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ABSTRACT

The sea elevation at a fixed point is modelled as a quadratic form of a
vector valued Gaussian process with arbitrary mean. An apparent wave
is a part of the sea record observed between two successive upcrossings
of the still water level. Saddlepoint methods are used to approximate
the mean upcrossing intensity pu*(u), say, with which the sea level crosses
upwards at height u. This estimated intensity is further used to determine
the density of crest height. Several numerical examples are given.

KEY wWORDS: Crest distribution, non-Gaussian sea, Rice’s formula, Saddlepoint
method.

INTRODUCTION AND MOTIVATION

Commonly the sea surface elevation at a fixed point is modelled as a Gaussian process
which, during a limited period of time (1-3 hours), can be considered stationary.

*Research supported in part by the Gothenburg Stochastic Centre



The model is called Gaussian sea, and the parameters that characterize its power
spectrum are the sea state. In reliability analysis of ocean structures the distribution
of crest height, denoted by A, is often required. The exact form of the distribution
is not known. For a Gaussian sea it is a common practice to approximate the A.-
distribution by means of the Rayleigh distribution, given on the right hand side of
Eq. 3. The approximation is very accurate for high crests or for seas with narrow
band spectrum. However, it is a well known fact that for steep waves in deep waters,
or as the water depths decreases, the sea surface profile departs from the Gaussian
assumption. Under these conditions the wave profile becomes asymmetric, with
higher and steeper crests, and shallower and flatter troughs. The Gaussian sea model
can lead to circa 20% under estimation of wave crests. In this case an application of
Rayleigh distribution becomes nonconservative and hence the asymmetry of the sea
waves should not be neglected in the reliability analysis of ocean structures.

In this paper we shall present a new method to approximate the distribution of
wave crest heights for the non-Gaussian model of the sea elevation. Our approach
is based on the following result shown in Rychlik (1993), see also Rychlik and Lead-
better (2000),

(k)
pt(m)’
where p*(h) is the intensity which the sea elevation crosses level h in an upward
direction and m is the so-called still water level, often taken to be the mean value
of the sea elevation or the most frequently crossed level, which coincides for the
Gaussian sea.

For the Gaussian sea, with still water level m = 0, the upcrossing intensity u*(h),
is given by the celebrated Rice’s formula, (Rice, 1944,1945),

P(A. > h) <

(1)

2
() = 2o ") (2
z
where T, is the average wave period, and Hj is the significant wave height which is
equal to four times the standard deviation of the process. (Note that T, H are often
identified with the sea state.) It is now easy to see that the Rayleigh approximation
is conservative in the sense that

P(A, > h) < () (3)

Since the Rayleigh approximation is the most commonly used method to derive
the crest height distribution for Gaussian sea models, we propose to use Eq. 1 to ex-
tend the approximation to non-Gaussian seas. In order to derive the approximation,
we first need to specify the probabilistic properties of the non-Gaussian sea and then
to compute the crossing intensity ™ (h). In this paper we use a quadratic model
for the sea surface elevation which takes into account second-order non-linearities
(Hasselmann, 1962). The model will be shortly described in the following subsec-
tion. Unfortunately there is no explicit formula for the crossing intensity " (u) for
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this model. There exists a very accurate numerical method (computation of a three
dimensional complex integral) that gives very accurate numerical values for p*(u);
see Naess and Machado (2000). However the method is slow, difficult to automate
and can be unstable for high levels h. Consequently, in the third section, we present
a new method to estimate p*(u), which is not as accurate as the method used by
Naess and Machado (2000), but very fast and numerically stable. Finally in the last
section we present several examples which consider the accuracy of the new approach
for narrow-band Stoke’s waves, and a quadratic model for the sea elevation in deep
and shallow waters. The accuracy is quite good in all the examples.

