THE GENERATING FUNCTION OF TWO-STACK
SORTABLE PERMUTATIONS BY DESCENTS IS
REAL-ROOTED

PETTER BRANDEN

ABsTRACT. Bona has conjectured that, for fixed n > 0 and ¢t > 1,
the generating function of ¢-stack sortable permutations of length n by
descents is real-rooted. The conjecture is known to be true for ¢t = 1
and t = n — 1. Here we prove it for ¢t = 2.

1. INTRODUCTION

Let Wy(n, k) be the number of ¢-stack sortable permutations in the sym-
metric group, Sy, with k descents. Recently Bona [1] showed that for fixed
n and t the numbers Wy(n, k) form a log-concave sequence, that is,
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for 1 <k <n—2. Let Wy (z) = Z;é Wi(n, k)z*. A sufficient condition
on a sequence to be log-concave is that the corresponding polynomial is real-
rooted. When t = n — 1 and t = 1 we get the Eulerian and the Narayana
polynomials respectively. These are known to be real-rooted and Béna con-
jectures that the same is true for general ¢. In what follows we will prove
the conjecture for t = 2.

Let W be the set of finite words on N without repetitions. If w is any
nonempty word we may write it as the concatenation w = LnR where n is
the greatest letter of w and L and R are the subwords to the left and right
of n respectively. The stack-sorting operation s : W — W may be defined
recursively by

s(w) = w, if w is the empty word,
| s(L)s(R)n, if w = LnR is nonempty.

The stack sortable permutations in S, are the permutations which are mapped
by s to the identity permutation. Similarly, a permutation is called %-stack
sortable if s'(7) is the identity permutation.

2. STACK SORTABLE PERMUTATIONS AND JACOBI POLYNOMIALS

The number of stack sortable permutations of length n with k£ descents
are known [9] to be the famous Narayana numbers [10, 11|
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The Narayana polynomials Wy, 1(x) are known to have real zeros. A sim-
ple proof of this fact is obtained by expressing Wy, 1(z) in terms of Jacobi
polynomials. Recall the definition of the hypergeometric function oF:

n=0

bl

where (a)g =1 and (@), = a(a+1)--- (e +n—1) when n > 1. The Jacobi

polynomial PT(La’ﬂ ) (z) can be expressed in the following two ways [8, Page
254]:
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Rewriting Wi (n + 1,k) we end up with
Whtt,1(z) = oF1 (—n, —n — 1;2;2) ,
which by (2) gives

1 1+y
Whi1(z) = n——l—l(l —y)" Py (ﬂ) .

Since the Jacobi polynomials are orthogonal when «, 8 > —1 we know that
Wiy.1(z) is real- and simple-rooted and that the zeros of W, i(z) strictly
interlace the zeros of Wy 1,1(2), that is, {Wy11,1(2)}52, form a Sturm se-
quence.

The numbers Wy(n, k) are surprisingly hard to determine despite of their
compact and simple form. It was recently shown that

(n+k)!(2n — k — 1)!

Wa(n, k) = (k+1)!(n — E)!(2k + 1)!(2n — 2k — 1)

See [2, 5, 6, 7] for proofs and more information on 2-stack sortable permu-
tations.

A sequence of real numbers I' = {y;}}_, is called an n-sequence (of the
first kind) if for any real-rooted polynomial f = ap+aixz+- - -+a,z™ of degree
at most n the polynomial I'(f) := agyo + a1y1 + - - - + apypx™ is real-rooted.
There is a simple algebraic characterisation of n-sequences [4]:

Theorem 1. Let I' = {v;}}_, be a sequence of real numbers. Then I' is an
n-sequence of the first kind if and only if T[(x + 1)"] is real-rooted with all
its zeros of the same sign.

We need the following lemma:

Lemma 2. Let n be a positive integer and r a non-negative real number.
Then T = {(7"y ") }}i_, is an n-sequence.
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Proof. Let r > 0. Then

Mat] = 3 (_”k_ ) (Z) z*

k=0
oF1 (—m,n+1;1; 1)
= P01 - 22),
where the last equality follows from (1). Since the Jacobi polynomials are
known to have all their zeros in [—1, 1] when «a, 8 > —1 we have that I'[(z +

1)"] has all its zeros in [0,1]. The case r = 0 follows by continuity when we
let 7 tend to zero from above. d

From the case r = 0 in Lemma 2 and the identity

g (2nn— #- 1) @wk _ (_l)né (—kn) @ —

it follows that (2"7: _kl_ 1) is an m-sequence.

Theorem 3. For all n > 0 the polynomial Wy (z), which records 2-stack
sortable permutations by descents, is real-rooted.

Proof. We may write Wa(n, k) as

G 0 )
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A well known result on real-rooted polynomials reads as follows: If ), a;x’
is a polynomial having only real non-positive zeros then so is the polynomial
>, akizt, where k is any positive integer. For a proof see [3, Theorem 3.5.4].
Applying this result to the polynomial z(1 + z)?" we see that Y, (2;_’:1):1:’C
is real-rooted. Now,

n—1 n—1
n+k 2n k 2n —k -1 2n nel—k
Zﬂ(n—l)(%—l—l)w _Z< n—1 )<2k+1)$ ’

k= k=0
which by the discussion after Lemma 2 is real-rooted. Another application
of Lemma 2 gives that W), o(x) is real-rooted. O
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