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Abstract

A discrete four vertex theorem is proved for a general plane polygon
using a method of proof that also yields a proof, that appears to be
new, for the classical four vertex theorem.

1 Introduction

The purpose of this paper is to establish a discrete four vertex theorem, also
termed a four vertex theorem for polygons. We first reprove the classical
four vertex theorem using a method of proof that appears to be new. Then
we prove a the discrete four vertex theorem in the case of convex polygons.
The result for convex polygons and the method of proof for the smooth case
are used to prove our main result, (with terminology to be explained below):

Theorem 1 (Discrete Four Vertex Theorem, (DFV)) Consider v, a
plane simple closed polygon. Assume that v is locally reqular and that the
vertices are not on a circle. Let k denote the discrete curvature of vv. Then
k has at least two local mazima and at least two local minima.

Theorem 1 was proven by S. Bilinski [1, 1963] in the case of convex
polygons with obtuse vertex angles.

The classical four vertex theorem essentially states that if v is a smooth
plane, simple, closed curve with curvature k, then k is either constant, in
which case 7y is a circle, or k has at least two local minima and two local
maxima. A local extreme value for the curvature is called a vertex.
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Mathematics, Chalmers University of Technology and Géteborg University, SE-412 96
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The classical four vertex theorem was originally proven for the case of
convex curves by S. Mukhopadhyaya [9, 1909], and independently by A.
Kneser [8]. For proofs in the case of possibly non-convex curves, see Fog [5],
Jackson [7] and Vietoris [14]. It is now a classical theorem that is proven
in most introductory differential geometry books, although usually only for
convex curves. For a simple proof for possibly non-convex curves, see H.
Guggenheimer [6]. A sample of the large literature on the four vertex theo-
rem and its generalisations is listed in R. Osserman [10]. For the converse
of the four vertex theorem, see B. Dahlberg [4].

We introduce some terminology. Let v be a plane closed simple polygonal
curve. Let V() denote the set of its vertices {Py, P1,... ,Py_1} ordered
counterclockwise and with the indices counted modulo N. We let Q(v)
denote the closure of the set enclosed by v. For P € V(y) let p(P) be
the unique circle passing through P and its two immediate neighbouring
vertices; p(P) is called the discrete circle of curvature at the vertex P. Let
w(P) be the closed disk with p(P) as its boundary.

We define the discrete curvature k of -y as follows. If P € V() is on the
line segment between the two immediate neighbours of P we set k(P) = 0.
Otherwise let a(P) denote the interior angle at P and let R(P) > 0 be the
radius of p(P). If a(P) < m, we set k(P) = ﬁ and if o(P) > 7, we
set k(P) = —ﬁ. Tt is easy to give examples of polygons for which k has
exactly one local maximum, so we have to find some additional conditions
on a polygon for the four vertex theorem to hold for k.

We first make the notion of a local extreme point precise. A subset E
of V(v) is said to be connected if E consists of a sequence of consecutive
vertices. In this case E is called an interval. If E C V(y) is an interval
of the form E = {P;, Pjy1,... , P} we let E = E\J{Pj_1, Py41}. Clearly
E is also an interval. Let f : V(y) — R be a function and for P € V()
let I(f, P) be the largest interval J of vertices that contains P for which
f(Q) = f(P) for all Q € J. We will say that P is a local maximum for f if
F(Q) < f(P) for all Q € I(f, P)\ I(f,P). Similarly, we will say that P is a
local minimum for f if f(Q) > f(P) for Q € I(f,P)\ I(f, P). We will say
that two local extreme points P; and P, are distinct if I(f, P1) and I(f, P2)
are disjoint.

For P € V() let A(P) be the closed convex sector with apex at P
that is determined by P and its two immediate neighbours. If k(P) =
0, we require that A(P) is that half-plane determined by P and its two
immediate neighbours such that A(P) W = Q(y) W for all sufficiently
small neighbourhoods W of P.



Definition 1 We say that 7 is locally regular if for all vertices P € V(%)
the centre of the circle of curvature at P is contained in A(P).

We remark that by elementary geometry one has the following sufficient
conditions for local regularity.

Proposition 1 Let v be a plane simple closed polygonal curve. If for each
™

vertez P the interior angle a(P) satisfies T < a(P) < 3Z, then v is locally

reqular. If all edges have the same length, then 7y is locally regular.