MODELLING OF THE SEA SURFACE

We begin with the linear sea model, which postulates that the sea surface is a sum of
simple cosine waves. In this paper we consider only long crested sea, i.e. the surface
does not depend on the y coordinate. In addition we consider an unidirectional sea,
where all waves travel along the x axis with positive velocity. The linear sea 7,
consisting of N cosine waves, is given by

N

An t(wnt—knT
m(x,t) = Z I gilwnt—rnz) (4)

n=—N

where for each elementary wave: A, denotes its complex valued amplitude, w, an-
gular frequency and k,, wave number. We assume that A_,, = A, where z* denotes
complex conjugate of z. Since 1; should be a real-valued field, we need to assume
that w_; = —w; and K_; = —k;. Finally, the linear wave theory postulates that x
and w are functionally related by the so-called dispersion relation

w? = gk tanh(hk), w>0,k>0,

where g and h are the gravity acceleration and water depth, respectively.

Measurements of the real sea show that the linear wave model is often overly
simplistic and leads to errors in the predicted crest height (in deep waters) of about
10-20%. The model can be corrected by using “second-order” terms that allow inter-
actions between the elementary cosine waves. Following Hasselmann (1962), where
the detailed derivations are given, the quadratic correction 7, is given by

Z Z nmamm E mem) i(wnt—ﬁnm)ei(wmt—nmm)7 (5)

—N m=—

where the amplitudes A, angular frequencies w and wave numbers x satisfy the same
relations as in the linear model. The quadratic-transfer function E(w,®), taken from
Marthinsen and Winterstein (1992), is given by

grk _ = (w? + &? +ww)+ﬂ“”~f2+5”32 ~ 1
Bw,8) = T et) Ty (@ 43+ wd), (6)
— 9T tanh(k + £)h ww 29
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where k, K are wave numbers which are computed using the dispersion relation from
the angular frequencies w, @, respectively. We also assume that F(w, —w) = 0. It is
important to note that for any positive w and @ the following symmetry relations
hold: E(w,0) = E(0,w), E(w,0) = E(—w,—®) and E(w,—®) = E(—w,®). These
properties imply that 7, is a real-valued field.

The deterministic Second-Order Stokes Wave is thus defined as

77N(957t) :m(l‘,t)-i-nq(l',t), (7)

where 7; and 7, are the linear and quadratic processes given by Egs. 4 and 5, re-
spectively. The Gaussian second-order sea is obtained by assuming that the com-
plex amplitudes A,, n > 0, are independent and normally distributed variables,
ie. A, = o,(U, —iV,,), where U,,V,, are independent zero mean and variance one
Gaussian variables, and o2 is the energy of waves with angular frequencies w,, and
—Wwp,

Often it is assumed that the linear Gaussian process 7; has a spectral density.
For a sea model with linear one-sided spectrum S(w), 0 < w < w,, where w, is
the cut off frequency, we define n(x,t) = limy_,o 7™V (2,t), where nV(z,t) is given
by Eq. 7. The individual waves have angular frequencies w; = jw./N and energy
0]2 = S(wj)Aw, j=1,...,N, while Aw = w./N.

In the following we use 7" (0,t), but in order to simplify the notation we shall
write 1(t) for ™ (0,t). In matrix form, if we define

Z(t) = (U —iV)e™t . (Un — iVy)e“NT = X(t) + 1Y (2),

and
Q - [an]v dmn = (E(Wma _wn) + E(Wmawn))o'mo'na (8)
R = [Tmn]a T"mn = (E(Wm, _wn) - E(Wm,wn))o'mo'n,
o = |on], on=+5S(wn)Auw,
where m,n=1,..., N, then
a(t) = "X (1) + X () QX(1) + SY()TRY (1), 9)

MEAN UPCROSSING INTENSITY

Assume that 7(t) is a stationary, zero mean Gaussian process. If the derivative
n(t) exists then, for a fixed level u, the expected number of times the process
n(t) crosses u in the upward direction u*(u), is given by

+oo
ph(u) = / 2 fr0).00) (0, 2) dz, (10)
0



where f;0),7(0) (%, 2) is the joint density of 7(0),7(0). The above classical result
is called Rice’s formula; see Leadbetter et al. (1983) for a proof. It is easy to
check that inserting the Gaussian density of 7(0),7(0) into Eq. 10 will give

Eq. 2, with T, = 27y/A\o/)\2 and H, = 41/\y, where
A= / NS(A) dA, (11)
0

since Var(n(0)) = A¢ and Var(7(0)) = As.

