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Abstract

We define the packing density on words and find the packing densities of several types of patterns with repeated
letters allowed.

A string 213322 contains three subsequences 233, 133,122 each of which is order-isomorphic (or simply isomorphic)
to the string 122, i.e. ordered in the same way as 122. In this situation we call the string 122 a pattern.

Herb Wilf first proposed the systematic study of pattern containment in his 1992 address to the STAM meeting
on Discrete Mathematics. However, several earlier results on pattern containment exist, for example, those by Knuth
[11] and Tarjan [15].

Most results on pattern containment actually deal with pattern avoidance, in other words, enumerate or consider
properties of strings over a totally ordered alphabet which avoid a given pattern or set of patterns. Knuth [11] found
that, for any 7 € S3, the number of n-permutations avoiding 7 is C},, the nth Catalan number. Later, Simion and
Schmidt [13] determined the number the number of permutations in S,, simultaneously avoiding any given set of
patterns IT C S3. Burstein [4] extended this result to the number of strings with repeated letters avoiding any set of
patterns IT C Ss. Burstein and Mansour [5] considered forbidden patterns with repeated letters.

There is considerably less research on other aspects of pattern containment, specifically, on packing patterns into
strings over a totally ordered alphabet (but see [1, 3, 12, 14]). In fact, all pattern packing except the one in [14]
(later generalized in [1]) dealt with packing permutation patterns into permutations (i.e. strings without repeated
letters). In this paper, we generalize the packing statistics and results to patterns over strings with repeated letters
and relate them to the corresponding results on permutations.

1 Preliminaries

Let [k] = {1,2,...,k} be our canonical totally ordered alphabet on k letters, and consider the set [k]™ of n-letter
words over [k]. We say that a pattern 7 € [l]™ occurs in o € [k]", or that o contains the pattern =, if there is a
subsequence of ¢ order-isomorphic to .

Given a word o € [k]™ and a set of patterns II C [[]™, let v(II, o) be the total number of occurrences of patterns
in II (II-patterns, for short) in o. Obviously, the largest possible number of II-occurrences in o is (;‘L), when each
subsequence of length m of ¢ is an occurrence of a II-pattern. Define

u(TL k,n) = max{ v(TT,0) |0 € []"},

v(Il, o)
d(Il,o) = ——=,
(o)==
S(I, kym) = PR o (a(,0) 0 € (17,

()
m
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respectively, the maximum number of II-patterns in a word in [k]™, the probability that a subsequence of o of length
m is an occurrence of a II-pattern, and the maximum such probability over words in [k]™. We want to consider the
asymptotic behavior of §(II, k,n) as n — oo and k — .

Proposition 1.1 If n > m, then §(I, k,n) < §(I1, k,n — 1) and §(I1, k,n) > (I, k — 1,n).

PRrOOF. The proof of Proposition 1.1 in [1] also applies to the first inequality in our proposition as well, since possible
repetition of letters is irrelevant here. To see that the second inequality is true, note that increasing k, i.e. allowing
more letters in our alphabet, can only increase u(Il, k,n), and hence, 6(IL, k, n). O

The greatest possible number of distinct letters in a word o of length n is n, which implies that u(Il, k,n) =
w(Il,n,n) for k > n, and hence, 6(I1, k,n) = 6(I1,n,n) for k > n. Therefore,

0(,n,n) = k]im 0(T, k,n).
—00

We also have §(II,n,n) = §(II,n+1,n) > 6(Il,n+1,n+1), so 6(II, n, n) is non-increasing and nonnegative, so there
exists
(1) = lim §(II,n,n) = lim lim (I, k,n).
n—00 n—o00 k—co

We call 6(IT) the packing density of TI.
Obviously, there are two double limits. Since 0 < §(II, k,n) < 1, it immediately follows that there exists

S(L k) = lim (I, k,n) € [0, 1]

n—o0

and that {6(II, k) | k € N} is nondecreasing as k¥ — oco. Hence, there exists

§'(T) = lim §(TL, k) = lim lim 6(T0, k,n).
k—o0 k—o00 n—00
It is easy to see that ¢'(II) < §(II). Naturally, one wishes to determine when ¢'(II) = §(II). In this paper, we will
provide a sufficient condition for this equality.
The set [k]™ is finite, so for each k and n, there is a string o(II, k,n) € [k]™ such that d(II, o(IL, k,n)) = 6(1, k,n).
To find §(IT), we will need to find §(IL, k, n), hence maximal II-containing permutations o (I, k,n) are of interest to
us, especially, their asymptotic shape as n — 0o and k£ — oo.

