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1 Introduction and the Main result

An 2t order linear recurrence is a sequence in which each is a linear combination of the £

eth

previous terms. The symbolic representation of an order linear recurrence defined by

I

ap = ijan—j =Ppi10p—1+ p2an_2 + -+ PoQp_y, (1)
Jj=1

is (an(co,---,Ce—1;P1,---,P¢))n>0, or briefly (a,)n>0, where the p; are constant coefficients,
with given a; = ¢; for all j =0,1,...,£—1, and n > ¢; in such a context, (a,)n>0 is called
an £-sequence.

In the case £ = 2, this sequence is called Horadam’s sequence and was introduced, in 1965, by
Horadam [4, 5], and it generalizes many sequences (see [1, 6]). Examples of such sequences are
the Fibonacci numbers (F,),>0, the Lucas numbers (L, ),>0, and the Pell numbers (P,),>0,
when one has the following initial conditions: p;1 = p1 =c1 =1,¢=0;p1 =p2 =c¢c1 =1,
cg = 2; and p1 = 2, p2 = c1 = 1, ¢ = 0; respectively. In 1962, Riordan [8] found the
generating function for powers of Fibonacci numbers. He proved that the generating function
Fi(z) = ,50 F¥z" satisfies the recurrence relation

[k/2] . ,
(1 - apz + (~1)f2?) F(o) = L+ kz Y (-1)3’%&_%((—1)%)
7j=1

for k > 1, where a; = 1, ag = 3, a5 = as_1 +a5_o for s > 3, and (1 — z — 2?)77 =
> k>0 @kjzF 2. Horadam [5] gave a recurrence relation for Hy(z) (see also [3]). Haukka-
nen [2] studied linear combinations of Horadam’s sequences and the generating function of

'Research financed by EC’s THRP Programme, within the Research Training Network ” Algebraic Combi-
natorics in Europe”, grant HPRN-CT-2001-00272



the ordinary product of two of Horadam’s sequences. Recently, Mansour [7] found a formula
for the generating functions of powers of Horadam’s sequence. In this paper we interested in
studying the generating function for squaring the terms of the /-sequence, that is,

A@(.’E) = Aﬁ(xa Coy---5C0—1,P1y--- 7p€) = Z ai(cm sy Cg—15P1y - - - apé)xn-
n>0

The main result of this paper can be formulated as follows. Let Ay = (A(4,7))o<ij<e—1 be
the £ x £ matrix

1— Yoo, plad, i=j=0
—2zv;, t=0and 1 <5<4-1
Ag(i ) = —pizt, o 1<i<{—landj=0
0ij —pijx'™ —pigjar’, 1<i<fl—-land1<j</l—1
5i,j; 1<i</l—land/l+1-i<j5j</l-1

where v; is given by

Vj = p1Pj+1 + Pepj+2x + -+ + pefjpwe_j_la

. . 1, ifi=j
for all j =1,2,...,¢—1, we define p; = 0 for ¢ <0, and d; ; = { 0, ifi 4]
Let Fg = (Fg(’i,j))os,i’jsg_l be the £ x ¢ matrix
Yo o(cs —w)y)al, i=j=0
Fﬂ(iaj) = Tttt Zi;(l)iz Cs\Cs+i — ws+i—1)$sa Jj=0and1<i</-1
Ag(i,7), 0<i<fl—1land1<j</4—-1

where w; is given by
J+1
Wj = P1Cj + P2cj-1+ -+ Pjr1Co = Zpsc]#lfsa
s=1

for 5 =0,1,...,£ -2 withw_; =0.

Theorem 1.1 The generating function Ag(z) is given by

det(Fg)
zdet(Ay)

The paper is organized as follows. In Section 2 we give the proof of Theorem 1.1 and in
Section 3 we give some applications for Theorem 1.1.

2 Proofs

Let (an)n>0 be a sequence satisfying Relation (1) and £ be any positive integer. We define a
family {fq(n) }f;;%) of sequences by

fd(n) = Op—10np—1—s,



and a family {Fd(a:)}s;%) of generating functions by

= Z Qp—1Gp_1—4T". (2)

n>1

Now we state two relations (Lemma 2.1 and Lemma 2.2) between the generating functions
Fy(z) and Fy(z) = zAg(x) that play the crucial roles in the proof of Theorem 1.1.

Lemma 2.1 We have

J4 —1 -1
x) Zp?mj + 2z Z viFj(z) + Z(c? — w?_l)xj.
Proof. Since the sequence (an)n>0 satisfying Relation (1) we get that

‘
2 2
= ijan—j+2 Z PiPjan—iGn—j,
=1

1<i<j<t

for all n > £. Multiplying by =" and summing over n > ¢ together with the following facts:

