GENERALIZATIONS OF SOME IDENTITIES

ININVOLVING THE FIBONACCI NUMBERS

March 7, 2003

Toufik Mansour

Department of Mathematics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
toufik@math.chalmers.se

1 Introduction

The generalized Fibonacci and Lucas numbers are defined by

\[U_n(p, q) = \frac{\alpha^n - \beta^n}{\alpha - \beta}, \quad V_n(p, q) = \alpha^n + \beta^n, \quad (1) \]

where \(\alpha = \frac{1}{2}(p + \sqrt{p^2 - 4q}) \) and \(\beta = \frac{1}{2}(p - \sqrt{p^2 - 4q}) \). Clearly, \(U_n(p, q) \) and \(V_n(p, q) \) are the usual Fibonacci and Lucas sequences \(\{ F_n \} \) and \(\{ L_n \} \) when \(p = 1 \) and \(q = -1 \).

\[^1 \text{Research financed by EC’s IHRP Programme, within the Research Training Network "Algebraic Combinatorics in Europe", grant HPRN-CT-2001-00272} \]
Definition 1.1 Let \(d \geq 0 \). For any \(n \geq 0 \), we define

\[
s_d(n; p, q; k) = \sum_{j_1 + j_2 + \ldots + j_d = n} \prod_{i=1}^{d} U_{k,j_i}(p, q).
\]

For the Fibonacci numbers, Zhang [3] found the following identities:

\[
s_2(n; 1, -1; 1) = \frac{1}{5}((n - 1)F_n + 2nF_{n-1}), \quad n \geq 1, \tag{2}
\]

\[
s_3(n; 1, -1; 1) = \frac{1}{50}((5n^2 - 9n - 2)F_{n-1} + (5n^2 - 3n - 2)F_{n-2}), \quad n \geq 2, \tag{3}
\]

and when \(n \geq 3 \),

\[
s_4(n; 1, -1; 1) = \frac{1}{150}((4n^3 - 12n^2 - 4n + 12)F_{n-2} + (3n^3 - 6n^2 - 3n + 6)F_{n-3}). \tag{4}
\]

Recently, Zhao and Wang [2] extended these identities to the case of \(\{U_n(p, q)\} \) and \(\{V_n(p, q)\} \); for \(n \geq 1 \)

\[
s_2(n; p, q; k) = \frac{U_k(p, q)}{V_k^2(p, q) - 4q^k} \left((n - 1)U_{nk}(p, q)V_k(p, q) - 2nq^kU_{(n-1)k}(p, q) \right), \tag{5}
\]

for \(n \geq 2 \),

\[
s_3(n; p, q; k) = \frac{U_{nk}(p, q)}{2[V_k^2(p, q) - 4q^k]} \left((n - 1)(n - 2)V_k^2(p, q)U_{nk}(p, q)
ight.
\]

\[
- q^kV_k(p, q)(4n^2 - 6n - 4)U_{(n-1)k}(p, q)
\]

\[
+ (4n^2 - 28n + 28(n - 3)V_k(p, q) + 80)U_{(n-2)k}(p, q) \right), \tag{6}
\]
and when \(n \geq 3 \),

\[
s_d(n; p, q; k) = \frac{U_k^2(p, q)}{q^{U_k(p, q)} - q^k} \left(V_k^2(p, q) (n - 1)(n - 2)(n - 3) U_n k(p, q) \\
- 6q^k V_k^2(p, q) (n - 2)(n - 3)(n + 1) U_{n-1} k(p, q) \\
+ 12q^2 V_k(p, q)(n - 3)(n^2 + n - 1) U_{n-2} k(p, q) \\
- 8q^3 n(n^2 - 4) U_{n-3} k(p, q) \right). \tag{7}
\]

In this paper, we extend the above conclusions. We establish an identity for the case \(s_d(n; p, q; k) \) for any \(d \geq 2 \).

