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Abstract

For regularized hard potentials cross sections, the solution of the spatially ho-
mogeneous Boltzmann equation without angular cutoff lies in Schwartz’s space
S(RY). The proof is presented in full detail for the two-dimensional case, and
for a moderate singularity of the cross section. Then we present those parts of the
proof for the general case, where the dimension, or the strength of the singularity
play an essential role.

1 Introduction

We consider in this work the spatially homogeneous Boltzmann equation (Cf. [3])

of

E(tvv) :Q(faf)(tav)v 1)

wheref : RV — R, is the nonnegative density of particles which at tihmaove with
velocity v, and the bilinear operator in the right-hand side is defined by

N = [ [ {00 - 1wg) freosoo - vy doden. @

In this formula,’, v/, andv, v, are the velocities of a pair of particles before and after a
collision,
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wheres € SN~1. Throughout the papefl,denotes the angle betweerandv — v,.



Our goal is to prove that for a large class of collision cross sectipasid for all
initial data f;,, > 0 with finite mass, energy and entropy, i.e. satisfying the

Assumption 1:

/RN fin(v) (1 + \0\2 + \log(fm(v))]) dv < 400,

there exists a solution of the homogeneous Boltzmann equation (1)fWith) = fi,

such that whert > 0, f(¢,-) € S(RY). Apart from certain technical conditions that
are discussed below, the main assumptiorb @that nea® = 0, it looks like |6|~7,

with 1 < v < 3. Such a behavior, which naturally appears when the interaction be-
tween the particles has a long range, is called “non cutoff”. It means that all the grazing
collisions (those for whicl# is close to0) are taken into account. Under such a condi-
tion, the collision operator is expected to behave essentially as a fractional power of the
Laplacian:

Q(f, f) = —Cy (=A)0=V/2 f 1 more regular terms

whereC'; > 0 depends only on quantities which are somehow controlled.

Relevant existence results were obtained in [2], [13], and [8]. Previous works have
demonstrated partial regularity under rather general conditions (Cf. [1], [5], [6], [9],
[10], [13]) or C=° regularity as here, but under severe restrictions on the equation :
namely, the cross section did not dependefw, (Maxwellian molecules assumptions)
and the solution was radially symmetric (Cf. [4]).

In order to keep the paper rather short, we refer to the quoted papers for a more
complete history of the problem, and for discussions on the physical relevance.

The precise conditions that we impose on the cross settiorb(cos 0, w) are the
following:

Assumption 2: We suppose that

10| b(cos 6, w)

>K 3
weRN, e[-5,8] (1 + w[?)®  ~ )
for someK > 0, a €]0, 1], v €]1, 3], 0 €]0, [, and that for alp € N,

03¢ |D,b 0
wp 1 Dybleos0.w)

wERN , fe[—7,7] (1 + ’w’2)7‘p

<Gy, (4)

wheree > 0 is a given numbet;,, C; > ( are given constants, add, is any derivative
of orderp with respect to the variable w.



Note that the usual regularized hard potentials without angular cutoff satisfy As-
sumption 2; those are cross sections of the form

b(cos 0, w) = by (w) ba(0),

whereb; is a smooth and strictly positive function such thatw) ~— oo |w|* for
a €]0, 1] andby is a function such that () ~g_¢ ||~ for v €]1, 3[.

We can now state our main theorem :

Theorem 1: Let b be a cross section satisfying Assumption 2 gidbe an initial
datum satisfying Assumption 1. Then, there exists a solution to eq. (1), (2) with initial
datumf;, lying in L>([tg, +oo[; S(RY)) for all ¢y > 0.