In the engineering literature, Eq. 10 is often used to compute the upcross-
ing intensity p*(u) even for non-Gaussian processes as long as the density of
n(0),n(0) is available. Since the density is not uniquely defined, Eq. 10 can not
be true without some additional conditions. However, if we replace = by “="
meaning that the equality is valid for almost all u, Eq. 10 remains true. See
Zahle (1984) and Rychlik (2000) for a proof and applications of Rice’s formula
in oceanography.

By Eq. 10, the computation of u*(u) requires the knowledge of the joint
density of 1(0),7n(0). An explicit closed form formula for the joint density of
n(0),n(0), for the process 7(t) defined by Eq. 9, is not known at present (except
when N = 1). Here we propose to use saddlepoint methods to approximate
pt(u). In order to employ the methods we need the explicit formula for the
cumulant generating function of 7(0), 7(0).

The cumulant generating function, K (s,t), of n(0),7(0) is defined as

K(s,t) = In(E[exp{sn(0) + t7(0)}]), (s,t) € X, (12)

where X is the set of arguments for which the last integral converges. For the
process represented by Eq. 9 we have that (see Machado and Rychlik (2002)
for details)

K(s,t) = —% In(det(I — A)) + %tT(I ~A), (s,)e X, (13)

where the matrix A = A(s,t) and the vector t = t(s,t) are defined as follows

| xQ yS - ro
O [ o R B (1)
In the matrices above,

W = [Wnn], Wmm = —Wn, and wy,, =0 if m #n, (15)
S = QW - WR,

where m,n=1,..., N, and Q, R, o are given by Eq. 8.
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SADDLEPOINT METHODS

The saddlepoint approximation was first introduced by Daniels (1954,1987) as
a formula to approximate the probability density function from its cumulant
generating function. We shall apply here a variant of the method which will
allow us to obtain directly an approximation of pu*(u).

We start by writing Eq. 10 as a function of K(s,t), and eliminate the
integration on z

N t+ioco +i00 1 9 .
(s:)=su=tyq g d. 16
) =t [ [ . (16)

(The limit y — 0 is introduced for some technical reasons.) In addition, the
path of integration in dt¢ has been deformed to the vertical line with Re(t) =
t > 0 to avoid the singularity at ¢ = 0. Then the inner integral in ds is
approximated by means of the one-dimensional saddlepoint approximation,
also sometimes called Laplace method,

1 +i00

1
K(s,t)—su—ty ~ g(t)
— e ds = —=h(t)e!", (17)
\/_

27TZ — 400 i

where, if we denote L(s,t) = K(s,t) — su — ty,

g(t) = L(s, 1), h(t) = (L' (s, 1)) 72, (18)

and s, is the local minimum of L(s,t), for fixed ¢ values.
Now, using Eq. 17 the upcrossing intensity can be approximated as

1 1 f+ico h( )
() ~ lim —— 9() ¢, 19
i)~ lim == (279) /t 2 ° (19)

The double pole of the integrand in Eq. 19 at t=0 makes the computation
of any approximation for the integral somewhat difficult. However there are
special cases when the integral can be computed “almost” explicitly; see the
following example.

—100

Example: Suppose that the functions g(¢) and h(t), in Eq. 19, are quadratic
polynomials, e.g.
2 2

t At
g(t):%—l—bt—i—c, h(t) = =+ Bt +C,

where a > 0. Assume that we can choose ¢ to be the position of the local
minimum of %- + 0t 4+ ¢. Then the integral in Eq. 19 can be evaluated as
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follows

1 e @eg(t) — ¢ i b b(/al a =i
(2ri) /too o= <2\/5 (\/_t)+Bq’(\/_t)+\/_C\I/(\/_t)>, (20)

where ¢(x) is the standard Gaussian density, ®(z) = [ ¢(y) dy and ¥ (z) =
[ ®(y)dy. Note that both ® and ¥ functions can not be computed ana-
lytically, however very accurate approximations do exist. These functions are
included in most numerical toolboxes. For the sea model we will need only
the values of the functions for x = 0. For this special case we know that

®(0) = 1/2 while ¢(0) = ¥(0) = 1/+/27.