2 Main results

We denote by \(G_k(x; p, q) \) the generating function of \(\{U_n k(p, q)\} \), that is, \(G_k(x; p, q) = \sum_{n \geq 0} U_n k(p, q) x^n \), where \(k \) is a positive integer. Clearly, by Definition 1 and the geometric formula,

\[
G_k(x; p, q) = \frac{x U_k(p, q)}{1 - V_k(p, q)x + q^kx^2}.
\]

We define \(F_k(x) = F_k(x; p, q) = \frac{G_k(x; p, q)}{x} \). Then

\[
F_k(x) = \sum_{n \geq 1} U_n k(p, q) x^{n-1} = \frac{U_k(p, q)}{1 - V_k(p, q)x + q^kx^2}. \tag{8}
\]

Definition 2.1 Let \(a(0, d) = 4^d \) for any \(d \geq 0 \), and \(a(\ell, 0) = 0 \) for any \(\ell \geq 1 \). We define \(a(\ell, d) \) for \(\ell, d \geq 1 \) by \(a(\ell, d) = 4(\ell + 1) \cdot a(\ell, d - 1) + \ell \cdot a(\ell - 1, d - 1) \).
Using this definition we quickly generate the numbers $a(\ell, d)$; the first few of these numbers are given in Table 1.

<table>
<thead>
<tr>
<th>$d \setminus \ell$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>112</td>
<td>48</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>256</td>
<td>960</td>
<td>800</td>
<td>240</td>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1024</td>
<td>7936</td>
<td>11520</td>
<td>6240</td>
<td>1440</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>4096</td>
<td>64512</td>
<td>154112</td>
<td>134400</td>
<td>53760</td>
<td>10080</td>
<td>720</td>
</tr>
</tbody>
</table>

Table 1: Values of $a(\ell, d)$ where $0 \leq \ell, d \leq 6$.

We can also use Definition 2.1 to find an explicit formula for $a(\ell, d)$.

Lemma 2.2 For any $\ell, d \geq 0$,

$$a(\ell, d) = 4^{d-\ell} \sum_{j=0}^{\ell} (-1)^j \binom{\ell}{j} (\ell + 1 - j)^d.$$
Proof. By Definition 2.1 it is easy to see that the lemma holds for \(\ell = 0 \) or \(d = 0 \).

Using induction on \(d \) and \(\ell \) we get that

\[
4(\ell + 1) \cdot a(\ell, d - 1) + \ell \cdot a(\ell - 1, d - 1)
\]

\[
= (\ell + 1)4^{d-\ell} \sum_{j=0}^{d} (-1)^{j} \binom{\ell}{j} (\ell + j - 1)^{d-1} + \ell \cdot 4^{d-\ell} \sum_{j=0}^{\ell-1} (-1)^{j} \binom{\ell-1}{j} (\ell - j)^{d-1}
\]

\[
= 4^{d-\ell} \left[(\ell + 1) \sum_{j=0}^{\ell} (-1)^{j} \binom{\ell}{j} (\ell + j - 1)^{d-1} + \ell \sum_{j=1}^{\ell} (-1)^{j-1} \binom{\ell-1}{j-1} (\ell - j)^{d-1} \right]
\]

\[
= 4^{d-\ell} \left[(\ell + 1)^{d} + \sum_{j=1}^{\ell} (-1)^{j} \binom{\ell}{j} (\ell + 1 - j)^{d} \right] = a(\ell, d + 1),
\]

as requested. \(\square \)

Definition 2.3 Let \(b(1, d) = (-2)^{d-1} \) for any \(d \geq 1 \), and \(b(\ell, 1) = 0 \) for any \(\ell \geq 2 \).

We define \(b(\ell, d) \) for \(\ell, d \geq 2 \) by \(b(\ell, d) = b(\ell - 1, d - 1) - 2\ell \cdot b(\ell, d - 1) \).

Using this definition we quickly generate the numbers \(b(\ell, d) \); the first few of these numbers are given in Table 2.

<table>
<thead>
<tr>
<th>(d)</th>
<th>(\ell)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>-2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>-6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>-8</td>
<td>28</td>
<td>-12</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>16</td>
<td>-120</td>
<td>100</td>
<td>-20</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-32</td>
<td>496</td>
<td>-720</td>
<td>260</td>
<td>-30</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2: Values of \(b(\ell, d) \) where \(0 \leq \ell, d \leq 6 \).

We can also use Definition 2.3 to find an explicit formula for the numbers \(b(\ell, d) \).
Lemma 2.4 For any $\ell, d \geq 1$,

$$b(\ell, d) = \frac{(-1)^{d-1}2^{d-\ell}}{(\ell - 1)!} \sum_{j=0}^{\ell-1} (-1)^j \binom{\ell - 1}{j} (j + 1)^{d-1}.$$

Proof. By Definition 2.3 it is easy to see that the lemma holds for $\ell = 1$ or $d = 1$.

