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ABSTRACT

This thesis consists of three papers: “On operators on polynomials pre-
serving real-rootedness and the Neggers-Stanley Conjecture”, “The generat-
ing function of 2-stack sortable permutations by descents is real-rooted and
g-Narayana numbers and the flag h-vector of J(2 x n)”.

The first paper is concerned with real-rooted polynomials. Here we extend
and refine a theorem of Wagner on Hadamard products of Toeplitz matrices.
We also apply our results to polynomials for which the Neggers-Stanley
Conjecture is known to hold. More precisely, we settle interlacing properties
for E-polynomials of series-parallel posets and column-strict labelled Ferrers
posets.

The second paper is a note on a conjecture of Béna. For fixed n > 0 and
t > 1, the generating function of ¢-stack sortable permutations by descents
is conjectured to be real-rooted. The conjecture is known to be true for
t=1and t =n — 1. Here we prove it for t = 2.

The third paper is a about Narayana- and ¢-Narayana numbers. The
Narayana numbers are N(n,k) = 1(}) (,H"_I). There are several natural
statistics on Dyck paths with a distribution given by N(n, k). We show the
equidistribution of Narayana statistics by computing the flag h-vector of
J(2xn) in different ways. In the process we discover new Narayana statistics
and provide co-statistics for which the Narayana statistics in question have
a distribution given by Furlinger and Hofbauer’s g-Narayana numbers. We
interpret the flag h-vector in terms of semi-standard Young tableaux, which
enables us to express the g-Narayana numbers in terms of Schur functions.
We also introduce what we call pre-shellings of simplicial complexes. They
are certain partial orders on the facets of the complex with the property
that every linear extension is a shelling.
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ON OPERATORS ON POLYNOMIALS PRESERVING
REAL-ROOTEDNESS AND THE NEGGERS-STANLEY
CONJECTURE

PETTER BRANDEN

ABsTRACT. We refine a technique used in a paper by Schur on real-
rooted polynomials. This amounts to an extension of a theorem of
Wagner on Hadamard products of Toeplitz matrices. We also apply
our results to polynomials for which the Neggers-Stanley Conjecture is
known to hold. More precisely, we settle interlacing properties for E-
polynomials of series-parallel posets and column-strict labelled Ferrers
posets.

1. INTRODUCTION

Several polynomials associated to combinatorial structures are known to
have real zeros. In most cases one can say more about the location of the
zeros, than just that they are on the real axis. The matching polynomial of a
graph is not only real-rooted, but it is known that the matching polynomial
of the graph obtained by deleting a vertex of G interlaces that of G [4]. The
same is true for the characteristic polynomial of graph (see e.g., [3]). If A
is a nonnegative matrix and A’ is the matrix obtained by either deleting a
row or a column, then Nijenhuis [7] showed that the rook polynomial of A’
interlaces that of A.

The Neggers-Stanley Conjecture asserts that certain polynomials associ-
ated to posets, see Section 3, have real zeros; see [1, 9, 13] for the state of
the art. For classes of posets for which the conjecture is known to hold we
will exhibit explicit interlacing relationships.

The first part of this paper is concerned with operators on polynomials
which preserve real-rootedness. The following classical theorem is due to
Schur [10]:

Theorem 1 (Schur). Let f =ap+a1x+---+apz" and g =by+ bz +---+
bmz™ be polynomials in R[z]. Suppose that f and g have only real zeros and
that the zeros of g are all of the same sign. Then the polynomial

f ®© g = Z k!akbkxk,
k

has only real zeros. If agby # 0 then all the zeros of f © g are distinct.

Date: Tth March 2003.



2 PETTER BRANDEN

In this paper we will refine the technique used in Schur’s proof of the
theorem to extend a theorem of Wagner [14, Theorem 0.3]. The diamond
product of two polynomials f and g is the polynomial

(™) () o™ (g

n!
n>0

Brenti [1] conjectured an equivalent form of Theorem 2 and Wagner proved
it in [14].

Theorem 2 (Wagner). If f,g € R(z] have all their zeros in the interval
[—1,0] then so does f<g.

This theorem has important consequences in combinatorics [13], and it
also has implications to the theory of total positivity [14].

In the second part of the paper we settle interlacing properties for E-
polynomials of series-parallel posets and column-strict labelled Ferrers posets.

We will implicitly use the fact that the zeros of a polynomial are continuous
functions of the coefficients of the polynomial. In particular, the limit of
real-rooted polynomials will again be real-rooted. For a treatment of these
matters we refer the reader to [6].

2. STURM SEQUENCES AND LINEAR OPERATORS PRESERVING
REAL-ROOTEDNESS

Let f and g be real polynomials. We say that f and g alternate if f and
g are real-rooted and either of the following conditions hold:

(A) deg(g) = deg(f) =d and
a1 <P <ap < < By L ag < P,

where a; < -+ < ag and B; < -+ < By are the zeros of f and g
respectively
(B) deg(f) =deg(g) +1 =d and

a1 <P <ag<--- < By <ay

where a1 < --- < g and B < --- < B4-1 are the zeros of f and g¢
respectively.

If all the inequalities above are strict then f and g are said to strictly al-
ternate. Moreover, if f and g are as in (B) then we say that g interlaces f,
denoted g = f. In the strict case we write g < f. If the leading coefficient
of f is positive we say that f is standard.

For z € R let T, : Rlz] — R[z] be the translation operator defined by
T,(f(z)) = f(z + z). For any linear operator ¢ : Rlz] — R[z] we define a
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linear transform Ly : Rlz] — Rz, 2] by

Lo(f) = ¢(T:(f))

Definition 3. Let ¢ : R[z] — R[z] be a linear operator and let f € R[z]. If
H(f™) = 0 for all n € N, we let dy(f) = —oo. Otherwise let dy(f) be the
smallest integer d such that ¢(f(™) =0 for all n > d.

The set &/*(¢) is defined as follows: If dy(f) = —oo, or dy(f) = 0
and ¢(f) is standard real- and simple-rooted, then f € &7 (¢). Moreover,
fe€AT($)if d=dy(f) > 1 and all of the following conditions are satisfied:

(i) ¢(f®) is standard for all i and deg(¢(f¥ D)) = deg(p(f®)) +1 for
1< <d,
(ii) &(f) and ¢(f') have no common real zero,

(iil) ¢(f D) < p(f11),
(iv) for all £ € R the polynomial L4(f)(§, #) is real-rooted.