Proceeding in a similar way as in the last example we can approximate g(t)
and h(t) by suitable polynomials (the symmetry K(s,t) = K(s,—t) is also
employed; see Butler et al. (2002) for more details). Next letting y go to zero
we derive the following approximation for the upcrossing intensity

o o FO (W) 1 g0 ”
p(u) = f(u) N + 2h(0)¢"(0) 24 ¢"(0)2 )’ (21)
where ¢(t) = K(s,t) — squ, h(t) = ﬁ and s; satisfies Ki(s;,t) = u.
Hore OK (s, 1) K (s,1)
S, S,
Kl(S,t):T, Kll(s,t):T,
and f(u) is the saddlepoint approximation for the density of 7(0) given by
p h(0)
u) = ——=e9). 22
) = 22 22

It is well known that the saddlepoint density often does not integrate to
one, i.e. it is not necessarily a probability density function (pdf). Accuracy can
often be improved (see Durbin, 1980) by scaling f(u) so that it integrates to
1. We denote this scaled saddlepoint approximation as f(u) and we shall use
it in our examples, i.e. we define our final saddlepoint approximation 't (u)
as follows:

) . g"(0) h"(0) 1g"0)) _
it = = an (1 2h(0)g”(0)_ﬂg”(0)2> Pt (@)

Numerical remarks: In order to evaluate Eq. 23 we need to first find the
value sg, which is an implicitly defined function of the level u, i.e. K;(so,0) =
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u. By knowing the value s = sp(u) the cumulative generating function K (s, 0)
and its derivatives K;(s,0), K11(s,0), the function f(s) can be computed, since

g(0) = K(s,0) — sKy(s,0), h(0) = I g"(0) = Ky(s,0), (24)

/E11(5,0)

where Ky(s,t) = %. Next we compute the integral [ = [ f(u)du and

define the normalized saddlepoint density f(u) = f(u)/I.
Longer but still elementary derivations are needed to derive the term in
Eq. 23 as

X0 _ 1 Ki122(5,0)K11(s,0) — K111(s, 0) Ki22(s,0) (25)
21h(0)g"(0) 4 K11(s,0)2K(s,0) ’
g (0) _ Ko295(5,0)K11(s,0) — 3K129(s,0)? (26)
g"(0)? K11(s,0)K(s,0)?

Here Kj195(s,t) means that the cumulant generating function K (s,t) is twice
differentiated on s and twice on t while Kj9(s,t) indicates differentiation once
on s and twice on t. The other derivatives are defined in a similar way. Since
for the second-order random sea the cumulant generating function, given by
Eq. 13, is a complicated expression, the partial derivatives of K(s,t) have to
be computed numerically.

Next we comment on the issue of finding s = s, i.e. solving K;(so,0) = u.
In order to avoid solving this nonlinear equation we propose here to use the
inverse function s — u = K;(s,0), which is easy to evaluate. More precisely we
choose a vector of s values and compute the corresponding u(s) levels and the
constants defined by Eqgs. 24-26, so that the approximation of the upcrossing
intensity /17 (u(s)) can be evaluated by means of Eq. 23. If we wish to know the
upcrossing intensity for a particular u value, we use splines to extend i (u(s))
to it (u).

Finally, since Eqgs. 25-26 involve higher-order partial derivatives of K (s, 1),
we have also checked an alternative approach, which is to compute numerically
g"(0), g"(0) and h"(0) from g(t), h(t), respectively. This approach is more com-
plicated then the computations of the K derivatives, and hence slower. Since it
did not give more accurate values and also was more unstable for low u-values,
we have not incorporated it into our programs. The programs are included
in WAFO (Wave Analysis for Fatigue and Oceanography)-toolbox, available
free of charge at http:/www.maths.1lth.se/matstat/wafo/; see Brodtkorb et
al. (2000).



NUMERICAL EXAMPLES

In this section we shall demonstrate the accuracy of the saddlepoint approxi-
mation for the crossing intensity, by presenting the relative errors of estimation
for three examples.

The first example considers the Narrow-band Stoke’s waves in deep waters,
when the transfer function E(w,®) is particularly simple, viz.

