality (cf. [2], p.115, “A remarkable
inequality” ), concerning the relation between ingoing and outgoing boundary terms in
an H-theorem for the relative entropy functional with general convex function.

11



Suppose that F' and F' are two functions satisfying the following boundary conditions,
cf. (2.7)

F(v)=¢ /V %R(\? — V) F, (¥)d¥, (5.1)
Fv)=c| %R(fr — V)F, (¥)d¥, (5.2)

with (for simplicity) e=1—3,c=1-3,0< 3,8 < 1.
Let
W(¥) = cR(V — v)|nV|F(V)/(|nv|F_(v)). (5.3)

Then [, W(¥)dv = 1, so W(¥) is a weight-function, because of the boundary condi-
tions (5.2) for F.

Suppose ¢(z) is a (general) strictly convex continuous function. Then we have, because
of Jensens inequality, that

o[ s < [ pla@wEas. (5.4)
Choose now the function g = k%, with a constant k£ > 0, so
G R® L E )
%) = hE e ov) = Ko )

for nv < 0 < nv.

Then we can prove the following generalization of the Dorrezes-Guiraud inequality for
the boundary terms.

Theorem 5.1 Suppose F' and F satisfy the boundary conditions (5.1), (5.2), and let
©(z) be a strictly convex continuous function. Then (for any constant K > 0)

/V o(K ?_—Eii) nv|F_(v)dv <

< C/‘/@(K%E:;NHV‘F+(V)CZV'

(5.6)

12



Proof. By the boundary conditions (5.1) for F' we get, cf. (5.3) and (5.5), that
F_(v)
g(V) - F_(V) -
= ké/ nV|R(¥V — v)F, (¥)d¥v/(I]nv|F_(v)) =

’ Fy(®)
G (nvIF(v) =

QIO IO

/ cR(¥ = v)F, (¥)k

/ W (¥)g(¥)dv

Multiplying by ¢, and taking () of both sides, we find, by Jensens inequality (5.4),

that
_gp /W

e(g(v

p(9(¥))cR(V = v)[nv|F (v)dv/(jnv|F(v)).

SD
<

\\mlﬁ

Then multiplying by |nv|F_(v), and integrating [ ...dv, we get

[ (o) lavi(vyav <
<c [ olo@) vl @)av,

which gives the inequality (5.6), if we use (5.5) and set k = ¢K.

Remark. If Kk =c=c¢=1, then we get the inequality in [2].

13
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