Using induction on d and ℓ we get that

\[
\begin{aligned}
b(\ell - 1, d - 1) - 2\ell \cdot b(\ell, d - 1) &= \frac{(-1)^{d-1}2^{d-\ell}}{(\ell - 2)!} \sum_{j=0}^{\ell-2} (-1)^j \binom{\ell - 2}{j} (j + 1)^{d-2} - \frac{2\ell(-1)^{d-1}2^{d-\ell-1}}{(\ell - 1)!} \sum_{j=0}^{\ell-1} (-1)^j \binom{\ell - 1}{j} (j + 1)^{d-2} \\
&= \frac{(-1)^{d-1}2^{d-\ell}}{(\ell - 1)!} \left[\ell \sum_{j=0}^{\ell-1} (-1)^j \binom{\ell - 1}{j} (j + 1)^{d-2} - (\ell - 1) \sum_{j=0}^{\ell-2} (-1)^j \binom{\ell - 2}{j} (j + 1)^{d-2} \right] \\
&= \frac{(-1)^{d-1}2^{d-\ell}}{(\ell - 1)!} \left[(-1)^{d-1} \ell^{d-1} + \sum_{j=0}^{\ell-2} (-1)^j \left(\binom{\ell - 1}{j} - (\ell - 1) \binom{\ell - 2}{j} \right) (j + 1)^{d-2} \right] \\
&= \frac{(-1)^{d-1}2^{d-\ell}}{(\ell - 1)!} \sum_{j=0}^{\ell-1} (-1)^j \binom{\ell - 1}{j} (j + 1)^{d-1} = b(\ell, d),
\end{aligned}
\]

as requested. \qed

Now we introduce a relation that plays the crucial role in the proof of the main result of this paper.

Proposition 2.5 Let $d \geq 1$. The generating function $F_k(x; p, q)$ satisfies the following equation:

\[
\sum_{j=0}^{d} \left[(4q^j)^{d-j} \left(\sum_{i=0}^{j} (-1)^i \binom{j}{i} (j + 1 - i)^d \right) \left(\frac{d}{t_k[p, q]} \right)^j F_{k+1}^j(x; p, q) \right] = \sum_{j=1}^{d} \frac{(-1)^{d-1}2^{d-j}}{(j-1)!} \left(\sum_{i=0}^{j-1} (-1)^i \binom{j-1}{i} (i + 1)^{d-1} \right) \left(V_k(p, q) - 2q^j x \right)^j F_k^j(x; p, q),
\]
where \(F_k^{(j)}(x; p, q) \) is the \(j \)th derivative with respect to \(x \) of \(F_k(x; p, q) \).

Proof. We define \(A = \frac{v_k^2(p, q) - 4q^k}{v_k(p, q)} \) and \(B = V_k(p, q) - 2q^kx \). Let us prove this theorem by induction on \(d \). Noticing that

\[
F_k^{(1)}(x; p, q) = \frac{(V_k(p, q) - 2q^kx)F_k(x; p, q)}{1 - V_k(p, q)x + q^kx^2},
\]

we get

\[4q^kF_k(x; p, q) + A \cdot F_k^2(x; p, q) = B \cdot F_k^{(1)}(x; p, q),\]

therefore, the theorem holds for \(d = 1 \). Now we suppose that the theorem holds for \(d \), that is,

\[
\sum_{j=0}^{d} a(j, d)q^{(d-j)k} \left(\frac{v_k^2(p, q) - 4q^k}{v_k(p, q)} \right)^j F_k^{(j+1)}(x; p, q)
\]

\[= \sum_{j=1}^{d} b(j, d)q^{(d-j)k} (V_k(p, q) - 2q^kx)^j F_k^{(j)}(x; p, q).\]

Therefore, derivative this equation with respect to \(x \) we have that

\[
\sum_{j=0}^{d} (j + 1)a(j, d)q^{(d-j)k} A^j F_k^j(x; p, q) F_k^{(1)}(x; p, q)
\]

\[= \sum_{j=1}^{d} b(j, d)q^{(d-j)k} B^j F_k^{(j+1)}(x; p, q) - \sum_{j=1}^{d} 2jq^k b(j, d)q^{(d-j)k} B^{j-1} F_k^{(j)}(x; p, q).\]