SN

E(wm7_wn):07 E(wm7wn): 5 n,m:17...,N7

SR

where w), is the peak frequency of the spectrum S(w) of the linear part n;(t). We
select S(w) to be a JONSWAP! spectrum, which is a parametric (analytical)
formula. The parameters chosen here are significant wave height H, = 7 [m],
peak period T, = 11 [sec| and peak-shape parameter v = 2.385. The chosen
cut off frequency is w. = 3 |rad/sec|, i.e. S(w) = 0 for w > w.. The peak
frequency is then w, = 0.574 |rad/sec].

In the second example, we shall still consider a deep water location with
the same JONSWAP spectrum for the linear part, but the transfer function
E(w,®) will be given by Eq. 6. Since h = oo then E(w,®) simplifies to

— L w? —@?  ifwo <0,

B(w,&) = { %

5 (w?+ &%) otherwise.

Finally in the last example the water depth is chosen to be finite and hence
E(w,®), given by Eq. 6, will be more complicated. In order to connect to the
previous examples we shall now use the so-called TMA? spectrum. This is
the expected spectrum in finite water depths, created by the meteorological
conditions which caused the JONSWAP spectrum at deep waters. (Obviously
both JONSWAP and TMA spectra are only models for the true-unknown sea
spectra.)

It will be shown on the second and third examples, that for positive u levels,
the saddlepoint approximation it (u) is very accurate with relative errors of
a few percent. For the narrow-band Stoke’s sea the relative error is below 10
% which is an acceptable accuracy. Next the function " (u) will be used to
evaluate the bound defined in Eq. 1 for the distribution of wave crest height.
The accuracy of the bound will be checked by means of simulations.

!The spectrum is a parametric formula that was derived in the JOint North Sea WAve
Project carried out, during 1968 and 1969, in the North Sea; Hasselmann et al. 1973.

2The spectrum is based on a similarity law, and its validity is verified through the analysis
of 3 data sets from: TEXEL, MARSEN projects (North Sea) and ARSLOE project (Duck,
North Carolina, USA); Bouws et al. 1985.



Since the approximation of crest distribution based on u*(u) is more accu-
rate for higher waves, we exclude the small waves, and compare the approxi-
mation of the conditional distribution of the crest height given that it is higher
than hg = 1 meter, viz.

it (h)
fit(ho)’

with simulations. More precisely, since the exact distribution of crest height is
not known at present we shall compare the proposed approximation with the
empirical conditional distribution obtained from the simulated process 7(t),
0 <t < T, sampling frequency 5 [Hz| and T = 24 |hours|. Although it is
seldom that the sea surface elevation can be described by the same model for
longer periods then a few hours, we have chosen such a long 7" in order to
reduce the variance of the estimate.

In all three examples the approximation defined by Eq. 27 is very accurate.
These particularly good results can be explained by the fact that the relative

error of the saddlepoint approximation " (u) is almost constant for positive u
it (h) pt (h)
fit (ho) pt(ho)*

P(A. > h|A:. > hy) =

(27)

is close to

values and hence the errors cancel, i.e.

Example 1: Narrow-band Stoke’s waves

Let us consider the sea containing only one Gaussian cosine wave, i.e. 7,(t) =
o Rcos(wt + ¢), where R is a standard Rayleigh distributed variable and ¢ is
a uniformly distributed random phase, which is independent of R. As before
o? is the energy of the wave. The Hilbert transform of the cosine wave is

nu(t) = o Rsin(wt + ¢). The Stoke’s wave can then be written as follows:

2

n(t) = o Rcos(wt+ ¢)+ ;L)—gaQR2 cos(2wt + 2¢) (28)
= nlt) + 50 (1)),

where x = g/w? is the wave number (in deep waters) of the wave with frequency
w. We shall now generalize Eq. 28 and let 7;(¢) be a Gaussian sea with spectrum
S(w) while 1y (t) be its Hilbert transform. (It is well known that 7y (¢) is also a
Gaussian process defined by adding —m /2 to the phases of all individual cosine
waves constituting 7;; see Cramér and Leadbetter (1967) for discussion of the
properties of ny(t).) Next let

n(t) = m(t) + =—m(t)* — nu(t)?), (29)



where k, = g/w? and w, is the peak frequency of the spectrum S(w). (The
S(w) chosen in the numerical computations gives k, = 29.76 |[rad/m]|.)