Note also that every plane simple closed polygonal curve can be consid-
ered as regular by adding extra vertices on the line intervals connecting the
original vertices. Of course the discrete curvature will be changed in this
case. If however the emphasis is on the ordered set of vertices, rather than
the corresponding polygonal curve, adding vertices does not seem natural
and local regularity becomes substantial.

Finally, as a convenient notation, let [P, Q] for two points P,Q € R2,
denote the line segment joining P and @ and (P,Q) = [P, Q] \ {P,Q}. We
also consider when convenient, R? identified with C in the usual way. With
abuse of notation we write polygon for polygonal curve throughout the rest
of the paper.

We state and prove the classical four vertex theorem as Theorem 4 in
section 2. The method of proof involves techniques used in association with
Cauchy’s Lemma which we state as Theorem 2 in the same section. We
prove a smooth version of Cauchy’s Lemma in Theorem 3 which is used to
prove the smooth four vertex theorem. We state and prove the preliminary
(convex) case, Theorem 6 (CDFV), in section 3. The formulation is similar
to a well-known result for smooth curves, stated as Theorem 5 at the end
of section 2. The proof of our main result, Theorem 1, is in section 4.

2 Four Vertex Theorem — smooth case

We consider Cauchy’s result on convex polygons, developed for his proof of
the rigidity of convex polyhedrons. We only consider polygons in R2.

Lemma 1 Lety = {P,... ,Pny1} andT' = {Qo, ... ,Qn+1} be two convex
polygons. Let ay, B denote the interior angles of v, ' at the k:th vertez.
Assume that ap < B for 1 < k < N and |Pyy1 — Px| < |Qr+1 — Qx| for
0 <k < N. Then |Pny1 — Pyl < |Qn+1 — Qo| with equality if and only if
ar = Py for all k€ {1,... ,N}.



For a proof of this and the next theorem, Cauchy’s Lemma, see [13]. We
introduce some notation needed for the statement of Cauchy’s Lemma. Let
Z,=1{0,1,... ,n—1}. We say that a set I C Z, is an interval if there are
integers a,b such that a < b and I = {k mod n: a < k < b}. Let W,, be the
class of sequences ¢ = {¢; ;-L:_& such that Z;’:_&fj =0 but & # 0 for some
k. If &€ € W, then R({) denotes the number of distinct maximal intervals
I C Z,, such that & > 0 for all £ € I. Tt is clear that R(¢) = R(—¢) for all
& € W,,. This means that a sequence £ € W,, has 2R(§) sign changes.

Theorem 2 (Cauchy’s Lemma) Let v = {Fp,... ,Pnv_1} and T' = {Qo,

., Qn_1} be two closed convez polygons. Let oy, By, be the interior angles
of v, I at the k:th vertex and set 6 = [r — ag. Assume |Qr+1 — Qk| =
|Pxy1 — Pg| for 0 < k < N. Also assume that B # ay for some k. Set
0= {9;9},16\,:_01. Then 0 € Wy and has at least 4 sign changes.

We will need the smooth version of Cauchy’s Lemma. Let I = [a,b]
be a closed bounded interval. Let F(I) denote the class of one-to—one C*-
d d
mappings 7 : I — R? with |d_z| =1 and d—z Lipschitz continuous such that
v together with the line segment [y(a),y(b)] bounds a convex domain. We
also require that the curvature of v is non-negative a.e.

Lemma 2 Let I = [a,b] and v,' € F(I). Let y,T' have the curvature k
and K. Assume k > K a.e. in I. Then |y(b) — y(a)| < |I'(b) — I'(a)| with
equality if and only if k = K a.e. in I.