Let us now rapidly discuss the assumptions and the conclusion of this theorem. Note
first that the initial data are only assumed to belong to the space of functions satisfying
the natural bounds coming from physics (finite mass, energy and entropy). It is likely
that the assumption of finite entropy can be somewhat relaxed (Cf. recent works by
Villani (Cf. [11])). The assumptions on the dependence with respegtofothe cross
section are also quite satisfying, and probably close to being optimal (Cf. [1] to get an
idea of what really optimal assumptions might be). The situation is however not so good
as far as the kinetic part of the cross section (that is, its dependence with regspect }o
is concerned. First, we basically assume that this dependence is smooth, and this is not
true for inverse power laws (Cf. [3] for example). While for such a cross section (having
a singularity near = v,) some smoothing effect certainly occurs (Cf. [1] for example),
it is not clear whether a complete smoothing of the solution can appear (the study of
the Landau equation with that kind of cross section would suggest that the complete
smoothing should indeed appear, Cf. [7]). Secondly, we also assume that (the kinetic
part of) the cross section is strictly positive. This is also not true for inverse power laws.
The study of this problem in [1] suggests that this assumption of strict positivity could
maybe be relaxed. Most probably however, to look for a result for “true” hard potentials
(that is, coming from inverse power laws) would lead to tremendous technicalities (the
proof of our theorem is already quite technical), which we leave to future works.

Finally, we would like to put the stress on the following facts: the conclusion of
Theorem 1 most probably does not hold when soft potentials or Maxwellian molecules
are concerned (no gain of moments is expected in such a situation) or when the singular-
ity in the angular variable is removed (no gain of smoothness is expected in this case).
Under our assumptions, we think that maybe the solution of the Boltzmann equation is
even smoother tha8, it might belong to some Gevrey space for example.

Since our computations are rather long, we first present the proof of Theorem 1 in
the case when the dimensions = 2 and when in Assumption 2, eq. (4), the term
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|63~¢ is replaced by#|?>~¢ (that is, the singularity in the angular variable is moderately
strong). These simplifications enable to present complete proofs: this is done in Sec-
tion 2. Then, in Section 3, we explain how to modify the proof to get the result in the
general case. Finally, for the sake of completeness, we give in an appendix the proof of
a (more or less standard) interpolation lemma which is crucial in our proof.

2 The simplified case

In this section, we prove Theorem 1 in the case when the dimensigr=2 and when
ed. (4) in Assumption 2 is replaced by
p LT IDpble0s0,0)
weR?, e[—m,m] (1 + ’w’ ) P

<G, (5)

where (as in eq. (4y > 0 is a given number;,,, C; > 0 are given constants, ard,
is any derivative of ordep with respect to w.

When velocities are restricted to two dimensions, it is possible to parametrize the
pre- and postcollisional velocities by a rotation of the relative velacityv,:

, V4 Vs UV — Vs

= 6
v 5 +Rg< 5 ), (6)
’ UV 4+ Uy UV — Uy

= — 7

where R, denotes a rotation by the angle Then the integral oves¥~! in (2) can be
replaced byff7r df, which simplifies many of the subsequent calculations.

Thanks to the change of varialfle~ 6+, which exchanges’ anduv’,, the collision
operator can be written

=L {re - s 0}
[b(cos 0,v —vs) +b(cos(0 — ), v — i) L9 7 /2)(0)
+ b(cos(f + ), v — vi) L_r/2,0] (9)] dfdv,.

As a consequence, it is enough (as far as the Boltzmann equatfor- Q(f, f) is
concerned) to assume thidtos(-), v — v,) has its support included ir-7/2, 7/2].



We shall use in the sequel the following (easy) consequences of e@’ﬁ(ﬁhd()g
are constants which depend onlyﬁb) ;

D, f:/j? [b(cos 0, Le) (% — b(cos H,w)] d@‘

cos 5/ (cos 5)2 9
<C 8
e 4 T+ Py =% ©
|0]>—¢ pr(cosﬁ,ﬁ) o o
sup . < .
weR?, 0e[—7 /2,7 /2] (1 + w[?)r» P

The proof of Theorem 1 (under the assumptions of this section) runs as follows: in
Section 2.1, we split quantities like

| (DeQla. £)(0) Dy s o

(whereDy, is any derivative of ordek) in a certain number of terms. Each term is then
estimated in Section 2.2. Finally, we gather the estimates in Section 2.3 to conclude the
proof of our theorem.