Example 1.2 Let IT = {¢,,}, where ¢,, is a constant string of m 1’s. Then, clearly, o(I, k,n) = ¢, and d(¢p,c,) =1
for n > m, so (¢, k,n) = 1 for n > m, and hence ¢'(¢,,) = d(¢i,) = 1 for any m > 1.

Example 1.3 Let II = {id,,}, where id,, is the identity permutation of Sy,. Then o(idy,,n,n) = id,, so d(idy,, id,) =
1, 6(idm,n,n) =1 and 6(id,,) = 1.

Determining 6'(id,,) is a bit harder. Consider a permutation 7 € [k]”. Deleting the all 1’s of ¢ and inserting
them at the left end of 7 can only increase the number of occurrences of id,,. Call the resulting permutation ;.
Then d(id,,7) < d(idy,71). Similarly, deleting all 2’s of 71 and inserting them immediately after the (initial)
block of 1’s can only increase the the number of occurrences of id,,. Iterating this procedure k times, we see that
o (idm, k,n) must be an nondecreasing string of digits in [k]. Let n; be the number of digits 7 in o(idp, k,n), then
w(idm, k,n) = v(idp, o (idm, k,n)) = ning...ng and ng + n2 + --- + 0 = n. To maximize the above product we
need ny = ng = --- = ng = . (More exactly, [12] shows that we should choose for n;’s to be such integers that
[ni — %] <land |y +---+n, — | < 1foreach r =1,2,...,k.) It follows that

=3

d(idm, k,m) ~ M

(m

)

k
(where ap, ~ b, means lim,_,o an /by = 1), s0 8(idp,, k) = (klm, and thus ¢'(id,,) = 1 as expected.

~—

Packing density was initially defined for patterns in permutations. Therefore, we must show that the packing
density on permutations agrees with the packing density on words.
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Theorem 1.4 Let IT C S, be a set of permutation patterns, then

5(I0) = Tim max{ V(HE 0; |o € Sn},

i.e. the packing density of II on words is equal to that on permutations.

PRroOOF. It is enough to prove that
u(I,n,n) = max{v(Il,o) |0 € S,},

in other words, that there is a permutation in S, among the maximal II-containing words in [n]™. Consider any
maximal IT-containing word ¢ € [n]™. Let n; be the multiplicity of the letter ¢ in o. Let ¢; denote the jth occurrence
of the letter 4, and consider the map f : [n]® — S,, induced by the map i; — Y '_, n, — j + 1. Since all letters of
each pattern in II are distinct, IT occurs in f(o) at least at the same positions IT occurs in o, so v(I1, f(o)) > v(I1, o).
The rest is easy. O
Apart from computing packing densities of patterns, we would also like to determine which patterns have equal
packing densities, which ones are asymptotically more packable than others, etc. For example, it is easy to see that
the packing density is invariant under the usual symmetry operations on [[]™: reversal r : 7(i) — 7(m — i+ 1)
and complement c : 7(i) — [ — 7(i) + 1, (packing density is also invariant under inverse i : 7 — 7~! when packing
permutations into permutations). The operations r and ¢ generate D,, while 7, ¢, generate D4. Patterns which can
be obtained from each other by a sequence of symmetry operations are said to belong to the same symmetry class.

Example 1.5 The symmetry class representatives of patterns in [3]® are 123,132,112,121,111. We know that
0(111) = 1 = §(123). Galvin, Kleitmann and Stromgquist (independently, unpublished, see chronology in [12])
showed that §(132) = 2v/3 — 3 ~ 0.4641. Thus, we only need to determine the packing densities of 112 and 121 to
completely classify patterns of length 3.

Price [12] extended Stromquist’s results [14] to packing a single pattern = = 1lm(m — 1)...2 and handled other
single patterns such as 2143. Since we will also be concerned mostly with singleton sets of patterns II = {7}, we will
write d(m) for 6({r}), etc.

Price’s results deal with patterns of specific type, the so-called layered patterns.