PROOF: Set ¥ = Ucll_z and I' = (2—5 We begin by picking a p € (a,b) such
that ) (@
. Y) —\a
Y(p) = o
? = ho) e

We may without loss of generality assume that y(p) = I'(p) = 0 and

4(p) = I'(p) = (1,0). Define o, 3 by the requirements that a(p) = 8(p) =

d .
0, gy (1) = k(t) and d—f@) = K(t). Then 7(s) = [*¢® dt and T(s) =

f: ) dt. Let (t) and T'(t) have the abscissas z(t) and £(t). By convexity
0 < aft) <7fort € [pbl. Hence 0 < B(t) < a(t) < « for t € [p,b]. If
p < s <bthen

f(s):/scosﬁ(t) dtz/scosa(t) dt = (s).
p p
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In particular, £(b) > z(b). Similarly £(a) < z(a). Hence
IT(b) — T(a)| = [£(b) — &(a)| = £(b) — &(a)

> z(b) — z(a) = |7(b) — v(a)l,
which yields the lemma. O

We make a more precise definition of the class of smooth convex closed
curves of length L. For L > 0 we let 7 be the class of C?-mappings

d
v : R — R? such that |d—z/| =1,v(t+ L) =~(t) for all t € R, y is one—to—
one on [0, L) and -y has non-negative curvature.

The following smooth version of Cauchy’s Lemma is due to Blaschke [2]
but our proof follows Bol [3].

Theorem 3 Let v,I' € Fr, have the curvature k and K. Assume k(s) #
K(s) for some s. Set f =k — K. Then there are four points s;, s1 < s2 <
83 < 84, S4 — 81 < L such that

max{f(s2), f(s4)} <0 <min{f(s1), f(s3)}.

Remark: The theorem says that f has 4 distinct zeros, i.e. v and I’
have equal curvatures in at least 4 points. Moreover f has at least two local
maxima and two local minima.

PROOF: Assume the conclusion does not hold. Then we can find a,b € R
witha < b < a+ L such that f >0in I} =[a,b] and f < 0in Iy = [b,a+ L].
Using Lemma 2 on I; we see that |y(b) — y(a)| < |['(b) — I'(a)|. Using
Lemma 2 on I gives |y(b) — v(a)| > |T'(b) — I'(a)|- Hence |y(b) — v(a)| =
IT'(b) — I'(a)| so again by Lemma 2 we have k = K a.e. Since k and K are
continuous we must have k(s) = K(s) for all s € R. This contradiction
establishes the theorem. O

We next reprove the classical four-vertex theorem. The method of proof
appears to be new.

Theorem 4 (Classical Four Vertex Theorem) Let v : S — R? be of
d
class C? with |d_zl| > 0. Assume vy is simple and that -y is not a circle. Let

k denote the curvature of y. Then there are four consecutive points p; € S*
such that

max{k(p1), k(p3)} < min{k(p2), k(ps)}-



PROOF: We will assume that v has been given the arc length parametriza-
tion and positive orientation so that | g1 kdo = 2m. We also remark that
if £k > 0 then the result follows from Theorem 3. Put m = mink and
M = max k. We will now assume m < 0 since we have established the result
otherwise. Pick go,q; € S' such that m = k(qy) and M = k(q;). Notice
that M > 0. Now gqq, ¢1 split S! into two closed intervals Iy and I;.

Assume now that the conclusion of the theorem fails. Then k|Iy and
k|I; are both monotone. Let C' be the smallest circle enclosing v and let
R denote its radius. C is uniquely defined. Note that £ = [ C con-
sists of two or more components otherwise C' is not minimal. Clearly if
E consists of a single point then that would contradict the minimality of
C. If E consists of a single component with positive length there are four
consequetive points A, B,C and 7(qq), where A,C,v(q) € E and B € E,
with max(k(B), k(qo)) < min(k(A), k(C)) since v\ E lies inside the circle C
and thereby contradicting the assumption that & is monotone on Iy and I;.
Hence there are two distinct points wg, w; € S* such that y(wg) and y(w:)
belong to different components of E.

1 1
Clearly k(wp) > I and k(wy) > I Since k(qo) < 0 it follows that

qo & {wo,w1}. Now wg,w split S into two closed intervals Jy, J;. We may
choose the ordering so that gg € J1 but go & Jp-
We now claim that

mink > m*, (1)
Jo

1
where m* = min{k(wy), k(w1)}. Notice that m* > — > 0. We shall now

prove (1). If g1 € J; then k is monotone on Jy, which yields (1). If ¢1 & Ji
then ¢; splits Jy into two closed intervals J(’), J(’)’ with common end points
at g1. Since g9 € J; we have that k£ is monotone on both J(') and J(')'. Since
k(q1) > m* we see that (1) follows in this case also.