Let 7~ (¢) :=={-f:f € #7(¢)} and F(¢) :== 7~ (¢) UL ().
The following theorem is the basis for our analysis:

Theorem 4. Let ¢ : Rlx] — Rlz]| be a linear operator. If f € o/ (¢) then
&(f) is real- and simple-rooted and if dy(f) > 1 we have

S(f D) < @(fAD) < < B(f") < B(f).

Before we give a proof of Theorem 4 we will need a couple of lemmas. Note
that 2 L(f) = L4(f) so by Rolle’s Theorem we know that Ly(f') is real-
rooted (in z) if L4(f) is. By Theorem 4 it follows that &7 (¢) is closed under

differentiation. A (generalised) Sturm sequence is a sequence fo, f1,..., fn
of standard polynomials such that deg(f;) =i for 0 <4 <mn and
fi-1(0) fi+1(0) <0, (2)

whenever f;(#) =0and 1 <7 <n—1. If fis a standard polynomial with
real simple zeros, we know from Rolle’s Theorem that the sequence {f(®};
is a Sturm sequence. The following lemma is folklore.

Lemma 5. Let fo, f1,...,fn be a sequence of standard polynomials with
deg(f;) =i for 0 <i < mn. Then the following statements are equivalent:

(1) fo, fis---,fn is a Sturm sequence,
(i) fo<fi << fa-

The next lemma is of interest for real-rooted polynomials encountered in
combinatorics.
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Lemma 6. Let ap2™ + ami12™ + -+ + apz™ € Rz] be real-rooted with
aman # 0. Then the sequence a; is strictly log-concave, i.e.,

a? > a;—10541, (m—l—l <1 Sn—l).
Proof. See Lemma 3 on page 337 of [5]. O

Proof of Theorem 4. Let f € &/ (¢). Clearly we may assume that d =
dy(f) > 1. We claim that for 1 <n <d —1:

(fM)O) =0 = $(f" ) (O)(F")(0) < 0. (3)

If1 <n<d-1and ¢(f™)() = 0, then by condition (ii) and (iii) of
Definition 3 we have that there are integers 0 < £ < n < k < d with
(D) (0)p(f*))(8) # 0. By Lemma 6 and the real-rootedness of L4(f)(8, 2)
this verifies (3).

If ¢(f(@) is a constant then {¢(f™)}, is a Sturm sequence. Otherwise
let g = ¢(f(@). Then, since g’ < g < ¢(f(41)), we have that (2) is satisfied
everywhere in the sequence {g(™}, U {#(f™)},. This proves the theorem
by Lemma 5. O

In order to make use of Theorem 4 we will need further results on real-
rootedness and interlacings of polynomials. There is a characterisation of
alternating polynomials due to Obreschkoff and Dedieu. Obreschkoff proved
the case of strictly alternating polynomials, see [8, Satz 5.2], and Dedieu [2]
generalised it in the case deg(f) = deg(g). But his proof also covers this
slightly more general theorem:

Theorem 7. Let f and g be real polynomials. Then f and g alternate
(strictly alternate) if and only if all polynomials in the space

{af+Bg:a,BeR}
are real-rooted (real- and simple-rooted).
A direct consequence of Theorem 7 is the following theorem, which the
author has not seen previously in the literature.

Theorem 8. If ¢ : R[z] — Rz] is a linear operator preserving real-rootedness,
then ¢(f) and ¢(g) alternate if f and g alternate. Moreover, if ¢ preserves
real- and simple-rootedness then ¢(f) and ¢(g) strictly alternate if f and g
strictly alternate.

Proof. The theorem is an immediate consequence of Theorem 7 since the
concept of alternating zeros is translated into a linear condition. O

Lemma 9. Let 0 # h, f,g € R[z] be standard and real-rooted. If h < f and
h < g, then h < af + B¢ for all a, 8 > 0 not both equal to zero.

Note that Lemma 9 also holds (by continuity arguments) when all in-
stances of < are replaced by < in Lemma 9.
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Proof. 1 0 is a zero of h then clearly a f+ (g has the same sign as f and g at 6.
Since {h("};U{f} is a Sturm sequence by Lemma 5, so is {h{)};U{af +Bg}.
By Lemma 5 again the proof follows. O

We will need two classical theorems on real-rootedness. The first theorem
is essentially due to Hermite and Poulain and the second is due to Laguerre.
Theorem 10 (Hermite, Poulain). Let f(z) = ag + a1z + -+ + a,z™ and g
be real-rooted. Then the polynomial

£ g = ang(a) + a1 (@) + -+ ang™ (@)

is real-rooted. Moreover, if z/V { f and deg(g) > N — 1 then any multiple
zero of f(%)g is a multiple zero of g.

Proof. The case N = 1 is the Hermite-Poulain theorem. A proof can be
found in any of the references [5, 8, 10]. For the general result it will suffice
to prove that if deg(g) # 0 then any multiple zero of ¢’ is a multiple zero of

g. Let

g=cotei(z—0)+--+culz—0)M,

where ¢pr # 0, M > 0 and (z — 6)?|¢g’. Then ¢; = ¢ = 0 and M > 2. If
co = 0 we are done and if ¢y # 0 we have by Lemma 6 that 0 = c% > coco = 0,
which is a contradiction. O

Theorem 11 (Laguerre). If ag + a1z + asz® + - - - + apz™ is real-rooted then
S0 18

a9 Qp,
ap + a1z + —a’ 4z
2! n!

Proof. Claim (ii) can be derived from (i) when applied to z", (see [1]), or

from Theorem 1 as in [5, 10]. O

We are now in a position to extend Theorem 2.
Theorem 12. Let h be [—1,0]-rooted and let f be real-rooted.
(a) Then fOh is real-rooted, and if g < f then

gOh < fOh.