1. Y a2z = i 3 fo(n + 1)zt = % (Fo(:v) - zz: a?lzvj),

n>{ n>4

.
2. Z;Ka%—g = foln —j +1)z™ = 277! (FO(JU) - Z:jaglxt)’

n>4 t=1
1 ] 1 £—1 p
3. Y anianjz" =5 > fiiln—i)z" =2 | Fji(z) - > ag-10q—j1i—13” |,
n>4 n>{+1 d=j—i+1
we have that
4 .
Fo(z) =Fo(z) Ypia' +2 Y pipja'Fj_i()
j=1 1<i<j<t
Y 9 ¢ t—j o 2—1 i d
SDIHREIEDY Z plai jziti -2 % Y. DiPjad 10g—(j—iy—1 2"
Jj=1 j=li= 1<z<y<ed —j—i+1

- Fyfo) S el + 2 X by o) 42 (0~ 2 el

Jj=

Hence,using the fact that a; = ¢; for j = 0,1,...,£ — 1 we obtain the desired result. i

Lemma 2.2 For anyi=1,2,...,0—1,

—1 —1—4
Fy(z) = pir' Fo(w) + > (piejz" 7 + pirj@’) Fj () + &'t Y ¢y —wiyj1)a’.
i=1 =0

&~



Proof. By direct calculations we have for n > £+ 1,

14
filn) = an—1ap-1-; = ijanflfjanflfi;
j=1

equivalently,

fi(n)
=pifici(n = 1) +pafio(n —2) + -+ +pifo(n —4) + pig1fi(n —3) + -+ + pefe_i(n — ).

As in Lemma 2.1, multiplying by £™ and summing over n > £+ 1 we get

o
Fi(z) — Z aj-1aj-1-27 = ij ( i—j(z) — Zj ad—lad—(z‘—j)—ﬂd)

j=i+1 d=i—j+1
0—i 4
+ E piz’ | Fj—i(z) — >0  a4-104_(j_)-17
j=i+1 d=j—i+1
The rest is easy to check from the definitions. O

Proof. (Theorem 1.1) Using the above lemmas together with the definitions we have
Ay - [Fo(x), Fy (z), Fy(), ..., Foy ()] T = w1,
where the vector w is given by

332[—0(0 - Wj— 1)a?
ZZ] OCJ(CJ-H —wj)xﬂ
323 OCJ(CJ+2 wjt1)2!

g Yo ciCre1 —wje2)2d |

Hence, the solution of the above equation gives the generating function Fy(z) = g:tt((g‘;));
equivalently, Ay(z) = wiﬁ:t((r Ali)’ as claimed in Theorem 1.1. O

3 Applications

In this section we present some applications of Theorem 1.1.

Fibonacci numbers. Let Fj , be the nth k-Fibonacci number which is given by

k
Fk,n = Z Fk,n—ja
i=1

for n > k, with Fpo =0 and F; = 1 for j = 1,2,...,k — 1; in such a context, Fy,, F34,
and Fj, are usually called the nth Fibonacci numbers, tribonacci numbers, and tetranacci
numbers; respectively. Using Theorem 1.1 with ¢y = 0 and

61262::ck71:p1:p2::pk:1



: : 2 .n
‘ k ‘ The generating function }_, -, Fi @
9 z(1—zx)
(14+z)(1—3z+x2)
z(l—z—x2—23)
(1+z+22—23)(1-3z—22—23)
z(l—x—5z2 223 —x*—255+32" +x8)
1—2¢—422—523 —8z4+425+626 428 —210
z(1—x 521223 —8x% 1055 — 726 1727 —828+132° +10210+ 3211 + 9512 +4213)
1-20—422—7z3—112%4— 1625+ 426+ 727+ 428+ 4294 7010 —g12—g13 415

N

ot

Table 1: The generating function for the square of the ktE_Fibonacci numbers

gives the generating function ), -, F',?,nw” (see Table 1).
From Table 1, for £ = 3 we obtain

ZnFZ o z(1 — 2z + 222 + 1223 + 82° + 228 +477 + 328 + 22%)
=~ Jn (2 — 22 — 2 —1)2(23 + 22 + 3z — 1)2 '

Pell numbers. Let Py, be the nth k-Pell number which is given by

k
Prp =2Pgpn_1+ Z Pyn—j»
=2
for n > k, with P, ; = 1 for j = 0,1,...,k — 1; in such a context, P, is usually called
the nth Pell number. Using Theorem 1.1 with ¢; = 1 for 5 = 0,1,...,k — 1 and p; = 1 for
j=1,2,...,k gives the generating function ), -, P,?,na:" (see Table 2).

‘ k ‘ The generating function ) -, P,?’na:”

9 14—z
(14+z)(1—6z+x2)
3 1—4z—1122—1323—5x%—425
(1—6zx—3z2—23)(1—2+222—x3)
1—4x—1222—2523—292* 325 —925 122741328 4-92°
4
(1—52—8x%—13z3—20x%+2x°+ 1426+ 17 +28 —z10)
5 (142) (93 4422 12211 +132194-62° — 2628 627 —22° —52° 1424 923 322 —22+1)
1-25—422—Tx3—112*—1625+425+ 727 +458+429+ 700 — 12—z 13—z 15

Table 2: The generating function for the square of the %*h-Pell numbers

From Table 2, for £ = 2 we have

ang’nxn _ z(1 -2z +102” - 22° + z#)

2(2 _ 2
= (x+1)2(z?2 — 62+ 1)
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