2.1 Decomposition

First, we observe that (6) and (7) imply the following useful formulas :

0
v = 7 R _o¢v' +tan = Rz, (20)
cosg 2 2
/ .
v —v:sm§Rg+%(v—v*), (11)
, 0
v — vy :cosiRg(v—v*). (12)
2

It is in these formulas that the simplifications related to the two-dimensional case
are obvious: For fixedangle of deflectio, all relations between velocities before and
after collision are given by some fixed linear operator, and hence these transformations
are smooth.

Denoting byr;, the translation operator (that is,f(x) = f(z+ h)), we write down
the invariance of) with respect to translations in the form

(hQ(g, f))(v) = Q(hg, Trf)(v) .



In the following we denote any generic differential operator of ofdey D;,, and when
it is necessary to indicate which variables it is acting on, we write,, for example.
A consequence of the translation invariance is that a Leibnitz formula holds for the
collision operator: for any derivativ®;, of orderk, there exist derivative®), of order!
such that

k-1
(DrQ(g: ))(v) = Q(g: Dif)(v) + ) Ci Q(Dy—19, Dif)(v),

=0

and
k—1
[ (Do 1)) Dus@)do= | Duf()Qo. Dep)e)do + Y Ch B, (03
R2 R? 1=0

where
By = /}R2 Dy f(v) Q(Dy—19, Dy f)(v) dv. (14)

We then use the pre/post-collisional change of variables,f — +/, v, -6, and
get

w/2
Ba= [, [ ] P {Dsw) it
=Dy f(v) Dklg(v*)} b(cos 0, v — v,) dfdv.dv (15)

w/2
/R2 /]R2 / {Dkf Dkf(v)} Dy f(v) Di—19(vs) b(cos 0, v — v,) dOdv,dv.

w/2

The next step in our calculation is to carry out the change of variablesy’ (with
the variableg andwv, fixed; this has been used eg. in [1]). From (10) and (12), we get
the following formulas,

V4 Vs UV — Vs
= R 16
w= T (1), (16)
1 0
v = 7 B_ow +tan - Rz, an
cos § 2 2 2
0
]w—v*]:cos§\v—v*\, (18)
0.2
dw = (cos 5) dv, (29)



which then give
0
s w + tan 5 Rgv*)

By = / / Dkf( )le( 9
R2 JR2 J—7/2 sy 2
w— v,
X Dp_ «)b( cosb, dfdv.d
k-19(v:) b( cosg ) (cosg) R

/2
/ / Dy f(v) Dy f (v) Dg—19(vs) b(cos 0, v — v,) dOdv,.dv
R2 JR2 J—7/2

Writing thenw instead ofw and using the notation
0
ngv + tan 3 Rgv*,

vV = 9

CoS 5
we get
w/2
Bu={ [ [ Du)Diglv.)
R2 JR2 J—7/2
- UV — Uy 1
X | Dy f () b( cos, ) 7 — Dif(v) b(cos 0, v — v,) | dfdv.dv.
cos 5~ (cos 3)?
Next, the termsBy, are split asBy, = B}, + B, where
w/2
sh=[ [ [ D) Dif @) - Dif ) Dicag(o)
R2 JR2 J—7/2
— o, 1
X b(cos 0, Y Q; ) dfdv..dv
cos 5 (c0s2)
w/2
Bj, 2/ / Dy f(v) Dif (v) Dr—19(v+)
R2 JR2 J—7/2
UV — Uy 1
X |b( cosb, — b(cosb,v — vy) | dfdv,dv.
[( cosg)(cos%)2 ( v i

2.2 Estimates
We introduce the weightefi” and Sobolev spaces and their following norms

Definition 1 : For all p € [1, +oo[ andr > 0, we define the spade’ (RY) by its norm
1y, = [ 1F@P 0+l do. (20)
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For all k € N andr > 0, we also define the weighted Sobolev spHE¢ER”Y) by its
norm

Hf”%l,’f(]RN) = Z /RN |8af(x)|2 (1 + |x|2)7" dz. (21)

lal<k

We begin with an estimate of the terrﬁﬁl (keN,l=0,1,..,k—1).