(b) If h is (—1,0)- and simple-rooted and f is simple-rooted then fOh is
simple-rooted and
gOh < fOh,

forallg < f.
Proof. First we assume that deg(h) > 0 and that h is standard, (—1,0)-

rooted and has simple zeros. Let ¢ : Rlz] — R[z] be the linear operator
defined by ¢(f) = fOh.
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We will show that f € & (¢) if f is standard real- and simple-rooted.
Clearly we may assume that deg(f) = d > 1. Condition (i) of Defini-
tion 3 follows immediately from the definition of the diamond product.
Now, (41 = az + b, where a,b € R and a > 0 so

o(f@9) = ah and
d(f4 V) = (az+b)h+ az(z + 1R,

and since h < (az + b)h and h < z(z + 1)h’ we have by the discussion
following Lemma 9 that h < ¢(f(¢Y). If 6 is a common zero of h and
#(f@=1), then 6(0 + 1)A'(#) = 0, which is impossible since § € (—1,0)
and h'(9) # 0. Thus ¢(f@) < ¢(f(¢1), which verifies condition (iii) of
Definition 3. Given £ € R we have

(n) z
Lo(f)E,2) = ZhnTﬁf)f”@ +1)”%
d

— H{()f(E+2),

where

nin!

(n)
Hew) = 3 " v 4 1)y

By Theorem 11 Hg is real-rooted, which by Theorem 10 verifies condi-
tion (iv).

Suppose that ¢ is a common zero of ¢(f’) and ¢(f). From the definition
of the diamond product it follows that £ ¢ {0, —1}, so z® { H¢(z). Since ¢ is
supposed to be a common zero of ¢(f’) and ¢(f) we have, by (1), that 0 is a
multiple zero of L4(f)(&, 2). It follows from Theorem 10 that 0 is a multiple
zero of f(z + &), that is, £ is a multiple zero of f, contrary to assumption
that f is simple-rooted. This verifies condition (ii), and we can conclude
that f € &1 (¢). Part (b) of the theorem now follows from Theorem 8.

If h is merely [—1,0]-rooted and f is real-rooted then we can find poly-
nomials h, and f,, whose limits are h and f respectively, such that h, and
fn are real- and simple-rooted and h,, is (—1,0)-rooted. Now, f,Ohy, is real-
rooted by the above and, by continuity, so is f<g. The proof now follows
from Theorem 8. O

There are many products on polynomials for which a similar proof ap-
plies. With minor changes in the above proof, Theorem 12 also holds for the
product

™) (£)o™ (1
(F.0) » 3 DI iy

n.
n>0
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3. INTERLACING ZEROS AND THE NEGGERS-STANLEY CONJECTURE

Let P be any finite poset of cardinality p. An injective function w: P - N
is called a labelling of P and (P,w) is a called a labelled poset. A (P,w)-
partition with largest part < mn is a map o : P — [n] such that

e o is order reversing, that is, if z <y then o(z) > o(y),

e if z < y and w(z) > w(y) then o(z) > o(y).
The number of (P,w)-partitions with largest part < n is denoted Q(P,w,n)
and is easily seen to be a polynomial in n. Indeed, if we let e (P, w) be the
number of surjective (P, w)-partitions o : P — [k], then by a simple counting
argument we have:

|P|

QP,w,z) = éek(P,w) (‘;) (4)

The polynomial Q(P,w,z) is called the order polynomial of (P,w). The E-
polynomial of (P,w) is the polynomial

P
E(P,w) = Z ex(P,w)z”,
k=1

so E(P,w) is the image of Q(P,w,z) under the invertible linear operator
& : Rlz] — R[z] which takes (}) to z*. The Neggers-Stanley Conjecture
asserts that the polynomial F(P,w) is real-rooted for all choices of P and w.
The conjecture has been verified for series-parallel posets [13], column-strict
labelled Ferrers posets [1] and for all labelled posets having at most seven
elements.

There are two operations on labelled posets under which E-polynomials
behave well. The first operation is the ordinal sum:

Let (P,w) and (Q,v) be two labelled posets. The ordinal sum, P & Q,
of P and @ is the poset with the disjoint union of P and @ as underlying
set and with partial order defined by z < y if either z <p y, z <g y, or
z € Pye@. Fori=0,1let w; v be any labellings of P ® @ such that

o (wBov) () < (wdov)(y) if w(z) <w(y), v(z) <v(y)orz € PyeQ.
o (wdh1v)(z) < (wdiv)(y) ifw(z) < w(y), v(z) <v(y)orz € Q,y € P.
The following result follows easily by combinatorial reasoning:

Proposition 13. Let (P,w) and (Q,v) be as above. Then
E(P®Qaw@1 V) = E(P,LU)E(Q,V)
and
2B(P® Quwdov) = (v + 1) B(P,w)B(Q,v),
if P and Q) are nonempty.

Proof. See [1, 13]. O
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The disjoint union, P U@, of P and (@ is the poset on the disjoint union
with ¢ < y in PUQ if and only if z <p y or z <g y. Let w U v be any
labelling of P U @ such that

(wUv)(z) < (wUv)(y),
if w(zr) < w(y) or v(z) < v(y). It is immediate by construction that
QPUQ,wUr)=QP,w)Q,v)

Here is where the diamond product comes in. Wagner [13]| showed that the
diamond product satisfies

Fog=EEHNHE ), (5)
which implies:
E(PUQ,wUv) = E(P,w)CE(Q,v), (6)
for all pairs of labelled posets (P,w) and (Q, V).

If P is nonempty and z € P we let P\ z be the poset on P\ {z} with
the order inherited by P. If (P,w) is labelled then P \ z is labelled with
the restriction of w to P\ z. By a slight abuse of notation we will write
(P \ z,w) for this labelled poset. A series-parallel labelled poset (S, u) is
either the empty poset, a one element poset or

(a‘) (S,,U) = (PEBQ"‘I@O V)a

(b) (S,u) = (PO Q,werv) or

(€ (S,u) =(PUQ,wUVY)
where (P, w) and (Q, v) are series-parallel. Note that if (S, i) is series-parallel
then so is (S \ z,p) for all z € S. Let .# denote the set of all finite labelled
posets (S, ) such that E(S, ) is real-rooted and

E(S\z,u) 2 E(S, ),

for all x € S. Note that the empty poset and the singleton posets are mem-
bers of .# which by the following theorem gives that series-parallel posets
are in .#.

