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Abstract. Even though the efficiency of the PCR reaction de-
creases, analyses are made in terms of Galton-Watson processes,
or simple deterministic models with constant replication proba-
bility (efficiency). Recently Schnell and Mendoza have suggested
that the form of the efficiency, can be derived from enzyme ki-
netics. This results in the sequence of molecules numbers forming
a stochastic process with the properties of a branching process
with population size dependence, which is supercritical, but has a
mean reproduction number that approaches one. Such processes
display ultimate linear growth, after an initial exponential phase,
as is the case in PCR. It is also shown that the resulting sto-
chastic process for a large Michaelis Menten constant behaves like
the deterministic sequence xn arising by iterations of the function
f(x) = x + x/(1 + x).

1. The problem

Since its first presentation (Saiki et al., 1985), the polymerase chain
reaction (PCR) has emerged as the established technology for cre-
ating multiple copies of a given nucleotide sequence. The method
has a wide use and is now even commercially accessible. Easy-read
descriptions of the elementary chemistry of it are available, e.g. in
http://us.labsystems.roche.com/products/pcr/pcrintro.shtml. Raeym-
aekers (2000) overviews the mathematics of the method on a similar
basic level.

PCR is a stepwise procedure where in each step a molecule either
remains or is replaced by two copies. More careful descriptions discern
between different types of molecules, like long or short, cf. Nedelman
et al. (1992). In the copying procedure errors may also occur, giving
rise to new types, mutants (Krawczak et al., 1989, Sun, 1995, Olofsson
and Shaw, 2002). Disregarding those aspects, we concentrate upon the
growth process itself in order to obtain a more refined model than usual
of quantitative PCR, i.e. PCR where the successive molecule numbers
are recorded.

This leads to viewing the reaction as a (single-type) Galton-Watson
branching process, each individual having one or two offspring in the
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next generation. Of course, molecules do not divide like cells, nor
do they give birth to offspring like birds or plants. They replicate
in a catalytic process. Nevertheless, the mathematical pattern is the
same as that of population growth in discrete time, an individual being
replaced by one or two individuals in the next round (generation).

The probability of the latter event is usually termed the efficiency in
the present connection. It is natural from the experimental setup that
the efficiency of the reaction should decrease, and indeed data exhibit
an exponential growth phase ultimately turning into linear increase
of molecule numbers. Still, basically all analysis methods presume a
constant efficiency, possibly after a perfunctory reference to the lim-
itations of this assumption. (Notable exceptions are provided by the
series of papers by Jacob and Peccoud, who introduced a special form
of branching process in varying environments, and Nedelman et al.

(1992), considering random environments.)
As a consequence, traditional approaches have to confine themselves

to the initial period of the reaction, during which exponential growth
seems to prevail, and the efficiency has not decreased substantially. But
already Saiki et al., pointed out that the exponential growth eventually
turns linear. Our purpose is to describe the whole process, including
this change, in terms of branching processes with population-size de-
pendence. The possibility of efficiency influenced by molecule numbers
has been mentioned but not pursued in literature, e.g. by Weiss and
von Haeseler (1997).

We shall use an explicit approach, starting from the recent analyses
of reaction efficiency, as determined by the free substrate concentra-
tion, being essentially the same as the amount of target DNA, i.e. the
number of what we simply called molecules above. To the extent that
Michaelis-Menten kinetics can be assumed to hold, it follows (Schnell
and Mendoza, 1997) that, when the number of molecules is z, the prob-
ability of successful division is given by

p(z) =
K

K + z
,

where K is the Michaelis-Menten constant of the reaction (usually quite
large, so that the efficiency is close to one during the initial cycles).
Indeed, by Michaelis-Menten kinetics the reaction rate is

Vmaxz

K + z

when the free substrate amount is z, Vmax denoting the so called max-
imum velocity, as usual. During one reaction step, of fixed duration,
starting from z molecules the increase is proportional to this rate. On
the other hand, if p(z) denotes the efficiency, as a function of z, the
increase during one cycle starting from z molecules is zp(z). Equating
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the two expressions, we obtain

p(z) =
C

K + z
,

for some constant C. Since this should decrease from one, as z increases
from zero, C = K.

In branching process terminology, we thus consider a population-size
dependent binary splitting Galton-Watson process, where the alterna-
tive to splitting is remaining into the next generation (experiment cy-
cle), or equivalently giving birth to one offspring. Since the expected
number of offspring per individual is

m(z) = 1 − p(z) + 2p(z) = 1 + K/(K + z),

population size still assumed to be z, this is a near-critical process, as
studied by Klebaner (1984).

The following section shows that for this model the slope of the
linear increase of molecules during the saturation phase should equal
the Michaelis-Menten constant K. The biological reader may have
difficulties in following the detailed arguments, but the conclusion has
an obvious significance.