Lemmal :ForkeN,[=0,1,..,k — 1, one has the estimate

B2 < C2llglly, 171 (22)
for some constan®’; > 0.
Proof :We recall that
w/2
si=[ [ [ e Dif) Dicrgton) (23)
R2 JR2 J—7/2
V — Uy 1
X |b( cosb, —b(cosO,v — v,)| didv.dv,
[ ( cos% ) (cos %)2 ( )

so that (afterk — [ integrations by part, and denoting y;,_;.» a derivative of order
k — [ with respect to the second variabte-{ v,))

Bl [, [ o) ) gte,)

w/2 - 1
x Dk_m/ [b(cos@, EhLY — b(cos 0, —v*)} 9 dv,dv

/2 cosg ~ (cos %)2

<C; [, [ 1D @D @) a0n) (4 o= v dodo.
<C2llgllzy, 1171

O

We now study the ternBj,. Integrating by parts — [ times with respect to the
variablev,, we get



w/2
sh=co [ ] D@t

N — Uy 1
X Dy_pp, ([le(fu) — Dy f ()] b( cos ¥, vcosg ) > (cos %)2 dfdv.dv (24)

N

1
= (=)™ C™; Biim
0

3
]

with

w/2
Bl = [, [, ] PR 0)90) D (D150) = DS )

1
0

X D _i—miw, b( cos b, v v*) 5
cos5  (cos3)

5 dfdv.dv.

In those formulasp,.,, denotes a derivative of ordewith respect to the variable. .

Lemma 2 : We suppose that € N,[ =0,..,k —1,andm = 1,..,k — [. Then there

exists a constanf’},, > 0 such that

| Bhim!| < Chim \fg‘lLérk_ m HfH%’fk_z_m

l—

Proof: Note first that for a given functioh, one has (forn > 1)

| Do [1(0) = h(v)]] < Sing!m\Dmh(’f))\-



Then,

w/2 0
Blanl < [ [, [ IS0 002 1550 517 1Dysa0)

1

Dk,l,mb( cos b, —) ‘ dfdv,dv
Cos 5

< /”/2 (L o [ [ 390 (1D + 1Dmias @
> a2 9 |COS6|k l—m+2 r2 Jr2 g * k m+l
x C3 (14 v — v 2)*=1=m dvduv,df

c3 w/2 9 gle—2
< k—=l—m / |sin Zm |9 |
2 /2 2" |cos Glk-tmmt2

/ / (0) [DF @) (14 [0 (L + o 271 dudo,

Cr- z / 4 10]°2
+ mn sin =" ——M——— 25
7r/2‘ 2 \cosg\k‘ =m+2 (25)

0 0
/ / (04) | Dyt f(9)]? (1 4 (cos 5)2 |0 — v, )=t (cos —) dodv.do,
R2

where the factofcos g)Q in the last term is simply the Jacobian in the transformation
v — ¥ (see formula (12)). Finally, we see (recalling that- [ < k) that
| Biim| < Ciim gllzy IFil )
k—l—m Tk—1

—m

with
w/2 ‘9’572

0
cL =3 / sin =" ———————df
klm k—l—m _ﬁ/2| 1n2| |cos§|k*l*m+2 ’

and Lemma 2 is proven. a

We now turn to the case when = 0. We have to estimate the term

w/2
Blo= [, [, [, P @sw) 05— Disw)

v—0
X Dg_j.p, b( cos b, 6*)
Cos 5

1
(cos 5 2 dfdv.dv.
2

Lemma 3 : There exists a constadt?, > 0 such that,

(Bhol < Chillgliy, 112

Tk—1tT 3
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Proof: We first note that
1
Duf(8) — Dif(v) = (6 —v) - /0 VDU (1= 5)v+ 55) ds.