In oceanography the process (Eq. 29) is sometimes used to model sea surface
elevation when the power spectrum is concentrated around the peak frequency
w, and therefore all waves have its wave numbers close to k,. Such sea is
called narrow-band. The crest distribution for the process Eq. 29 is unknown,
however some approximations do exists; see Prevosto et al. (2000).

In order to compute the saddlepoint approximation of the crossing intensity,
we need the cummulant generating function K(s,t). Since the process 7(t),
defined by Eq. 29, can also be written using Eq. 9 we can use Eq. 13 to compute
K(s,t). However, the evaluation of Eq. 13 involves finding eigenvalues and
eigenvectors of the matrix: T — A, which is at least a (500,500)-matrix; see
Langley (1987) for details. Since for the process (Eq. 9) an explicit simple
formula for K (s,t) exists, see Eq. 31, we shall use it instead. (Observe that in
Examples 2,3 there are no simpler formulas to be used.)

The possibility of computing K (s,t) by two alternative ways is one of the
reasons why we are more extensively studying the narrow band case. Namely
we can check the numerical stability of the computation of the derivatives of
K(s,t) defined by Eq. 13. We discovered that the computed approximations
At (u) using the cumulant generating functions defined by Eq. 13 and Eq. 31
are almost identical. The relative errors differs by 0.05 % and hence can
be disregarded. We expect that the error is of the same order for the general
process (Eq. 9), in Examples 2,3, where no simpler expression for the cumulant
generating function is available.

Cumulant generating function for 7(¢) in Eq. 29: Consider the fol-
lowing vector [17;(0) ng(0) 7,(0) 177(0)]T of zero mean Gaussian variables, with

covariance matrix
N O 0 M\

0 X —XN O
0 =X XA 0|7
A0 0 X

3= (30)

in which ); are the spectral moments defined by Eq. 11. In this case, we
can compute K(s,t) by employing its definition, Eq. 12, together with some
mathematical manipulation:

2

1 K2
K (s,1) = —log(\o) — 5 log(det(A)) + %tQ + LA, (31)

where 0% = ()\2 — :\\—3), and the (2,2)-matrix A = A(s,t) and the vector
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t = t(s,t) are defined as follows

2
_s5 _g2(L 1 At
A(s,t) = T /\(’ZP) o 22/\0:17 2
ALt s t 1
2)\0np Kp g (np> + Ao
and ,
t At
t(s, 1) = S g2 (—) — 2
Kp Kp Ao Kp

The matrix A in Eq. 31 is only (2,2), thus its determinant and inverse are
easy to write in an explicit analytical way. Note that the K (s,0) function is
defined for s € (—k,/ Ao, kp/o)-

20

181
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o
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Fi1G. 1 The saddlepoint approximation applied for narrow-band Stoke’s sea.
Top Relative errors of the approximations gt (u) (dashed line) and Eq. 2
(dotted line). Bottom Conditional distribution of crest amplitudes A., i.e.
P(A. > h|A. > 1), h [m]. Irregular line: empirical distribution estimated
from simulated 24-hour-long narrow-band Stoke’s sea, dotted line: Gaussian
approximation (n = ), i.e. the distribution of A. given in Eq. 3 and dashed
line: the approximation based on " (u), using Eq. 27.
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We turn now to evaluation of accuracy of saddlepoint approximation of
crossing intensity " (u). In all figures, lines that represent results derived
from the “exact” crossing intensity pt(u) will be presented by (solid lines),
using 17 (u) by (dashed lines), while the (dotted line) will be used to represent
results for linear Gaussian sea, i.e. n = 7. The accuracy of the saddlepoint
approximation, with generic notation f*P, will be measured by means of the
relative error defined as

Erei(u) = (f7" () = £ (u))/ £ (u) - 100 [%],

where f¢*%“!(y) is the target value to approximate.

First we check the accuracy of the normalized saddlepoint approximation
of the density of 7(0), f(u). Since f(u) integrates to 1.0013, f(u) ~ f(u),
however we still need to check how close f(u) is to the true density In(0)-
The true density is not given by an explicit formula and has to be computed
numerically using the one-dimensional integration; see Eq. 33. The accuracy
of f(u) is remarkable with the relative error around 0.1% for u € [—6,9]. (Note
that in Examples 2,3 there is no formula for the density of 7(0) available.)