Theorem 14. The set & is closed under ordinal sum and disjoint union.
Proof. Suppose that (P,w), (Q,v) € .Z.
(a): Let (S,u) = (P ® Q,w &g v). Now, if y € P we have
(S\y, 1) = (P\y®Q,wov).
If |P| = 1 then by Proposition 13 we have E(S \ y,u) = E(Q,v) and
E(S,1) = (& + 1)E(Q, ) 50 B(S \ y, ) < B(S,u). T{|P| > 1 then
zE(S\y,p) = (z+1)E(P\y,w)EQ,v)
= (+1)E(P,w)EQ,v)
= zE(S,p),

which gives E(S \ y,u) < E(S,u). A similar argument applies to the case
y € Q.
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FIGURE 1. From left to right: A column-strict labelling w
of Py with A = (3,2,2,1), a (P, w)-partition and the corre-
sponding reverse SSYT.

T 5|’ 10 10 9
8 9

_ _ 1_ _

T T 77

4—3—2—1 10 —8—7—2

(b): The case (S,u) = (P & Q,w & v) follows as in (a).
(c): (S,u) =(PUQ,wUv). If y € P we have by (6) and Theorem 12:

E(S\y,p) = EP\yUQ,wUv)
= E(P\y,w)CE(Q,v)
2 E(Pw)CE(Q,v)
= E(S,u).

This proves the theorem. O

In [11] Simion proved a special case of the following corollary. Namely the
case when S is a disjoint union of chains and p is order-preserving.

Corollary 15. If (S, ) is series-parallel and z € S then
E(S\z,pu) 2 E(S,p)-

Next we will analyse interlacings of E-polynomials of Ferrers posets. For
undefined terminology in what follows we refer the reader to [12, Chapter
7). Let A= (A1 > A2 > --- > X > 0) be a partition. The Ferrers poset P
is the poset

Pr={(,j) eEPxP:1<i<l1<j<\},

ordered by the standard product ordering. A labelling w of Py is column strict
if w(i,j) > w(i+1,7) and w(i,j) < w(i,j+ 1) for all (3,5) € Py. f wis a
column strict labelling then any (P, w)-partition must necessarily be strictly
decreasing in the z-direction and weakly decreasing in the y-direction. It
follows that the (Py,w)-partitions are in a one-to-one correspondence with
with the reverse SSYT’s of shape A (see Figure 1). The number of reverse
SSYT’s of shape A with largest part < n is by the combinatorial definition
of the Schur function equal to s)(1™) which by the hook-content formula [12,
Corollary 7.21.4] gives us.

Q(P,\,w,z) = H

UEP/\

z + cx(u)

ha(u) ™)
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where for u = (z,y) € Py

ha(w) == {(z,5) € X:j 2y} + {(,y) € Ari >z} -1

and ¢y (u) := y — z are the hook length respectively content at u. In [1] Brenti
showed that the E-polynomials of column strict labelled Ferrers posets are
real-rooted. In the next theorem we refine this result. If x < y in a poset P
and z < z < y for no z € P we say that y covers z. If we remove an element
from P, the resulting poset will not necessarily be a Ferrers poset. But if
we remove a maximal element m from P, we will have Py \ m = P, for a
partition p covered by A in the Young’s lattice.

Theorem 16. Let (Py,w) be labelled column strict. Then E(Py,w) is real-
rooted. Moreover, if X covers p in the Young’s lattice, then

E(Pu,w) = E(Py,w).

Proof. The proof is by induction over n, where A F n. It is trivially true for
n=1 If A\Fn+1and X covers u we have that Py = P, U {m} for some
maximal element m € Py. By definition c¢,(u) = c\(u) for all u € P,, so by
(7) we have that for some C > 0:

Q(P)\a w, ‘7") = C(‘T =+ c)\(m))Q(P/M w, "I")7

and by (5):

E(Py,w) = C(z + cx(m))OE(Py,w).
Wagner [13] showed that all real zeros of E-polynomials are necessarily in
[—1,0], so by induction we have that E(P,,w) is [~1,0]-rooted. By Theo-
rem 12 this suffices to prove the theorem. O
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THE GENERATING FUNCTION OF 2-STACK SORTABLE
PERMUTATIONS BY DESCENTS IS REAL-ROOTED

PETTER BRANDEN

ABSTRACT. Béna has conjectured that, for fixed n > 0 and ¢ > 1, the
generating function of ¢-stack sortable permutations by descents is real-
rooted. The conjecture is known to be true for t = 1 and t = n — 1.
Here we prove it for ¢t = 2.

1. INTRODUCTION

Let Wi(n, k) be the number of ¢-stack sortable permutations in the sym-
metric group, Sy, with k descents. Recently Bona [1] showed that for fixed
n and t the numbers Wi(n, k) form a log-concave sequence, that is,

VVt(nak)2 Z Wt(nak - 1)Wt(nak + 1)7

for 1 <k <mn—2. Let Wy(z) = Z;é Wi(n, k)zF. A sufficient condition
on a sequence to be log-concave is that the corresponding polynomial is real-
rooted. When ¢t =n — 1 and £ = 1 we get the Eulerian and the Narayana
polynomials respectively. These are known to be real-rooted and Béna con-
jectures that the same is true for general . In what follows we will prove
the conjecture for t = 2.

Let W be the set of finite words on N without repetitions. If w is any
nonempty word we may write it as the concatenation w = LnR where n is
the greatest letter of w and L and R are the subwords to the left and right
of n respectively. The stack-sorting operation s : W — W may be defined
recursively by

(w) = w, if w is the empty word,
| s(L)s(R)n, if w = LnR is nonempty.

The stack sortable permutations in S, are the permutations which are mapped

by s to the identity permutation. Similarly, a permutation is called t-stack
sortable if s*(r) is the identity permutation.