Then,

Bl = \ L] // Dy f(v) g(uz) [(ﬂ - [ YD 5ot ) ds]

v — U
X Dy_ib( cosf
k-2b( " cos g ) (cos §)k—1+2

<L L] // o) g P+ [ D= sy sofas]

[0 = o] Gy (1+ o — v ) |02

dfdv,dv

———— dfdv.dv.
(cos g)k_l”

Using formula (11), we see that
5ol = |sin 2] |5 - v.
V— U = |SI | |V — Vx|,
2

so that

1 w/2 ~ .
Bl <y [ [ [ o0 D o= o (14 o — Py
R2 JR2 J—7/2

0
x Ci_;|sin 1 672 dfdv,dv

(cos g)k_l”

1 /2 . 1 i
5 Lo Lo [ sl [9ns@—sersoras @

x Cp_) (14 [v —v,]?)™1 | sin §| 19|52 dOdv,dv.

(cos g)kflJrZ

We now introduce the variable = (1 — s)v 4+ s . Its Jacobian is given by the
formula

0
du = (1 + s* (tan 5)2) dv .

11



Then,

1 /2 0 1
|Bjiol < 5/ / / 9(v.) | Dy f (v)[? <(1 + \tangl) [vs] + — !’U!)
R2 JR2 J—7/2 COS 5

3 DI DI ’Sing‘ |6]—2
X Ck:—l (1 + |U| ) (1 + |U*| ) W d@dv*dv
2

1 /2 pl )
+§/ / / / g(v) [VD f (W) |5 — vs| (14 v — v, |?) %
R2 JR2 J—7/2 J0O
. 9 _2

z 08
| sin 2| 4 ds : dOdv.du.  (27)

x Cp_
"= (cos 8)k=1+2 1 4 52 (tan §)

Noticing that

-1
9
v = <(1—8)Id+ 89 R—%) [u—staniR;rv*},

cos 5
we see that
2 9 2
lv|* <4 ‘u — s tan - Rxu,
972
< 8 ([ul? + [vs]?).

In the same way,
0 _1

17:<5.Td+(1—s) cos—R9> [u—k(l—s)sin—f% Ev*},
2 2 2 at3

(28)

so that
2
<8 (Jul? + v ).

- .0
5] < 4‘u+ (1-y9) smiRng%v*

Then, we obtain the estimate
1 5 2
|Briol < Ciy ||!J||L§TIHJrl ||f||Hf N
k—1T3%

)

with (for example)
o3 /2 0 1 |sin &| |62
cp = = / (1+ tan =| + —— + 2v/3(18 Tkl) 2 dh. (29
kl 2 771-/2 ’ 2’ COS % ( ) (COS g)k_l+2 ( )
This concludes the proof of Lemma 3.
Finally, we estimate the main term (that is, the tefmy(g, Dy f)(v) Dy f(v) dv
which is crucial for the gain of smoothness). The computations are done here for any

dimension}V, since they are identical for all dimensions.
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Lemma4 : Let N > 2. There exists a constadt; > 0 depending only orf;,, and a
constantC; > 0 such that

—/RN Q(g, Dif) () Dy f(v) dv < =Co || Diof [376-172 + Cr 1 Flly 1 e -

Proof. We compute (for ally > 0)
—/Q(g,Dkf)(v) Dy f(v) dv
:% /RN /RN /SN1 bg(vs) Dy f(v) (Dif(v') — Dif(v)) dodv.dv

- % /RN /RN /S L, balvs) (Dkf(v’) - Dkf(v)>2 dodv,dv
*% /RN /RN /SN_I bg(v.) ((Dkf(v’»2 — (Dkfw))?) dodv,dv.