Since y(wp) and 7y(w1) belong to different components of () C' we must
have that there is some w € Jy such that y(w) ¢ C. We may assume that
U=A{w € Jy:vy(w) & C} is connected since otherwise we replace Jy with
the closure of a component of U.

Let T' be the Jordan curve of class C' one gets by letting I'|Jy = 7|Jo
and letting T'|J; be the corresponding arc on C. Then I is a convex Jordan
curve with bounded curvature except at the points I'|.Jy [ J1. Let L be the
length of I" and let K denote the curvature of I'. If o denotes the arc length

1
measure of I' then [Kdo = 2r. Since, using (1), K > R e therefore



have L < 27 R. However if L = 27 R then I' must be the circle C' which is
impossible by the construction of Jj.
2

Put A = % so A is the curvature of a circle Cy of length L. Setting
E ={w € Jy : k(w) > A} we have from the monotonicity properties of k&
that E is an interval. Let F be the closure of the complement of F in S*.
Then F is an interval also. We let a, b denote the common end points of
and F. Let [ be the length of T'|E. Let a*,b* be points on C4 such that the
length of one of the arcs on C'4 connecting a* and b* has length [. Applying
Lemma 2 to E shows that

D) — (a)| < [a* —b7].
Applying Lemma 2 to F' gives
IP(b) —T(a)| > |a* — b7,
Hence
IT(b) = T(a)| = |a* — b7
so one more application of Lemma 2 shows that K = A a.e. in S'. This is

impossible which establishes the theorem. O

We conclude this paragraph by formulating an analogue of the four-
vertex theorem that is similar to the discrete convex version appearing in
the next section.

Let v be a Jordan curve of class C? in R? with positive orientation and
let © denote the closure of the set enclosed by 7. For P € v let 3(P) denote
largest circle C' with P € C and the interior of C inside Q, n(P) the unit
inward normal of y at P and k(P) the curvature of vy at P.

If k(P) # 0 then
1

R(P) = (P
denotes the radius of curvature. For k(P) # 0 we set
p(P) = {w € R?: lw—z(P)| = |R(P)|},
where z(P) = P + R(P)n(P) and for k(P) = 0 we set
p(P) = {w € R?: (w — P,n(P)) = 0}.
The set p(P) is called the circle of curvature for v at P. If k(P) > 0 we set

w(P) = {w € R? : |w — z(P)| < R(P)},



if k(P) <0
w(P) = {w € R : |w — 2(P)| > |R(P)|}

and if k(P) = 0
w(P) = {w € R?: (w — P,n(P)) > 0}.
The following theorem is due to Guggenheimer [6].

Theorem 5 Let v be a Jordan curve of class C? in R2. Assume 7 is
not a circle. Then there are two points Py, Pi € v, Py # P, such that
E(Py) > 0, k(Py) > 0, X(Py) = p(FPy) and X(P;) = p(Py). Also, there are
two points Qo, Q1 € v, Qo # Q1, such that both w(Qo) and w(Q1) contain
Q. Furthermore the circles £(Py), 2(Py), p(Qo) and p(Q1) are all pairwise
distinct.

3 Discrete Four Vertex Theorem — convex case

We consider the discrete convex version of the four-vertex theorem. We have
the following analogue of Theorem 5 for strictly convex polygons. Recall that
a convex polygon is strictly convex if no three vertices lie on a line.

Theorem 6 (Convex Discrete Four-Vertex Theorem (CDFV)) Let
v be a strictly convex polygon in R2. Assume that V() does not lie on a
circle. Then there are P,Q € V() such that

Ini(w(P) V() = Int(w(@) (V) = 0.
Also there are P*,Q* € V() such that
V(y) C w(P7)

and

V(y) Cw(@).
Furthermore the circles p(P), p(P*),p(Q) and p(Q*) are all pairwise dis-
tinct.

From now on we let in this section, v be a strictly convex polygon with
N vertices. For P € V() let F(P) denote the family of all closed disks U
such that P € U, V() C U and 9U contains at least three points in V (7).
Similarly, let G(P) be the family of all open disks U such that P € 9U,
V(y)(U = 0 and 0U contains at least three points in V(7).



Lemma 3 For all P € V() we have that both F(P) and G(P) are non-
empty.