Date: 4th March 2003.
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2. STACK SORTABLE PERMUTATIONS AND JACOBI POLYNOMIALS

The number of stack sortable permutations of length n with k£ descents
are known [9] to be the famous Narayana numbers [10, 11|

=300

The Narayana polynomials W, ;(z) are known to have real zeros. A sim-
ple proof of this fact is obtained by expressing Wy, 1(z) in terms of Jacobi
polynomials. Recall the definition of the hypergeometric function oF;:

oy - (a)n(b)n2"

2Fy (a,b562) = ) (Omnl
n=0

where (@) =1 and (@), = a(a@+1)--- (e +n—1) when n > 1. The Jacobi

polynomial P,(La’ﬂ ) () can be expressed in the following two ways [8, Page

254]:

bl

P (z) = w#] (—n, l+a+pB+ml+aq I_Tw) ;o (1)
n.

P () =

r+1

1+a), [z+1
n!

" -1
2 ) 2F1 (—n,—ﬁ—n;l—i—a;x—). (2)
Rewriting Wi (n + 1,k) we end up with
Wn—}-l,l(l‘) = 2F1 (_na -n — 15 2’ .'11') )

which by (2) gives

1 n 14y
Whi,1(z) = n—+1(1 —y) Py (m) :

Since the Jacobi polynomials are orthogonal when «, 8 > —1 we know that
Wy.1(z) is real- and simple-rooted and that the zeros of Wy, i(x) strictly
interlace the zeros of Wy41,1(), that is, {Wy1,1(2)}52, form a Sturm se-
quence.

The numbers Wy(n, k) are surprisingly hard to determine despite of their
compact and simple form. It was recently shown that

(n+k)(2n — k — 1)!
(k+ 1)(n — k)I(2k + DI(2n — 2k — DI’

See [2, 5, 6, 7] for proofs and more information on 2-stack sortable permu-
tations.

A sequence of real numbers I' = {y;}}_, is called an n-sequence (of the
first kind) if for any real-rooted polynomial f = ag+a1z+- - -+a,x" of degree
at most n the polynomial I'(f) := agyo + a1y1 + - - - + apynx" is real-rooted.
There is a simple algebraic characterisation of n-sequences [4]:

W2 (n, k) =
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Theorem 1. Let I' = {y;}}_, be a sequence of real numbers. Then T is an
n-sequence of the first kind if and only if T[(x + 1)"] is real-rooted with all
its zeros of the same sign.

We need the following lemma:
Lemma 2. Let n be a positive integer and v a non-negative real number.

Then T = {(7", ") }7_, is an n-sequence.

Proof. Let r > 0. Then

[z +1)" = 2”: (_”k_ ’”) (Z) zk

k=0
= oF (—n,n+7;1;%)
= POTN(1 - 2z),
where the last equality follows from (1). Since the Jacobi polynomials are
known to have all their zeros in [—1, 1] when «, 8 > —1 we have that I'[(z +

1)"] has all its zeros in [0, 1]. The case r = 0 follows by continuity when we
let 7 tend to zero from above. O

From the case r = 0 in Lemma 2 and the identity

é (2nn— _kl— 1) (Z) b (_1),1;:_0 (—:) (Z) (o),

it follows that (2”7: _kl_ 1) is an m-sequence.

Theorem 3. For all n > 0 the polynomial Wy (z), which records 2-stack
sortable permutations by descents, is real-rooted.

Proof. We may write Wa(n, k) as

G 6 6

()

W2 (’I’L, k}) =

A well known result on real-rooted polynomials reads as follows: If ), a;z’
is a polynomial having only real non-positive zeros then so is the polynomial
>, akizt, where k is any positive integer. For a proof see [3, Theorem 3.5.4].
Applying this result to the polynomial z(1 + z)?" we see that Y, (2133-1)3716
is real-rooted. Now,

nil n+k 2n xkznil 2n—k -1 2n g1k
—\n—-1 2k +1 — n—1 2k +1 ’

which by the discussion after Lemma 2 is real-rooted. Another application
of Lemma 2 gives that W), o(x) is real-rooted. O
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¢-NARAYANA NUMBERS AND
THE FLAG h-VECTOR OF J(2 X n)

PETTER BRANDEN

ABSTRACT. The Narayana numbers are N(n, k) = =(}) (kil) There

are several natural statistics on Dyck paths with a distribution given
by N(n,k). We show the equidistribution of Narayana statistics by
computing the flag h-vector of J(2 x n) in different ways. In the process
we discover new Narayana statistics and provide co-statistics for which
the Narayana statistics in question have a distribution given by Fiirlinger
and Hofbauer’s g-Narayana numbers. We interpret the flag h-vector in
terms of semi-standard Young tableaux, which enables us to express the
g-Narayana numbers in terms of Schur functions. We also introduce
what we call pre-shellings of simplicial complexes.

1. INTRODUCTION

One of the most common refinements of the famous Catalan numbers,
(27?), [11, Exercise 6.19] is given by the Narayana numbers,

von=4()(c2)

They appear in many combinatorial problems. Some examples are the num-
ber of noncrossing partitions of {1,2,...,n} of rank k [4], the number of
stack sortable permutations with k£ descents [9], and also several problems
involving Dyck paths.

A Dyck path of length 2n is a path in N x N from (0,0) to (n,n) using
steps v = (0,1) and h = (1,0), which never goes below the line z = y.
The set of all Dyck paths of length 2n is denoted %,. A statistic on %,
having a distribution given by the Narayana numbers will be referred to as
a Narayana statistic. The first Narayana statistics to be discovered were

1
n+1

des(w): the number of descents (valleys) (sequences hv) in w, Narayana [§],
ea(w): the number of even ascents, i.e., the number of letters v in an even
position in w, Kreweras [6],
Infs(w): the number of long non-final sequences, more precisely the number
of sequences vvh and hhv in w, Kreweras and Moszkowski [5].

Date: 4th March 2003.
Key words and phrases. Narayana numbers, flag h-vector, Schur Function, shelling.
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Recently, [2], Deutsch discovered a new Narayana statistic, hp, and it counts
the number of high peaks, i.e., peaks that have vertices strictly above the line
y =z + 1. Also, in [12, 13] Sulanke found numerous new Narayana statistics
with the help of a computer. See [14] for more information on Narayana
numbers. For terminology on posets in what follows, we refer the reader to
[10].