Then we note that thanks to Assumption 2 (more precisely, to eq. (3)), we have
b(cos 0, v — vi) > lge—s,6(10 "

so that according to Corollary 2.1 and Proposition 3 of [1],

/ / / ba(v.) (Dkf(v’)—Dkf(v)>2dadv*dvZCgHDkaH(W_l)/g,
RV JRNV JgNn-1

with C,, depending only on (an upper bound of) the entropy and orLtim®rm of g.
But those quantities are controlled by the same quantitie;fowheng = f and f
satisfies the Boltzmann equation under our assumptions.

On the other hand, according to Corollary 1.2 of [1] (cancellation lemma), we know
that

1
2

/RN /]RN /SNlbg(’U*) ((Dkf(v’))2 - (Dkf(’U))Q) dodv.dv

< Crlgll 3 11Dy < C llally 1112 -

This concludes the proof of lemma 4.
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2.3 Adifferential inequality

In this section, we denote hy any strictly positive constant which can be replaced by
a smaller strictly positive constant, and Byany constant which can be replaced by a
larger one.

Gathering the estimates of the previous section (that is, formula (13) and Lemmas
1 to 4) and summing with respect to all derivatives of orbewe see that foy solu-
tion of the Boltzmann equation under our assumptions (and supposing without loss of
generality that the sequeneg is nondecreasing and is such thgt> 2), we get the
differential inequality :

d
Sl < =Cllfllpsi-se + D HfH?{f Iz

27‘k+1

Using Proposition 1 of the appendix, and supposing that N, we see that for some
d €]0,1[ and somes > 0,

§
||f||Hk < ~ClIf 13 esc-vrz + DI - I

According to [14], for example, we can suppose that fosall 1, the quantity]| f|[ .
is bounded on all compact sets]0f +oo] (that is, all moments ir.! are |mmed|ately
gained). Then, we obtain

IIfIIHk < =ClfIBksrnse + DI oy
For alle > 0, one can findD,. > 0 such that the inequality
(L4 [ ODM <o (14 g0V 4 D (14 (¢ N
holds. Then,

1 e = ([ QP @+ gyt d§>
1-9
k+ 251 ~N-1 ?
< (¢ [ FOP a+igt = e+ . [ IFOF -+ 1P ae )

)

1-3 _
<t ([ IHOPa TR a) !

[SIIS9)

m2—5’

wherem is the masg' f dv of f. Finally, we obtain the differential inequality
)

d 1-¢ o
%Hf’ﬁ{k < —C|[frscronye + D™ : 11150 12 + DD 2 m?™°,

14



so that there exist®’ > 0 such that

d C
Al < =5 1 llpecimne + D'

Using (for example) Jensen’s inequality, we see that

_1 1+"/7_1
24 N _ Flen2 2k 2(k+N+1)
167 = ([ V@R v leptac )

< JL R i ([ O g e )T
RN BN
< T [ uecr- o

so that the differential inequality can be rewritten

—1
d C a1 o
(1118 ) < =5 mewss (1) D

Using a standard argument (first used by Nash for parabolic equations), we see that
for all % big enough (and consequently for &b, f lies in H* as soon a$ > 0. By
interpolation (thanks to Proposition 1 for example), we see that (still when), f lies

in HE for all k, s > 0, and therefore lies is.

Note that in the previous computation, one should use approximate solutions of the
Boltzmann equation in order to give a completely rigorous proof. For example, solutions
of the equation

O fe = Q(faafa) +elyfe,
f6(07 ) = fin * ¢cs

where ¢, is a sequence of mollifiers, can be used. This point does not lead to any
difficulties.

Thus, we conclude the proof of Theorem 1 (in the particular case \ihen2 and
when (4) is replaced by (5) in Assumption 2).

3 The general case

In this section, we explain how to modify the proofs described in the previous section
to get Theorem 1 in any dimension and for all cross sections satisfying Assumption 2.
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3.1 Higher Singularity

We briefly explain here how to prove Theorem 1 when the (angular part of) the cross
section has a higher singularity, that is when (4) holds but not necessarily (5).