If multiplying by \(B \) and using Equation 9 then we get that

\[
\sum_{j=0}^{d} (j + 1)a(j, d)q^{(d-j)k} A^{j+1} F_k^{j+2}(x; p, q) + \sum_{j=0}^{d} 4(j + 1)a(j, d)q^{(d+1-j)k} A^j F_k^{j+1}(x; p, q)
\]

\[= \sum_{j=2}^{d+1} b(j - 1, d)q^{(d+1-j)k} B^j F_k^{(j)}(x; p, q) - \sum_{j=1}^{d} 2jb(j, d)q^{(d+1-j)k} B^j F_k^{(j)}(x; p, q),\]
equivalently,
\[
\sum_{j=0}^{d+1} (ja(j-1, d) + 4(j+1)a(j, d))q^{(d+1-j)k} A^j F_k^{j+1}(x; p, q) = \sum_{j=1}^{d+1} (b(j-1, d) - 2j b(j, d))q^{(d+1-j)k} B^j F_k^{(j)}(x; p, q),
\]

Therefore, using Definition 2.1 and Definition 2.3 we have that
\[
\sum_{j=0}^{d+1} a(j, d+1)q^{(d+1-j)k} A^j F_k^{j+1}(x; p, q) = \sum_{j=1}^{d+1} b(j, d+1)q^{(d+1-j)k} B^j F_k^{(j)}(x; p, q).
\]

Hence, using Lemma 2.2 and Lemma 2.4 we get the desired result. \(\square\)

By the above proposition, we have the main result of this paper.

Theorem 2.6 Let \(d \geq 1\). For any \(n \geq d\),

\[
\sum_{j=0}^{d} \left[(4q^k)^{d-j} \left(\sum_{i=0}^{j} (-1)^i \binom{j}{i} (j+1-i)^d \left(\frac{v_{i}^{2}(p,q)^{1-4q^k}}{v_{i}^{2}(p,q)} \right) \right)^j s_{j+1}(n+j-d; p, q; k) \right]
\]

\[
= \sum_{j=1}^{d} \left[\frac{(-1)^{d-1} (2q^k)^{d-j}}{(d-1)!} \left(\sum_{i=0}^{d-j} (-1)^i \binom{j-1}{i} (i+1)^{d-1} \right) \left(\sum_{s=0}^{j} v_{d,j,s}(n)U_{[n+j-d-s]}(p, q) \binom{j}{i} \right) \right],
\]

where \(v_{d,j,s}(n) = (-2q^k)^{j-s}v_{k}^{j-s}(p, q) \prod_{i=1}^{j} (n+j-d-s-i)\).

Proof. If comparing the coefficients of \(x^{n-(d+1)}\) on both sides of Proposition 2.5 we get the desired result. \(\square\)

Theorem 2.6 provides a finite algorithm for finding \(s_d(n; p, q; k)\) in terms of \(U_{nk}(p, q)\) and \(V_{nk}(p, q)\), since we have to consider all \(s_j(n; p, q; k)\) for \(j = 1, 2, \ldots, d\). The algorithm has been implemented in Maple, and yields explicit results for \(1 \leq d \leq 6\). Below we present several explicit calculations.
Corollary 2.7 (see Zhao and Wang [2, Equation 9]) For any \(n \geq 1 \),

\[
s_2(n; p, q; k) = \frac{U_k(p, q)}{V_k^2(p, q)} \left((n - 1)V_k(p, q)U_{nk}(p, q) - 2nq^kU_{(n-1)k}(p, q) \right).
\]

Proof. Theorem 2.6 for \(d = 2 \) yields

\[
4q^k s_1(n - 1; p, q; k) + \frac{v_k^2(p, q) - 4q^k}{v_k(p, q)} s_2(n; p, q; k) = (n - 1)V_k(p, q)U_{nk}(p, q) - 2(n - 2)q^kU_{(n-1)k}(p, q).
\]

Using the fact that \(s_1(n; p, q; k) = U_{nk}(p, q) \) we get the desired result. \(\square \)

Corollary 2.8 (see Zhao and Wang [2, Equation 10]) For any \(n \geq 2 \),

\[
s_3(n; p, q; k) = \frac{U_k^2(p, q)}{2[V_k(p, q) - 4q^k]} \left((n - 1)(n - 2)V_k^2(p, q)U_{nk}(p, q) - 2q^k(n - 2)(2n + 1)V_k(p, q)U_{(n-1)k}(p, q) + 4q^{2k}(n - 2)(n + 2)U_{(n-2)k}(p, q) \right).
\]