PROOF: If P and Q are two distinct points in R? we let A(P, Q) denote the
class of closed disks U such that {P,Q} C 0U. Notice that if L denotes the
line through P and @ then

RO\(L\[PQ)= | U (2)

UEA(P,Q)

Assume P € V(). Since 7 is strictly convex there is a closed disk
W such that V(y) C W and P € OW. Pick Q; € 0W with Q; # P.
From (2) it follows that there is a W7 € A(P, Q1) such that V(y) C W,
and (OW1 \ {P})NV(y) # 0. Let Q2 # P belong to W1 (V(y). Again
using (2) we see that there is a Wy € A(P, Q2) such that V(y) C Wy and

(OW; \ {P,Q2}) V() # . Hence F(P) £ 0.
A similar argument shows that G(P) # 0. O

Remark: The proof that G(P) # 0 does not require that ~y is strictly
convex.

Lemma 4 Let P € V(v) and let U € F(P). Assume I # 0 is a mazimal
interval contained in V(y)\oU. If Q € I and W € F(Q) then

oW (V(y) cl.

PROOF: There is nothing to prove if I = V(y). Assume therefore that T

is a proper subset of V(y). Let P;,P, € V(v) be such that P, # P, and

I = I\{Py, P,}. Let L denote the line through P; and P,. Then L divides

R? into two open half planes H and H*. Assume that Q € H. Then I =

H(\V(v) by convexity. Notice that {P;, P,} C W. Hence W (U C H.
In particular,

oW (\V(y) c (oW (U)(V(y) C 1.
O

Lemma 5 Assume V(7) is not contained in a circle. Then there are points
P*,Q* € V() such that

and



PROOF: Assume that there exists a P € V(v) and U € F(P) such that
V() OU is not an interval. Let Iy,...,I,, n > 2, be the maximal non-
empty intervals in V() \ OU. By repeated use of Lemma 4 follows that
there are points Q € I, 1 < k < n, such that if W, € F(Qg) then
V(y)N0Wy, C Ij, and V(y) () OW}, is connected. Also, Q; & oWy, if j #
k. Since OWj (V (7) is connected there is a Qf € 0W [V (y) such that
w(Q}) = Wy. If the assumption does not hold then the result is trivial. [

Lemma 6 Let P € V() and let U € G(P). Assume I # 0 is a mazimal
interval contained in V(y)\ OU. If Q € I and W € G(Q) then

oW (V(y) c 1.

PROOF: There is nothing to prove if I = V(v). Assume I # V (v). Suppose
there is a Q* € (W V(7)) \ I. Let P, and P, be the end points of 1.
Then P, P, € 0U NV (y) and W ({P1, P>} = 0. Since @ € OW but Q & oU
neither U nor W can be contained in the other. Let L be the line through
P; and P,. Then L separates R? into two half planes H and H*, say Q € H.
Then Q* € H* since I = V(y)(NH. Since [Q,Q*]NL C (P, P;) by the
strict convexity of v we have that W L C [P, P).

Hence W (NOU C H so W (H* C U. Since U is open and UV (y) =
() the lemma, follows by contradiction. O

Lemma 7 Assume V(y) is not contained on a circle. Then there are P*,Q*
in V(v) such that

Int(w(P*)) (1 V() = Int(w(Q")) (| V(7) = 0

and

p(P*) # p(Q).
PRrROOF: A straight-forward modification of the proof of Lemma 5 gives the
result. O

PROOF: (of Theorem 6) The theorem is a direct consequence of Lemma 5
and Lemma 7. O

Corollary 1 Let R be a strictly convex quadrilateral with vertex set S. As-
sume that S is not contained in a circle. Then there are two diametrically
opposite vertices P, P* such that

S C w(P)
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and
S C w(P*).

Furthermore, the discrete circles of curvature at the other pair of diametri-
cally opposite vertices contain no point from S in there interiors.

PRrROOF: From the Convex Discrete Four-Vertex Theorem (CDFV) follows
that there is a P € S such that S C w(P). Let P* be the vertex diametrically
opposite to P. From Lemma 4 and the fact that S\ p(P) = {P*} follows that
S C w(P*). The remaining part of the corollary follows from the Convex
Discrete Four-Vertex Theorem. g

4 Discrete Four Vertex Theorem

We prove our main result, Theorem 1, in this section. We will need some
notation and some preliminary results.