Note first that the ternBB?, can be treated exactly as before, and the same is true for
the termsB},,,, for m # 0, 1.

The two last terms®},, andB;,;) can be treated simultaneously. Let us concentrate
for example on the case whein = 0. The quantity that we wish to estimate is

w/2
Biyo = / / Dyi.f(v) g(v*) [Dyf(©) — Dyf(v)] bdfdv*dv.
R2 JR2 J—7/2

Then, the termD, f(¢) — D, f(v) can be bounded by|*~+7 (with > 0 small, and
at least small enough fey — 1 + 1 < 2 to hold) times a fractional derivative ¢f, of
orderl +~ —1+n < k -+~ —2+n. Note that a symmetrisation by parity with respect
to the variable) is necessary to get such an estimate.

Then, there exists a constant numbgy such that (for some > 0)

|Briol < Cillglley [1£117 00215

and the differential inequality of Section 2.3 becomes

d
Il < =ClIAL + D |20 1]l L1

k+'\/_5_1

Finally, we choose) > 0 such that

—1
vy=2+n< T
2
Note that this is possible sinee< 3.
The rest of the computation is similar to what has been done in Section 2.

3.2 Higher dimensions

It remains to prove that Theorem 1 also holds whén- 2. Most of the ideas used in the
two-dimensional computation carry over unchanged in higher dimensions. However, in
two dimensions, the representation of the pre- and postcollisional velocities by rotations
in a fixed plane makes the consequent calculations much easier. The new difficulties that
arise in higher dimensions come from the difficulty in finding smooth representations
of the parameter spac®? x S? in dimension3) in terms of pre- and post-collisional
velocities.
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We show here how to carry out the partial integrations in the expredsipiisee
eqg. (15)); this shows all the essential differences. We restrict ourselves to dim8nsion
for the sake of simplicity.

The corresponding expression in three dimensions is

|, Dt 0)@Dicig. Dif)(w)do (30
= / / Dy f(V)Dyf(v)Dy_1g(vi)b(cos 0, v — vy) dvdvydo

—/ / Dy f(0) Dy f(v)Dg—19(vs)b(cos 0, v — v,) dvdv,do.
Rr3 JR3 J52

The first term in (30) can be rewritten using the transformation of the “cancellation
lemma” (see [1]). Ifv. ando are kept fixed, we make the change of variabtes- v;

the Jacobian for this transformationdst (%) = 1 cos? 4. In higher dimensions, this

changes t@ cosV 1 £.

N.B. The angl& alwaysdenotes the angle between the relative velocities before and
after a collision, exactly as defined in the introduction. Here the expression is computed
for a fixedo, which is slightly at variance with the expression (16) — (19), where the
change of variable is carried out for a fixed angle of rotation. This explains the factor
0082 g

In this way we obtain

/ / Dy f(V")Dy f (v)Dy_1g(vi)b(cos 0, v — v,.) dvdv,do =
RS JRr3 J 52

',

cos b, L) dv'dv.do .

/Rg /R o DE ()DL () Diag (v-) (605(3/2))2b< cos(0/2)
(31)

We can now change names of the variables, writingstead ofv’, and instead of
writing v = v + z, where

z = |v— v, tan(6/2) Q, (32)

and wherd? is a unit vector which is orthogonal to- v, = w, and in the plane spanned
by v — v, ando (this is well defined, modulo a sign, whén# 0). The result is

L [ Der @) Duf () Di g b(cosb,1) dudodor =

/ / Dy f(v)Dy f(0)Dg—19(vy) 1 2b(cos@,L) dvdv.do .
R3 Jr3 Jg2

(cos(6/2)) cos(0/2)
(33)
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To simplify the notation, write