2. Population-size dependent branching processes

Write Z0, Z1, Z2, . . . for the number of molecules in the successive
cycles. The initial number may be known or unknown, fixed or random.
In PCR it would often be natural to assume that it is a Poisson random
variable, with a mean to be estimated. Initially, for starting numbers
of the usual size, Zn would be much smaller than Michaelis-Menten
constant, and the conditional expectation of the the molecule number
in the n-th cycle, given the number Zn−1 in the preceding round would
satisfy

E[Zn|Zn−1] = Zn−1 +
KZn−1

K + Zn−1

≈ 2Zn−1,

giving the well-known exponential style growth of {Zn}. But as n → ∞
so does Zn and therefore rather

E[Zn|Zn−1] ≈ Zn−1 + K.

By dominated convergence indeed

E[Zn] = E[Zn−1] + E[
KZn−1

K + Zn−1

] =

. . . = E[Z0] +
n−1∑

k=0

E[
KZk

K + Zk

] ∼ Kn,

as n → ∞. This shows that we should expect linear growth at the rate
K ultimately. (We use an ∼ bn to mean that limn→∞ an/bn = 1.) But
even more holds true.



4 PETER JAGERS AND FIMA KLEBANER

Indeed, when the total molecule number is z, the variance of the
offspring distribution of any single individual is

σ2(z) = 4p(z) + 1 − p(z) − m2(z) = p(z)(1 − p(z)) =
Kz

(K + z)2
.

Thus, the variance of the number Zn of molecules at the n-th cycle can
be decomposed into

Var[Zn] = E[Var[Zn|Zn−1]] + Var[E[Zn|Zn−1]] =

= E[
KZ2

n−1

(K + Zn−1)2
] + Var[Zn−1 +

KZn−1

K + Zn−1

].

In this the first term converges towards K from below, as n passes.
The second expression is ∼ Var[Zn−1], for basically the same reason,

KZn−1

K + Zn−1

→ K

in a bounded fashion. It follows that

Var[Zn] ∼ Kn, n → ∞.

This yields the mean square convergence of Zn/n towards K:

E[(Zn/n − K)2] = Var[Zn]/n2 + (E[Zn]/n − K)2 → 0.

However, there is also almost sure convergence, i.e. with probability
one the sequence Zn/n → K. This is important, as it means that we
can follow the successive molecule numbers of any one experiment, and
rest assured about the convergence.

To prove it, first make the Doob decomposition

Zn = Z0 + An + Mn,

where

An =
n−1∑

k=0

KZk

K + Zk

is an increasing sequence and An/n → K almost surely, as n → ∞,
and

Mn =
n∑

k=1

Zk − E[Zk|Zk−1]

constitutes a martingale with respect to Fn, the sigma-algebra gener-
ated by Z0, Z1, . . . Zn. It satisfies

E[(Mn − Mn−1)
2|Fn−1] = Var[Zn|Fn−1] = Var[Zn|Zn−1] =

=
KZ2

n−1

(K + Zn−1)2
≤ K.

Hence,
∞∑

n=1

E[(Mn − Mn−1)
2]/n2 < ∞,
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and so by the Law of Large Numbers for martingales (e.g. Chow and
Teicher, 1997, p. 415), Mn/n → 0 a. s. This completes the proof that
Zn/n → K also with probability one.

3. Deterministic approximations for large

Michaelis-Menten constants

In this section we analyse the process by using the fact that the
Michaelis-Menten constant K is large and study the normalised process
XK

n = Zn/K, making use of the observation that the efficiency is a
function of x = z/K only, as pointed out by Schnell and Mendoza
(1997b), K/(K + z) = 1/(1 + x). We shall show that as K → ∞, XK

n

behaves as the deterministic sequence xn arising by iterations of the
function f(x) = x + x/(1 + x),

xn+1 = f(xn), (1)

a discrete time analogue of what Schnell and Mendoza referred to as
the dimensionless reduced concentration.

Details may seem cumbersome for readers not so well versed in sto-
chastic processes. But again the outcome has a clear biological signif-
icance, allowing us to define exponential growth at or above a certain
rate in terms of the reduced concentration.

If we write ξ1, ξ2 . . . for the offspring of the various individuals in the
n:th cycle then, given Zn these are independent random variables all
with

P(ξi = 2|XK
n = x) = 1 − P(ξi = 1|XK

n = x) =
1

1 + x
for i = 1, 2, 3, . . .. Further,

XK
n+1 =

1

K

KXK
n∑

i=1

ξi = f(XK
n ) + ηK

n+1, (2)

where

f(x) = E[XK
n+1|XK

n = x] = x +
x

1 + x
,

and
ηK

n+1 → 0,

as K → ∞, by the law of large numbers, and hence

XK
n → xn. (3)

For more details, see Klebaner (1993).
To see the behaviour of xn for large n, first notice that it is an

increasing sequence, and hence either has a limit or tends to infinity.
Since f is continuous and has no fixed points, the former possibility is
ruled out. Next we write

xn+1 = xn + 1 − 1

1 + xn

,
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and iterate to obtain

xn+1 = x0 + n −
n∑

i=1

1

1 + xi

.