Definition 1.6 A layered pattern is a strictly increasing sequence of strictly decreasing substrings. These substrings
are called the layers of o.

For example, I§§,T§§, ﬁg, 321 are layered, with layers denoted by hats, while 312,231 are non-layered.

In fact, note that the union of symmetry classes of layered patterns consists of exactly the permutations avoiding
patterns in the symmetry classes of 1342,1423,2413.

In [14], Stromquist proved a theorem (later generalized in [1]) on packing layered patterns into permutations.

The inductive proof of this theorem defines a permutation (or a poset) 7 to be layered on top (or LOT) if any
of its maximal elements is greater than any non-maximal element. The set of these maximal elements is called the
final layer of 7 (even if 7 is not necessarily layered).

Proposition 1.7 Let I be a multiset of LOT permutations (not necessarily all distinct or of the same length). Then
there is an LOT permutation o* which mazimizes the expression

v(Il,o) = Z a v(m, o), az>0. (1.1)

mell

Furthermore, if the final layer of every m € I has size greater than 1, then every such o* is LOT.
Applying this proposition inductively, [1], following [14], obtains

Theorem 1.8 LetII be a multiset of layered permutations. Then there is a layered permutation o* which mazimizes
the expression (1.1). Furthermore, if all the layers of every m € Il have size greater than 1, then every such o* is
layered.
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Following [1, 12], we will also define the £-layer packing density &,(II) for sets of layered permutations II as the
packing density of II among the permutations with at most £ layers. It was shown in both of the above papers that
o(Il) = llim 0o (11).

—00

2 Monotone patterns

The easiest type of patterns with repeated letters are those whose letters are nondecreasing (or non-increasing) from
left to right. By analogy with layered patterns, we will consider nondecreasing patterns.

Theorem 2.1 Let II € [[|"™ be a set of nondecreasing patterns m and let a;(m) be the number of i’s in w. For each
m € ILC[I]™, let @ € Sy, be the layered pattern with layer lengths (a1(m),...,a(7)), and let Il = {7 |w € II}. Then
(I, k) = 6, (1) and §'(I1) = &6(I1) = §(1I).

PRroOOF. There is an natural bijection between nondecreasing patterns on k letters and layered patterns with & layers.
If 7 is a nondecreasing pattern with layer lengths (aq(7),...,a;(7)), then the map f of Theorem 1.4 induced by the
map i; = >.._, ar(m) — j + 1 (where i; is the jth i from left) maps w to # € Sp,. Clearly, f' is induced by a map
with takes each element in the ith layer (the ith basic subsequence, in general) to integer 4. |

Example 2.2 Using the results of Price [12], we obtain §(112) = §(213) = 2v/3 — 3, §(1122) = §(2143) = 3/8. More
generally, for k > 2,

6(1...12) = ka(1 — a)*~!, where 0 <a<1, ka**!' —(k+1)a+1=0.

Similarly, for r,s > 2,
0(1...12...2)=6(1...12...2,2) = (
N —— N ——

T s T 8

r+s r’s®
r,s ) (r+s)rts’

Using the results of Albert et al. [1], we also find that §(1123) = §(1233) = §(1243) = 3/8, §({122,112}) =
5({132,213}) = 3/4.

3 Weakly layered patterns
Again, by analogy with layered permutations, we define weakly layered strings as follows.

Definition 3.1 A string 7 € [[]™ is weakly layered if it is a concatenation of a nondecreasing sequence of non-
increasing substrings. In other words, @ = 7y ...7,, where 7; are non-increasing, and m; < --- < 7, (that is any
letter of m; is not greater than any letter of 7; if ¢ < j). Substrings m; maximal with respect to these properties are
called the layers of 7.

It follows that the consecutive layers of a weakly layered pattern may have at most one letter value in common,
for example, 121, 212, 1321, 1232, 2132, 22111332. However, 1231 is not weakly layered.

Theorem 3.2 IfII is a set of weakly layered patterns none of which contains a layer of length 1, then for each n
and k, all mazimal I1-containing strings in [k]" are weakly layered.