Proof. Theorem 2.6 for \(d = 3 \) yields

\[
16q^{2k} s_1(n - 2; p, q; k) + 12q^k \frac{v_k^2(p, q) - 4q^k}{v_k(p, q)} s_2(n - 1; p, q; k) + \frac{2(v_k^2(p, q) - 4q^k)^2}{v_k(p, q)} s_3(n; p, q; k) = (n - 1)(n - 2)V_k^2(p, q)U_{nk}(p, q) - 2(n - 2)(2n - 5)q^kV_k(p, q)U_{(n-1)k}(p, q) + 4q^{2k}(n - 2)^2U_{(n-2)k}(p, q).
\]

Using Corollary 2.7 with the fact that \(s_1(n; p, q; k) = U_{nk}(p, q) \) we get the desired result. \(\square \)
Similarly, if applying Theorem 2.6 for \(d \) with using the formulas of \(s_j(n; p, q; k) \) for \(j = 1, 2, \ldots, d - 1 \), then we get the following result (in the case \(d = 4 \) see [2, Equation 11]).

Corollary 2.9 We have

(i) For any \(n \geq 3 \),

\[
\begin{align*}
 s_4(n; p, q; k) &= \frac{U^3_{\overline{p}[p,q]}}{6(V^3_k(p,q) - 4q^k)^3} V^3_k(p,q)(n-1)(n-2)(n-3)U_{nk}(p,q) \\
& \quad - 6q^k V^2_k(p,q)(n-2)(n-3)(n+1)U_{(n-1)k}(p,q) \\
& \quad + 12q^{2k} V_k(p,q)(n-3)(n^2 + n - 1)U_{(n-2)k}(p,q) \\
& \quad - 8q^{3k} n(n^2 - 4)U_{(n-3)k}(p,q).
\end{align*}
\]

(ii) For any \(n \geq 4 \),

\[
\begin{align*}
 s_5(n; p, q; k) &= \frac{U^4_{\overline{p}[p,q]}}{4(V^3_k(p,q) - 4q^k)^4} V^4_k(p,q)(n-1)(n-2)(n-3)(n-4)U_{nk}(p,q) \\
& \quad - 4q^k V^3_k(p,q)(n-2)(n-3)(n-4)(2n + 3)U_{(n-1)k}(p,q) \\
& \quad + 12q^{2k} V^2_k(p,q)(n-3)(n-4)(2n^2 + 4n - 1)U_{(n-2)k}(p,q) \\
& \quad - 8q^{3k} V_k(p,q)(n-4)(2n+1)(2n^2 + 2n - 9)U_{(n-3)k}(p,q) \\
& \quad + 16q^{4k} (n-3)(n+1)(n+3)U_{(n-4)k}(p,q).
\end{align*}
\]
(iii) For any \(n \geq 5 \),

\[
s_6(n; p, q; k) = \frac{u_5^*(p, q)}{s_5(V_k^*(p, q) - 4q^k)} \left(V_k^5(p, q)(n - 1)(n - 2)(n - 3)(n - 4)(n - 5)U_{n,k}(p, q) - 10q^k V_k^4(p, q)(n - 2)(n - 3)(n - 4)(n - 5)(n + 2)U_{(n-1),k}(p, q) + 20q^{2k} V_k^3(p, q)(n - 3)(n - 4)(n - 5)(2n^2 + 6n + 1)U_{(n-2),k}(p, q) - 40q^{3k} V_k^2(p, q)(n - 4)(n - 5)(n + 1)(2n^2 + 4n - 9)U_{(n-3),k}(p, q) + 80q^{4k} V_k(p, q)(n - 5)(n^4 + 2n^3 - 10n^2 - 11n + 9)U_{(n-4),k}(p, q) - 32q^{5k} n(n - 4)(n - 2)(n + 4)U_{(n-5),k}(p, q) \right).
\]

From these results, it is very easy to obtain Equations 2-4. If \(k = 1 \) and \(p = -q = 1 \), then by using Corollary 2.9 together with the recurrence \(F_n = F_{n-1} + F_{n-2} \) we arrive to

\[
\sum_{a+b+c+d+e=n} F_a F_b F_c F_d F_e = \frac{1}{45.5\pi} (3(n - 1)(8n^3 - 5n^2 - 27n + 50)F_n - 20n(5n^2 - 17)F_{n-1})
\]

\[
\sum_{a+b+c+d+e+f=n} F_a F_b F_c F_d F_e F_f = \frac{1}{513\pi} ((n - 1)(5n^4 - 70n^3 + 65n^2 + 490n + 264)F_n + 2n(5n^2 + 5n^2 - 226)F_{n-1}).
\]

References

2000 Mathematics Subject Classification: Primary 11B39, 11B83; Secondary 05A15