Next, we check the approximation it (u) of the crossing intensity u™*(u).
The relative error is presented in Fig. 1 (Top). The crossing intensity p* (u) is
computed by using Eq. 34, while saddlepoint approximation ™ (u) by means
of Eq. 23, with K (s,t) given in Eq. 31. The approximation " (u) is performing
very well giving a relative error below 10% as can be seen in Fig. 1 (Top).

Finally we turn to the main subject of the paper, the approximation of the
distribution of crest height defined by Eq. 1. As shown in Fig. 1 (Bottom), the
accuracy of the proposed approximation is very good. We can also see that the
Rayleigh distribution, defined by the right hand side of Eq. 3 with H, = 7 [m],
clearly underestimates the wave heights.

Example 2: JONSWAP spectrum (deep waters)

As in the previous example we begin with computation of the saddlepoint
approximation f(u). Here the integral I = [ f(u)du = 0.9997. This means
that the approximation is almost a pdf. However, the true density of n(0) is
not known for the process and hence we can not compare f(u) with f,)(w)-
We turn directly to the analysis of the accuracy of the approximation " (u),
defined by Eq. 23 with K (s, t) given by Eq. 13, of the mean upcrossing intensity
pt(u). Here we have an additional difficulty in that we do not have any simple
method to evaluate p*(u). Therefore, we consider the ™ (u) values computed
with the numerical methods used by Naess and Machado (2000) as the target
values for the approximation. We shall refer to this method here by numerical
method. The relative error is presented in Fig. 2 (Top) and we can see that
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the relative error is much smaller in this example. Finally, in Fig. 2 (Bottom)
the accuracy of the approximation of the conditional distribution of the crest
height given that crests are higher than one meter is presented. In the figure
we can see excellent agreement between the approximation and the empirical
distribution obtained from simulated sea surface elevation.
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Fi1a. 2 The saddlepoint approximation applied for second order model for sea
at infinite depth and JONSWAP spectrum. Top Relative errors of the approx-
imations fi*(u) (dashed line) and Eq. 2 (dotted line). Bottom Conditional
distribution of crest amplitudes A, i.e. P(A. > h|A. > 1), h [m]. Irregular
line: empirical distribution estimated from simulated 24-hour-sea elevation,
dotted line: Gaussian approximation (n = 7,), i.e. the distribution of A, given

in Eq. 3 and dashed line: the approximation based on i (u), using Eq. 27.

Note that the distribution of the crest height for the narrow band Stoke’s
sea and the complete quadratic-model differ marginally from each other. We
shall quantify this by giving the size of the so-called 10 days crest height, i.e
if the sea had the same JONSWAP spectrum for 10 days, than (on average)
one wave in 10 days would have crest higher than the 10 days crest. The 10
days crest height is predicted to be 8.4 [m], 9.6 [m] and 9.8 [m], if we model
the surface by means of a Gaussian linear sea 7, the narrow-band Stokets sea
(defined by Eq. 29) and the second-order sea (defined by Eq. 9), respectively.
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F1G. 3 The saddlepoint approximation applied for second-order model for sea
at 20 meters depth and TMA spectrum. Top Comparison of it (u) (dashed
line) and the " (u) computed using the numerical method (dots). Bottom
Conditional distribution of crest amplitudes A, i.e. P(A. > h|A. > 1), h [m].
Irregular line: empirical distribution estimated from simulated-24-hours sea
elevation, dotted line: Gaussian approximation (n = 1), i.e. the distribution
of A, given in Eq. 3 and dashed line: the approximation based on i (u), using
Eq. 27.

Example 3: TMA spectrum (finite depth)

In this final example we consider the sea surface elevation in finite water depth
conditions. The sea is modeled by means of the second-order random sea
defined by Eq. 9 with a transfer function E given by Eq. 6 with a water depth
of h = 20 [m]. Here we shall use the TMA-spectrum which is the transform of
the JONSWAP spectrum from Examples 1,2 to the finite depth location. Here
the waves will be smaller but the asymmetry between crests and troughs is
more transparent. This can be seen in the plot of it (u) given in Fig. 3 (Top).
Here we shall not show the plot of the relative error, but it is similar to the
one given in the previous example. (The relative error of the saddlepoint
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approximation is small (below 2 %) for positive u values.) In Fig. 3 (Bottom)
the accuracy of the approximation of the conditional distribution of the crest
height given that crests are higher than one meter is presented. As before we
can see the excellent agreement between the approximation and the empirical
distribution estimated from simulated sea surface elevation.