Proor. If f is an operation as in Theorems 1.4 and 2.1 and 7 is weakly layered, then f(w) is layered. Let
f) = {f(x) | = € II}. It is easy to see that if ¢ is a maximal Il-containing string, then f(o) is a maximal
f(IT)-containing string. If such o is non-weakly layered, then it contains a pattern 231 or a pattern 312, hence, 231
or 312 also occurs in f(o), so f(o) is non-layered. But by Theorem 2.2 of [1], f(o) must be layered, contradicting
our assumption. Thus, every maximal II-containing string o is weakly layered. O

Conjecture 3.3 IfIl is a set of weakly layered patterns, then §'(I1) = §(I) and among mazimal I1-containing strings
in [k]™, there is one which is weakly layered.
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Note that some maximal II-containing strings in the above conjecture may not be weakly layered. For example,
12121 is a maximal 121-containing string in [2]5.
We will now find the packing density of some specific weakly layered patterns.

Theorem 3.4 §(121) = V3 — 3/2 = 15(112) = 15(213).

ProoF. We will begin with the pattern # = 121. Let ¢ = o(n, k) be a maximal 121-containing string in [k]™.
Without loss of generality, we can assume the smallest letter of o(n, k) is 1, next smallest letter is 2, etc. It is easy
to see that o should begin and end with 1.

Let o contain n; 1’s. Let a > 1 be a letter in ¢ and m, and b, be the numbers of 1’s to the left and to the right
of a, respectively. Then m, + b, = n1, and a occurs in myb, < [Q;J patterns 121 in ¢ which involve the letter 1.
The equality certainly occurs for each a when all the 1’s of o are at the beginning or at the end of o. Consequently,
o =1...1021...1, where o5 is a string on letters 2 and greater, is maximal 121-containing. Note that o is also
maximal 121-containing.

Following Price [12], we will find the asymptotic ratio @ = lim,_, “L. Then it is easy to see that if n, is the
number of letters r in o, we must have lim, ;o 2= = a(1 —a)" .

Since all the 1’s of ¢ are at the beginning or at the end of o, it is easy to see that half of them should be in the
initial block of 1’s and the other half, in the terminal block of 1’s. Therefore, we have

d(121,0) = max (d(121,02) + {%%J (n—nl))

0<ni1<n

Now the same calculations as in [12, Theorem 5.2] yield

3 a?(1-a
6(121) = = arg[%?cl] T ((1 — a))3’
soa=(3-+3)/2,1—a=(v/3-1)/2,and §(121) = /3 — 3/2. |
Here is the complete inventory of packing densities of 3-letter patterns by symmetry class.
Symmetry class || 111 112 121 132 123
Packing density || 1 | 2/3—3 2‘/327_3 2v3-3| 1

4 Generalized patterns

Generalized patterns were introduced by Babson and Steingrimsson [2] and allow the requirement that some adjacent
letters in a pattern be adjacent in its occurrences in an ambient string as well. For example, an occurrence of a
generalized pattern 21-3 in a permutation 7 = a1as -- - a, is a subsequence a;a;41a; of 7w such that a;y1 < a; < a;.
Clearly, in the new notation, classical patterns are those with all hyphens, such as 1-3-2.

Notation 4.1 This notation (introduced in [2]) may be a little confusing since classical patterns (the ones with all
hyphens) were previously written the same way as the generalized patterns with all adjacent letters (i.e. with no
hyphens). From now on, we will use the generalized pattern notation. However, if we consider subword patterns
(those with no hyphens), we may write 7 for a generalized pattern 7 without hyphens where the context allows for
ambiguity.

As with the classical patterns, considered in the earlier sections, most papers on generalized patterns deal with
pattern avoidance. For example, Claesson [8] and Claesson and Mansour [9] considered the number of permutations
avoiding one or two generalized patterns with one hyphen. Burstein and Mansour [6] looked at the same problem
with repeated letters allowed in both in the pattern and the ambient string. Elizalde and Noy [10] and Burstein and
Mansour [7] considered generalized patterns without hyphens, i.e. with all consecutive letters adjacent.

Here we consider packing generalized patterns into words.
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If w € [I]™ is a generalized pattern with b blocks of consecutive letters (i.e. b — 1 hyphens), then it is easy to see
by considering the positions of the first letters of the blocks of 7 that the maximum possible number of times 7 can

occur in o € [k]™ is
(n—m+b> n®
b ~— asn— o0

(this yields (TT;) when b = m, i.e. when 7 is a classical pattern).