Our main objective is to show that the statistics des,hp and Infs arise
naturally when studying different shellings of A(J(2xn)), the order complex
of the lattice of order ideals of the poset 2 X n. More precisely, we show that
they can be computed as invariants of certain shellings. From this follows not
only that the statistics all have the same distribution, but that the results
can be extended to set-valued statistics. In the process we will also find a
new family of Narayana statistics. Since our methods are not restricted to
Dyck paths, we will consider a more general setting.

In Section 2 we review some theory on shellings of simplicial complexes
and order complexes and define what we call a pre-shelling of a complex. In
Section 3 we give different pre-shellings of order complexes of certain plain
distributive lattices, and finally in Section 4 we apply our results to Dyck
paths. There is a g-analog of the Narayana numbers,

1 |n ) 2
Ng(n, k) = — Rk 1
oo = i [ 3] W
introduced by Fiirlinger and Hofbauer in [3]. Here [n] and [} are the usual
g-analogs. To each statistic we treat we associate a co-statistic together with
which the Narayana statistic has a joint distribution given by the g-Narayana
numbers.

2. PRE-SHELLINGS OF SIMPLICIAL COMPLEXES

An (abstract) simplicial complex A on a vertex set V is a collection of
subsets F' of V satisfying:
(i) if z € V then {z} € A,
(i) if F € Aand G C F, then G € A.
The elements of A are called faces and a maximal face (with respect to
inclusion) is called a facet. A simplicial complex is said to be pure if all its
facets have the same cardinality. A total order {2 on the set of facets of a

pure simplicial complex A is a shelling if whenever F' < G thereis an z € G
and E <% G such that

FNGCENG=G\{z}.

A simplicial complex which allows a shelling is said to be shellable. Instead
of finding a particular shellings we will find partial orders on the set of facets
with the property that every linear extension is a shelling. In our attempts to
prove that our partial orders had this property we found ourselves proving
Theorem 1 and Corollary 2. We therefore take the opportunity to take a
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general approach and define what we call a pre-shelling. Though we have
found examples of pre-shellings implicit in the literature we have not found
explicit references, so we provide proofs.

Let Q be a partial order on the set of facets of a pure simplicial complex A.
The restriction, ro(F'), of a facet F is the set

ro(F)={z € F:3Est E<YFand ENF =F\ {2} }.
We say that Q is a pre-shelling if any of the equivalent conditions in Theo-
rem 1 are satisfied.

Theorem 1. Let 2 be a partial order on the set of facets of a pure simplicial
complexr A. Then the following conditions on Q are equivalent:

(i) For all facets F,G we have
ro(F) CG and rq(G) CF — F =G.

(ii) A is the disjoint union
A =-Jra(F), F.
F

(iii) For all facets F,G
roq(F) CG = F<aq.
(iv) For all facets F and G: if F #% G then there is an © € G and
E <% G such that
FNGCENG=G\{z}.

Proof. (i) = (ii): Let F and G be facets of A. If there is an H € [rq(F), F]N
[ra(G),G] then rq(F) C G and rq(G) C F, so by (i) we have F' = G. Hence
the union is disjoint. Suppose that H € A, and let Fj be a minimal element,
with respect to €, of the set

{F : F is a facet and H C F}.

If ro(Fy) ¢ H then let z € ro(Fy) \ H and let F <% F, be such that
FynNE = Fy\ {z}. Then H C E, contradicting the minimality of Fj.
Therefore H € [r(Fp), Fy).

(ii) = (i): Ifrq(F) C G and rq(G) C F we have that FNG € [ro(F), F]N
[ra(G), G], which by (ii) gives us F' = G.

(i) = (iii): If ro(F) C G then by (i) we have either F = G or ro(G) ¢ F.
If F = G we have nothing to prove, so we may assume that there is an
z € rq(G) \ F. Then, by assumption, there is a facet E; < G such that

ro(F) CGNE, =G\ {z} C E;.
If Fy = F we are done. Otherwise we continue until we get
F=E,<%E,_,<%...<%E <" q,

and we are done.
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(i) & (iv): It is easy to see that (iv) is just the contrapositive of (iii)
(iii) = (i): Immediate. O

The set of all partial orders on the same set is partially ordered by inclu-
sion, i.e Q C A if z <@ g implies z <’ .
Corollary 2. Let A be a pure simplicial complex. Then

(i) every shelling of A is a pre-shelling,
(i) of Q is a pre-shelling of A and A is a partial order such that Q C A,
then A is a pre-shelling of A with ra(F) = rq(F) for all facets F.
In fact, the set of pre-shellings of A is a principal upper ideal of the
poset of all partial orders on the set of facets of A,
(iii) every linear extension of a pre-shelling is a shelling, with the same
restriction function.

Proof. (i): Follows immediately from Theorem 1(iv).

(ii): That A is a pre-shelling follows from Theorem 1(iv). If F is a facet
then by definition rq(F) C ro(F), and if rq(F) C ro(F) for some facet F'
we would have a contradiction by Theorem 1(ii). It remains to show that
there is a unique minimal order with rq as a pre-shelling. Define a partial
order T as the transitive closure of the relation R defined by: FRG if

F<®G and |[FNG|=|F|-1. (2)

It follows that Y is a partial order with rq as restriction function, so T is a
pre-shelling by Theorem 1(i) . Since (2) only depends on g, and T C Q we
are done.

(iii): Is implied by (ii). O

There are interesting examples of the unique minimal pre-shelling afforded
by Corollary 2:

Example 3. Let A be the barycentric subdivision of a simplex of dimension
n — 1. Then there is a standard way of identifying the facets of A with the
permutations in the symmetric group S,. The lexicographic order <g on S,
is then a shelling of A, and it follows that the unique minimal pre-shelling
with the same restriction function as <y, is the weak Bruhat order on S,,.

See also Example 6 for another example of a minimal pre-shelling.

In Section 4 we will need some facts about flag h-vectors of order complexes
which we state here for reference. Let P be any finite graded poset with a
smallest element 0 and a greatest element 1 and let p be the rank function
of P with p(1) =n. For § C [n — 1] let

ap(S) :=|{cis a chain of P : p(c) = S},

and

Bp(S) ==Y (-1)5 T lap(T).