Let e be an edge of the simple closed polygon v and let [ be the line
that contains e. Let M be the midpoint of e. Let h, be that closed half-
plane determined by [ such that for all sufficiently small neighbourhoods W
of M, one has that he W = Q(vy)[\W. Let P be an endpoint of e. If
k(P) = 0, we set d(P,e) = he. If k(P) # 0, we let w(P) denote the closed
disk determined by the circle of curvature at P. We set §(P, e) = w(P) () he
if k(P) > 0. If k&(P) < 0, we let w(P) denote the closure of the complement
of w(P) and set §(P, e) = w(P) J(w(P) N he)-

Lemma 8 Let v be a simple closed polygon. Assume that 7y is locally reg-
ular. Let e be an edge of v and let P,Q be the endpoints of e. Then the
following holds:

1. If k(P) > 0, then 6(P,e) C he.
2. If k(P) <0, then he C §(P,e).
3. If k(P) < k(Q), then §(Q,e) C 6(P,e).

PROOF: The first two properties are immediate consequences of the defini-
tion of §(P,e). Hence Property 3 holds if k(P)k(Q) < 0. Assume now that
k(P)k(Q) > 0. Let [ be the line that contains e. Since 7 is locally regular
and k(P)k(Q) > 0, it follows that the circles of curvature at P and @ have
their centres on the same side of [. If R(P), R(Q) denote the radii of the cir-
cles of curvature at P, @, then R(P) > R(Q) if k(P) > 0 and R(P) < R(Q)
if k(P) < 0, which yields the lemma. O
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Lemma 9 Let v be a strictly convez polygon whose vertices do not fall on
a circle. Assume that v is locally regular. Then the discrete curvature of ~y
has at least two local mazima and at least two local minima.

PROOF: We first remark that the discrete curvature k is not constant. It is
enough to show that k has at least four local extreme points. Let Qg, Q1 €
V (7y) be defined by k(Qo) = min{k(P) : P € V(v)} and k(Q1) = max{k(P) :
P € V(y)}. Assume that the conclusion fails. Then k£ must be monotone
on the two maximal intervals in V() \ {Qo, @1} determined by Qo and Q.

Let P € V(v) be different from Q;. We can find vertices Py, Py, ... , Py
such that P, = Q1,Py = P, k(Pi+1) < k(P;) and P;P;;1 is an edge for
each i € {1,... ,N — 1}. Let e; be the edge determined by P; and P,
and set h; = he;, where the half-plane h,, was defined above. From the
above lemma follows that w(P;) (N h; C w(Pit1) () hi- Since Q C h; for all
i€{l,...,N —1}, we have that for all P € V()

w(@1) (2 cw(P) 2.

Let E={P € V(y) : Int(w(P)) N V(v) = 0}. Hence w(P) = w(Q1) for all
PeckE.

This contradicts Theorem 6, which in particular says that {w(P) : P €
E} consists of at least two distinct disks. This contradiction shows that k
must have at least four local extreme points, which shows the lemma. O

Lemma 10 Let ABC be a triangle and denote by A, the closed convez
sector with vertex A determined by the triangle. Let p be the circumcircle of
the triangle. Assume that the centre of p belongs to A and assume that A
15 a closed disk containing the triangle such that A € OA. Let r, R denote
the radii of A and p. Then R <r with equality if and only if p = OA.

PRrROOF: By possibly shrinking A we may assume that JA passes through
another vertex of the triangle, say B € 0A. Let H be the closed half-
plane determined by the line through A, B that contains C. Let § be the
closed disk with centre at the midpoint of [A, B] that goes through A. Then
0N H C w() H, where w is the closed disk determined by p since the centre
of p belongs to A.

Let a denote the angle at A of the triangle. If 0 < a < 7/2, then the
centre of p lies inside the triangle. Therefore p is the smallest enclosing circle
of the triangle so R < r in this case with equality if and only if p = 9A.