As 1/(1 + xn) → 0 as n → ∞, the Kronecker lemma gives that as
n → ∞,

xn/n → 1.

The preceding section showed that for any given K,

XK
n /n → 1,

as n → ∞. Hence XK
n behaves very much like its deterministic ana-

logue xn. This allows us to define “the region of exponential growth”
of the process, by taking it to be the same as for the deterministic
sequence xn. We include plots of the latter, exhibiting the changeover
from exponential into linear growth (Figures 1 and 2), using the same
starting values as Schnell and Mendoza (1997b).

The deviation of XK
n from xn is of order 1/

√
K, as given by the

following Central Limit Theorem, see Theorem 2 of Klebaner (1993):
as K → ∞ √

K(XK
n − xn) ⇒ N(0, D2

n), (4)

where the arrow ⇒ denotes convergence in distribution,

D2

n =
n−1∑

j=0

v2(xj)
n−1∏

i=j

(f ′(xi))
2, n = 1, 2, 3, . . . , (5)

and

v2(x) = xσ2(x) =
x2

(x + 1)2
.

Thus, countings of molecules, normed by the Michaelis Menten con-
stant, are approximately normally distributed, around xn, with a vari-
ance whose size is of the order 1/K,

XK
n ≈ N(xn,

D2
n

K
).

The theory underlying these results has been generalized to a mul-
tivariate setting by Watkins (2000), who referred to it as consistency
and fluctuations theorems in biology. In a more accessible form, the
univariate case was also given in Klebaner (1997).

We now give an asymptotic bound for the variances D2
n in (5) as n

grows, so that

XK
n ≈ N(xn,

n

K
). (6)

Since K is large this distribution is pretty much concentrated about
xn. Using f ′(x) = 1+1/(1+x)2 and xi ∼ i, we can see that the infinite
product

∏
∞

i=1
(f ′(xi))

2 converges to some number C1 > 0. Let Cn
j =
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∏n−1

i=j (f ′(xi))
2. Then since v2(xj) → 1, Cn

j = Cn
1 /Cj

1 , and Cn
1 → C1,

we have

D2

n =
n−1∑

j=0

v2(xj)C
n
j = Cn

1

n−1∑

j=0

v2(xj)/C
j
1 ∼

n−1∑

j=0

v2(xj) ∼ n. (7)

We have now managed to describe the basic properties of the random
process of molecule growth in terms of the deterministic sequence {xn}.
For most purposes this should suffice. However, in order to obtain an
explicit description it is enticing to proceed to a differential equations
and continuous time description.

Since the basic difference equation is

xn+1 − xn = xn/(1 + xn),

it would seem natural to consider
dxt

dt
=

xt

1 + xt

. (8)

This can be solved by separation of variables to yield

t = ln xt + xt − x0 − ln x0. (9)

Write g(x) = x + ln x, and denote its inverse by G(x). Then

xt = G(t + g(x0)).

If x0 = 1/K, we have
xt = G(t − ln K).

In terms of the Wessel (or omega) function W , G(ln x) = W (x).
Whereas this approximation is accurate for large x, it overestimates

the correct xn while little. For this first period the equation

dxt

dt
= ln 2

xt

1 + xt

, (10)

considered by Schnell and Mendoza, would come closer. However dur-
ing the ultimate linear part the solution of this equation has too little
a slope, ln 2 instead of 1. In conclusion thus it seems better not to
replace the difference equation by any differential counterpart.

4. Concluding Remarks

First of all, our discussion shows that the period of exponential
growth at or above a certain rate r is determined by

er ≤ 2K + Zn

K + Zn

=
2 + XK

n

1 + XK
n

≈ 2 + xn

1 + xn

.

In other words, as long as the dimensionless reduced concentration does
not exceed

2 − er

er − 1
, 0 < r < ln 2,

growth remains exponential at rate ≥ r.
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Second, the Michaelis-Menten constant can be estimated from the
slope of the linear increase function, since Zn/n → K. It follows that
an estimate of p(z) for different z is given by

Zn

Zn + nz
, z ≥ 0,

where the cycle number n is large enough for the molecule amount to
be growing in a linear fashion.

Based on the normal approximation in (6),

Zn − nK√
nK

≈ N(0, 1). (11)

we obtain 95% confidence limits for K based on two standard deviations
(by solving a quadratic inequality) as

Zn + 2

n
± 2

√
Zn + 1

n
, (12)

showing that the estimation error is of a smaller order of magnitude
than the estimate.

In summary, provided our model depicts actual quantitative PCR
well enough, it paves the way for including data from the relatively
stable late phase of linear growth into the analysis of quantitative PCR.
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Figure 1. y-coordinate: n-th iterate of f , x-coordinate:
iteration number n, for x0 = 1, 0.1, 0.001
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Figure 2. y-coordinate: logarithm of n-th iterate of f ,
x-coordinate: iteration number n, for x0 = 1, 0.1, 0.001