TCS
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The functions ap, 8p : 2"~ — Z are called the flag f-vector and the flag
h-vector of P respectively. The order complex, A(P), of P is the simplicial
complex of all chains of P. A simplicial complex A is partitionable if it can
be written as

= [r(F1), A1 U[r(F2), Fo)u - - - Ulr(Fy), Fr), (3)

where each F; is a facet of A and r is any function on the set of facets such
that r(F) C F for all facets F'. The right hand side of (3) is a partitioning
of A. By Theorem 1(iii) we see that shellable complexes are partitionable.
We need the following well known fact about partitionable order complexes.
Let .# (P) be the set of maximal chains of P.

Lemma 4. Let A(P) be partitionable and let

be a partitioning of A(P). Then the flag h-vector is given by
Bp(S) = [{c € A (P): p(r(c)) = S}

Proof. Let vp(S) = |{cA ( ) : p(r(c)) = S}|. Note that if ¢ is a maximal
chain then p(c) = [0, p(1)]. By (4) we have
)

ap(§) = [{ee A(P):p(c) = S}
= ee A(P):p(r(c)) € S}

= ) p(T)

TCS

which, by inclusion-exclusion, gives yp(S) = Bp(S). O

3. SOME PRE-SHELLINGS OF PLANE DISTRIBUTIVE LATTICES

We will here study different pre-shellings of certain distributive lattices.
Let V, W be lattice paths in Z2 using steps v = (0,1) and h = (1,0) with the
same starting- and end-point, 0 = (0, 0) and 1 respectively. Let R = R(V, W)
be the closed region in R? bounded by V and W, and let L = L(V,W) =
R(V,W) N Z2, ordered by the product ordering. It is not hard to see that
L is a distributive lattice. The maximal chains in L are the lattice paths
from 0 to 1 which stay inside R, and we denote them by .4 = . (V,W).
The set of Dyck paths, %, is thus .#(V,W) where V' = vhvh---vh and
W =wv---vhh---h are of length 2n. Fix a path Wy € .#. We say that a
point £ = uy + ue + - -+ + u; in a lattice path u = ujue - - - uy is facing Wy if
(see Figure 1)

e u;u;11 = vh and z is strictly north-west of Wy or
e u;u;+1 = hv and z is strictly south-east of Wj.
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FiGURE 1. The vertices of the dotted path facing the un-
dotted path are displayed as stars

* ....... @ rY rY
. [ ]
ke . (')

Define a function rw, : # — L by
Tw,(u) = {z € u: z is facing Wy}.

For any W € .# we may now define a partial order on .# (the facets of
A(L(V,W))) by

u<w,w iff R(u,Wpy) C R(w, Wp),
so that ryy, is the restriction function of <yy,.

Theorem 5. For all Wy € L(V,W), the partial order <y, is a pre-shelling
of A(L(V,W)).

Proof. If z € L let R(z) be the region enclosed by Wy and the horizontal and
vertical lines emanating from z. If u € .# contains ry,(w) then R(u, Wp)
contains the union of all R(z), z € rw,(w). But this union is R(w, Wp).
This verifies condition (iii) of Theorem 1. O

Note that <yy, is the smallest pre-shelling with ryy, as restriction function.

Example 6. Let V = Wy = udud---ud and W = uu---udd---d be of
length 2n in Theorem 5. Then <y, is a distributive lattice with rank func-
tion, p(w), given by the area of R(w,Wj). Moreover, it the unique smallest
partial order with ryy, as restriction function. The rank generating function
of this lattice is thus the well known Carlitz-Riordan g-analog of the Catalan
numbers, C,,(q), satisfying

See [1, 3].

We will now study a pre-shelling linked with long non-final sequences. For
J > 1let t; be the mapping on lattice paths which transposes the letters in
positions 7 and 7+ 1. An element £ = u; + ue +--- +u; € L is a long
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FIGURE 2. The partial order Q on 2, with long non-final
sequences marked with bars.

vvtvhhhvh
- / -
vvvvhhhh  vvohhvhh vohhvvhh
| |
vvvhvhhh vohhvhvh
| —
vohvvohhh vohvhhoh
| T~ — |
vhvvohhh  vohvhvhh  vhvohhoh
~ |
Uhvﬁﬁvhh
vhvhfﬁhh
vhvhvhvh

non-final vertex of u = uiug - - - up if wj_1uu;41 = VVA Or U;_1UU+1 = hho.
We say that z is an inner long non-final vertez, ILNFV, of u if x is a long
non-final vertex and ¢;(u) € .
Let S = {s1,59,...,8,—2} denote the set of mappings
ti(u) ifx=wuy+---+u;is an ILNFV
si(u) = .

U otherwise.
Thus the elements in S flip valleys into peaks, and vice versa, in long non-final
sequences provided that the resulting path is still in .#. Define a relation

Q, by v < w whenever v # w and u = o109 - - - o (w) for some mappings
o; € S (see Figure 2).

Lemma 7. The relation Q on .4 (V,W) is a partial order.

Proof. We need to prove that € is anti-symmetric. To do this we define a
mapping o : # — Nx N, where Nx N is ordered lexicographically, with the

property
u<tw=o(u) < o(w).

Define o(w) = (da(w), MAJ(w)), where da(w) is the number of double
ascents (sequences vv) in w. Now, suppose that s; € S and s;(w) #
w = ajay---ag,. Then da(s;(w)) < da(w), and if we have equality we
must have a;_1a;a;410;42 = vvhv or a;_1a;a;11a;+2 = hhvh which implies
MAJ(si(w)) < MAJ(w), so o has the desired properties. O
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FIGURE 3. Illustration of the proof of Theorem 8.

.
bk ag41
._._._. R

ap—1 Gk ay

If u,w € A intersect maximally i.e., |[u N w| = |u| — 1 we have either
s(u) = w or s(w) = u for some s € S, so the restriction rq(u) is the set of
inner long non-final vertices of u.

Theorem 8. Suppose that V and W have the same initial step. Then Q is
a pre-shelling of A(L(V,W)).

Proof. We prove that (2 satisfies the contrapositive of condition (i) of The-
orem 1. Suppose that u = a1a2---ay, # w = bibs---b, and let k& be the
coordinate such that a; = b; for i < k and ay # by. By symmetry we may
assume that ay = h. Now, if ax_1 = h then the valley of v which is deter-
mined by the first v (at, say, coordinate £+ 1) after k will correspond to an
element

rt=ay+ - +a€rgu)\w

(see Figure 3).