CONCLUSIONS

In the paper we have demonstrated that the crest distribution of the waves in
the second-order random sea model, defined by Eq. 9, can be very accurately
approximated by Eq. 27. The formulas for the crossing intensity are explicit
but contain higher-order derivatives of the cumulant generating function, which
usually have to be computed numerically. The programs in MATLAB com-
puting the saddlepoint approximation of the crossing intensity are available.
The proposed method gives results as accurate as the complicated and slow
numerical method used by Naess and Machado (2000), with a time reduction
from a day to a few seconds. The new method is fast, fully automated and
numerically stable. These are important properties if one wishes to compute
the distribution of crest height over long periods of time where the sea state
varies, i.e. to mixed the distributions presented in the paper.
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APPENDIX

Consider the process 7(t) defined by Eq. 29. We shall first derive the formula
for the marginal density of 7(0). Eq. 29 can be rewritten as follows:

t t) 1 ) )\
Z(t)zﬂzm()+_<<m()) _(w()) ) (32
Kp Kp 2 Kp Kp
which is a dimensionless sea elevation. If we find the density of 7(0)/x,, f(u),
say, fuo)(u) = f(u/kp)/kp. We will use the vector

ZXY X X] = 2 [(0) m(0) s (0) i (0) 7 0)],

Kp

where [1;(0) 7z(0) 7;(0) 7z (0)]7 is a vector of zero mean Gaussian variables,
with covariance matrix given by Eq. 30. Clearly XY are independent with
common variance \o/x. We wish to find the density of Z = X 40.5(X*—-Y?)
and we begin with the joint density of (Y, 7). This variable transformation
has Jacobian, J(y, z),

1
VA’
We need to find X as a function of Y, Z, which have the two possible solutions:

X=1+VAQY.2Z), X=1-+A{,Z2),

which leads to the following density of YV, Z

J(y, z) = Aly,z) =142z 4+ 9% where z > —(1 +y?).

2 9 9
K2 _Fp P kp _kp )
fYZ(y Z) _ %)\Oke /\2(14- -‘ry?)<€,\g\/Z +e ,\ﬁ\/ﬁ) £ A(y,z) > 07
| 0 otherwise.

The marginal density f,)(u) of 7(0), which is compared to its saddlepoint
approximation f(u) has to be computed numerically by means of the following

equation

Ja)(2) = /%fxz <y,§) dy. (33)

P
We turn now to the computation of the crossing intensity " (u) of the
process 7(t). Denote by 11, (u) the crossing intensity of the process Z(t) defined
by Eq. 32. Obviously we have ;" (u) = p}(u/k,), and hence we can just give
the formula for the crossing intensity of the dimensionless process Z(t). Since
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we have the density of Y, Z we need to find the conditional density of Z given
Y =y, Z = 2. From Eq. 32 it follows that

Z=X+XX-YY.
We need first the joint density of X,Y conditionally that X = z,Y =y, which
obviously is Gaussian with mean [—i—;y, i—;x] and covariances Var(X|X,Y) =
Var(Y|X,Y) = 02/x2, and Cov(X,Y|X,Y) = 0, where (as before) 0 = )\2—%.

Consequently the conditional density of Z given X = 2,V = y is also Gaussian
with mean

A

and standard deviation

o(x,y) = /Ty — 1) + 22

/OOO§¢ (‘T;m> dv = o0 (=),

where ¢(z) is the standard Gaussian density and V(x)-function is defined by
Eq. 20. Some simple calculus will give us the final result:

Now, since

Hz(u) = /A(y )>0 %%gl v U)A?y?z()% . 67%(%@2) dy, (34)
where
a(y,2) = U(x,y)ei_ém\l’ (—%) . w=—1+/Aly,2),
B2) = olaylewVE0Ty (—%) o= —1- VA, 2).
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