We are now left with the case a > 7/2. We first notice that C' ¢ ¢ in this
case. We claim that if z denotes the centre of A, then z € H. For if z & H,
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then A(VH C 0() H, which is impossible since C € A. Hence z € H as
claimed. We are now left with the situation A, B € @A () p and both A and
p have their enters in H. Assuming r < R implies that p( A Int(H) = 0,
which is impossible since C € A. Hence R < r with equality if and only if
p = 0A. The lemma, is therefore proved. O

PROOF: (of Theorem 1) We begin by picking Qo,Q1 € V(v) such that
k(Qo) = min{k(P) : P € V(y)} and k(Q:1) = max{k(P) : P € V(v)}.
Assume now that the conclusion fails. Then by Lemma 9 we must have

k(Qo) < 0.

Furthermore, & must be monotone on the two subintervals of V' (y) that have
Qo and @1 as endpoints.

Let A be the smallest closed disk that contains v and let r denote its
radius. Put £ = V() [OA. Then V(vy) # E by the assumptions on y. We
remark that for all P € E the interior angle of v at P is strictly less than
7. From Lemma 10 it follows that k(P) > 1 for all P € E. Moreover, if
P € FE and if at least one immediate neighbour of P does not belong to E,
then k(P) > 1.

We now claim that E is not connected. To show the claim, we assume
that F is an interval. Let N be the number of points in £. We must have
N>2 If N=2let E={A,B}. Then A, B must liec on a diameter of A
so that |A — B| = 2r. Since k(A) > % by the above reasoning, it follows
that A, B lie on a circle of radius strictly less than r, which is impossible. If
N >2let Eg={P € E:P is not an endpoint of E}, then Ey # () and
k(P) = 1 for all P € Ey. Since k(P) > 1 for P € E\ Ey and Qq ¢ E but
k(Qo) < 0, it follows that k has at least two local minima, which again is
incompatible with our assumption. We have therefore established that F is
not connected.

Let F be the collection of maximal intervals that are contained in V() \
E. Since FE is not connected, F must contain at least two intervals. Set
F ={P e€V(y): k(P) < 0}. It follows from the monotonicity properties
of k that F is connected. Since E [ F = (), there must exist a J € F such
that F(J =0, ie., k(P) >0 for all P € J.

Let J be the union of J and its two immediate neighbours. Setting
J* = J\ J, we have J* C E and k(P) > 1 for all P € J*. Moreover, J*
consists of two distinct vertices of .

Denote by I' the polygonal sub-arc of « that has J as its vertex set.
Then I' separates A into two closed domains; let U be that domain that
contains Q(v). Let I'* be that sub-arc of QU that has J* as its endpoints
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and is contained in OA. Notice that OU = I'|JI'™*. Since k(P) > 0 for all
P € J, it follows that U is convex.

Denote by [ the length of I'*. We claim that [ > @r. Noticing that
J C Int(A), we see that if I < 77, then J[JT* is contained in a disk of
radius 71 < r. This is impossible since Q(y) C U and A is the smallest disk
containing 7.

We now make a polygonal approximation of QU by selecting consecutive
points {A4;}7* on OU such that A; € OU \ I'. In particular, 4; ¢ J*, 1 <
i <m. Set V* = JU{4; : 1 <i < m} and let 4* be the convex polygon
with vertex set V*. Clearly v* is strictly convex. Let k* denote the discrete
curvature relative to y*.

From the monotonicity properties of k follows that

1
min{k(P): P € J} > min{k(P) : P€ J"} > o
Since k(P) = k*(P) for P € J, we have that
1
k*(P) > — for P € J.
r

For P € V* we let a*(P) be the interior angle of y* at P. Also we let w*(P)
denote the closed disk whose boundary equals the circle of curvature of ~*
at P.

Since | > nr, we see that if A; and A,, have been selected sufficiently
close to J*, then o*(P) > 7 /2 for all P € J*. From Lemma 10 follows that
k*(P) > L for P € J*. Summarising, we have therefore obtained that

1 A
kE*(P) > — for all P € J.
T
Let S ={P € V*: V* C w*(P)}. Clearly, Q(y) C w*(P) for all P € S so

we must have )
k*(P) < — for all Pe€S.
T

Since w*(P) = A for all P € V*\ J, we have that § = V*\ J and {w*(P) :
P € S} = {A}. This contradicts however Theorem 6, which says that
{w*(P) : P € S} consists of at least two distinct disks. This contradiction
establishes the theorem. O
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