If ay_1 = v = by_q, then if £+ 1 is the coordinate for the first h after k& we
have that

z=b+---+b €rqw)\u,
so () is a pre-shelling. |

4. THE RESTRICTION TO DYCK PATHS

When V = vhvh---vh and W = vv - --vhh--- h are of length 2n we have
that L(V, W) = J(2 x n), the set of order ideals of 2 x n. See Example 3.5.5
in [10]. Moreover, # (V,W) = 9, the set of Dyck paths of length 2n. The
descent set D(w), the set of high peaks HP(w) and the set of long non-final
sequences LS(w) are defined as

D(w) = {i€[2n—1]: wijwiy1 is a descent},
HP(w) = {i€[2n—1]: wjw;y; is a high peak},
LS(w) = {i€[2n—1]: wi—jwjwiy1 is a long non-final sequence},

where w = wywsy - - - we,. For each Wy € 9,, we also define

Dy, (w) ={i € 2n — 1] : wg + w1 + - - - + w; is facing Wy}.
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FIGURE 4. An example of a SSYT of shape (6,5,4,4,2).

12 23 5 5
23 446
4 5 5 6

5 6 6 8

7 8

Theorem 9. The set functions D, HP,LS and Dy, have the same distri-
bution and it is given by

{w € Zn : D(w) = S} = Br2xn)(S)-

Proof. We have that D = Dy, where Wy = uuu---ddd and HP = Dy,
where Wy = wudud---ud. Since all long non final vertices are inner the
theorem follows from Lemma 4. O

In particular, for every choice of Wy € %,, we get a Narayana statistic,
namely the number of vertices facing Wj.

We will now take a closer look at the flag h-vector of J(2 x n) which
we hereafter will denote by £,. The function 3, can be described nicely in
terms of partitions. Let A = (A1, Ag,...,A¢) be a partition of a nonnegative
integer. The index £ is called the length, £(\), of A. A semistandard Young
tableau (SSYT) of shape X is an array T' = (T};) of positive integers, where
1 <i <4 and 1< j < )\, that is weakly increasing in every row and
strictly increasing in every column, see Figure 4. For any SSYT of shape A

let

(T) a2(T)

T a2
‘TZ ...’

! =z
where «;(T") denotes the number of entries of T' that are equal to ¢. The
Schur function sy(z) of shape X is the formal power series

3)\(‘,1:) = Z xTa
T

where the sum is over all SSYTs T of shape A. If T is any SSYT we let
row(T') = (1 (T),72(T),...) where v (T) = >_, Tj;. Let (2¥) be the partition
(2,2,...,2) with & 2's.

Theorem 10. For anyn >0 and S C [2n —1], | S| = k, we have that B,(S)
counts the number of SSYTs T of shape (2%) with row(T) = S and with parts
less than n.

Proof. Let T be a SSYT as in the statement of the theorem. We want to
construct a Dyck path w(T") with descent set S.
Let w(T) = wiwjwowy - - - w4 1wy, ; Where



26 PETTER BRANDEN

FIGURE 5. An illustration of Theorem 10 for n = 7.

Tl W =
S Ot N
1l

e w; is the word consisting of o vertical steps and w! is the word
consisting of 717, horizontal steps,

e w; is the word consisting of Tjp — T(; 1)2 vertical steps and w; is the
word consisting of T3 — T{; 1); horizontal steps, when 2 <1 <k,

e w1 is the word consisting of n — Ty vertical steps and wj, 41 is the
word consisting of n — Ty horizontal steps.

It is clear that w(T) is indeed a Dyck path with descent set S, and each such
Dyck path is given by w(T) for a unique SSYT T'. O

The statistic MAJ on Dyck paths is defined as
MAJ(w) = ) i
i€D(w)
In [3| Fiirlinger and Hofbauer defined the ¢- Narayana numbers, Nq(n, k), by
Ny(n, k) := Z MA@
wWEDp des(w)=k

We will see that Ny(n, k) can be written in the explicit form of (1). For each
set-valued statistic in Theorem 9 we get a bi-statistic with a distribution
given by the ¢g-Narayana numbers .

Theorem 11. For all n,k > 0 we have
Ny(n, k) = s(9%y(q, ?,...,¢" ).
Proof. By Theorem 10 we have that
Yoo M = N B(S)gRees®

wWEDn des(w)=k |S|=k
T. .
- Y,
T

where the last sum is over all SSYTs T of shape (2*) with parts less
than n. By the combinatorial definition of the Schur function this is equal
to s(2k>(q, ¢>,...,¢"1), and the theorem follows. O



¢-NARAYANA NUMBERS 27

To re-derive the formula (1) of the g-Narayana numbers we apply the
hook-content formula, Theorem 12, to the expression in Theorem 11. If we
identify a partition A with its diagram {(¢,7) : 1 < j < A;} then the hook
length, h(u), at u = (z,y) € A is defined by

h(u) = {(z,5) € A:j 2y} + {(Gy) € A:i =z} - 1,
and the content, c(u), is defined by c(u) = y—=z. Let [n] := 1+q+---+¢" 1,

[n]!:=[n][n —1]---[1] and
[n] . [n]!
k| © [n— K]k

Theorem 12 (Hook-content formula). For any partition X and n > 0,

s 2 ny _ ik [n + c(u)]
)\(q’Qa-"aQ) q ul;[)\i[h(’u,)] .

For a proof see Theorem 7.21.2 of [11]. We now have an alternative proof
of the following result which was proved in [3], and is a special case of a
result of MacMahon, stated without proof in 7, p. 1429].

Corollary 13 (Fiirlinger, Hofbauer, MacMahon). The g-Narayana numbers

are given by: X
n n
= [ o

"~ [n] k+1
Proof. The Corollary follows from Theorem 11 after an elementary applica-
tion of the hook-content formula, which is left to the reader. O

Remark 14. The Narayana statistic ea (even ascents) cannot in a natural
way be associated to a shelling of A(J(2 x n)). However, it would be inter-
esting to find a co-statistic s for ea such that the bi-statistic (ea, s) has the
g-Narayana distribution.
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