In fact, this maximum is achieved when 7 is a constant generalized pattern, i.e. any of the generalized patterns
obtained from the constant strings 11...1 by inserting hyphens at arbitrary positions (possibly, none). Obviously,
maximal w-containing strings are the constant strings of length n. Thus, any set of constant generalized patterns
has packing density 1. Similarly, any set II of hyphenated identity generalized patterns has 6(IT) = 1.

Given a set of generalized patterns with b blocks, II C [[]™, we define the packing density of II similarly to that
of a set of classical patterns. We will use the same notation as in Section 1 for the generalized patterns.

It is not hard to see that the analog of Theorem 1.4 holds for generalized patterns as well.

Theorem 4.2 Let II C S, be a set of generalized permutation patterns, then the packing density of II on words is
equal to that on permutations.

PrOOF. The same argument as in Theorem 1.4 shows that among maximal II-containing strings in [n]™ there is one
that has no repeated letters. O

4.1 Generalized patterns without hyphens

The maximal number of occurrences of a generalized pattern in [[]™ without hyphens (i.e. with b = 1 blocks) is
("M =n—-m+1~nasn— oo

Theorem 4.3 Let m € [I]™ be a nonconstant, nonidentity monotone generalized pattern without hyphens in which
each letter i occurs m; times. Let M, = max(mi,...,my). Then é(w) =4d'(n) = 1/M,.

PrOOF. Let o € [k]™ be a word with maximal 7-containing word, then it is easy to see that ¢ has the form o =
d'a'---o'o" whereo! =11...122...2...(k—=1)(k—1)...(k—1)k...k such that every letter 1,2,.....,k—1 appears
M times, k appears my, times, and ¢” is a prefix of o'. Hence, if n' = n—length(c") (so n— M (k—1)—m < n' < n),
then

G B~ 1) _ pmn,k) 5t (K1)
n—m+1 “n-m+1~ n—m-+1 )
Therefore, 6(7) = 0'(7) = 1/M,. m|

Theorem 4.4 Let m = (¢1,...,¢s) € [[|™ be any s-layered generalized pattern without hyphens such that s > 1. Let
Mﬂ- = maXi<j<s |¢]| Then (5(7’[’) = (5’(71') = ]./Mﬂ—

ProOF. The same mapping as in Theorem 2.1 shows that our = has the same packing density as the corresponding
monotone generalized pattern without hyphens of Theorem 4.3. m|

Corollary 4.5 Let mp = 11...125 € [2]™ and ma = Im(m —1)...24 € [m]™, then 6(m1) = &'(m) =1/(m — 1) and
(5(77'2) = (5'(7‘(’2) = 1/(m — ].)

For instance, §(112¢) = §'(112¢) = 1/2, 6(132,) = §'(1325) = 1/2, 6(123¢) = &' (123,) = 1.

4.2 Generalized patterns with one hyphen

The maximal number of occurrences of a generalized pattern in [[]™ with one hyphen (i.e. with b = 2 blocks) is

(") ~ n?/2 as n — oo.

Proposition 4.6 §(11-2) = ¢'(11-2) = 1.
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PROOF. Let o € [k]™ be a maximal (11-2)-containing word, then o is a monotone nondecreasing string in which letter
i occurs m; times, nq +---+mng = n. Then p(11-2,n,k) = max{zle mi = D)(njg1 + - +ng) : n1+---+np =n}.
From here, it is not difficult to determine that u(11-2,n,k) ~ n?/2 as n — oco. Choose n;’s to be such integers that
|ni — #] <land |n; +---+n, — 3| < 1for eachr =1,2,...,k. Then

1(11-2, 1, k) ~ (%)2 (g)

out of ("gl) maximum possible occurrences, and the result follows. |
Proposition 4.7 §(12-1) = ¢'(12-1) = 1/3.

PROOF. Let o € [k]™ be a word with maximum occurrences of 12-1, then ¢ = 1212---1211..1 € [2]™ where the string
12 occurs in « exactly d times. So p(12-1,n,k) = max;<4<n(d(d — 1)/2 + d(n — 2d)), and the maximum occurs at
d ~ n/3. The rest is easy to check. O

Proposition 4.8 §(12-3) = 6(21-3) = 1.

Proor. For pattern 12-3, consider the identity permutation. For pattern 21-3, consider the layered permutation
with layers of equal length. m|
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