- 4

b(cos b, w) = Wb(cos 6, W) (34)

and hence (30) becomes
| Det)@Dirg, Dif)w o
= [ [, | D@Dt (Dif(@) ~ Duf () bleos8,w) dud.do
R3 JR3 J§2
+ [ ] p@bige)nise)
R3 JR3 JS2
X (B(cose,w) - b(cosa,w)) dvdv,do. (35)
SettingD,; f = F, the inner integral in the first term of (35) can be written

/52 (D f (D) — le(’u))g(cos 0,v — vy) dvdv,do =

_ /O " ( /S (Pl 2(0, 0,w) ~ F) d(p) b(cos,w) sin0dd.  (36)

Then we writev — v, = w = (wy, we, w3)’. If we suppose thabs, the third component
of w, is positive, one possible representatior: of z(0, p, w) is

ngoy2) (03 ) coste)
= SO | A ) comests) | @
w3 + w3 wo/w? + w3 + w3 sin(p) + wyws cos(p)

Differentiating the innermost integral of (36) under the integral gign times with
respect tav gives integrands of the form

Dy.F(v—2) =Dz D1, F(v—2), (38)
Do F(v — 2) =Daupz D1, F(v — 2) + (D1.p2)* Do F(v — 2), (39)
D3.wF(v — 2) =D3.y2D1,, F(v — 2) + D2.y2D1.4p2Da., F(v — 2)

+ (Dy.2)® D3, F(v — 2), (40)

and so on (recall thaD;., denotes a generig-th order derivative with respect to the
(components of}). The problem comes from the factors deriving from the chain rule:
D;..,z is homogeneous of degrée- j in the variablesy, and so this seems to introduce
new singularities into the problem. Of course this is a problem only for smaihd so

18



now we assume that the equation has already been split into a paftovith 1, which
we go on to study, and a remaining part where this is no problem. We write

Flv+2)=G(v,2) + Pji—1(v, 2),

whereP;_; (v, z) is the Taylor polynomial of degreg— 1, defined as

4! o o
Pj—l(va Z) = Z l: TN '8{)}8526{)317(1}) Z'{l Z%Qz:j))i”.

0<j1-+iatis<j LI1I2I3
Now, D;/ .G (v, z) involves derivatives of” up to order;’, and vanishes at least to order
j —j atz = 0. That means that if (v + z) is replaced byG(v, z) in terms like (40),

then the singularities emerging from the chain rule are cancelled, and
Dj /1 G(v,2)dy (41)
5

involves only derivatives of”(v — z) up to orderj, multiplied by bounded functions of
w. It also has a factoftan(#/2))’, which helps in cancelling the singularity bihear
0 =0.

But the inner integral of (36) also has a term

Dj v /S1 P(v,z)dy. (42)

It is clear that after the integration overonly terms wherej; + js + j3 = 2m is
even remain, becaus€t, ¢, wy, wz,w3) = —2(0, ¢ + 7, w1, w2, w3). Moreover, any
monomial z{' 23’ z}* can be written as a sum of terms of the fofmz; + asz2 +
azz3)?1172473  where thea; are suitably chosen real numbers. Using formulas like
Acos(p) + Bsin(p) = VA% 4+ B?sin(p + 1), wherey = (A, B), we can take the
expressions from (37) and write

a1z + agze + azzs = tan(6/2)

xsin(p +4) | af(w] +wd) + ad(wi + wi) + a(wi + w}) ,
—2a1w1a3w3 — 2a1w1a2w2 — 2a2w2a3w3

wherey is a rather complicated expressiomeofind thea;. This expression, which can
be verified by straightforward calculations, shows that the singularities that come from
the parametrisation are just apparent, and that

/1(a121 + axzs + azzs)®™ dp = (tan(0/2))*"
s

af(wj + w3) + a3(wi + wi) + aj(wi + w}) " om
X sin“™ () dy,
—2a1w1a3w3 — 2a1w1a2w2 — 2a2w2a3w3 0

19



i.e. a polynomial of orde2m in the components oy, and at this point the choice of
parametrisation in (37) is no longer visible. We can conclude that (42) is zero, because
it is a j-th order derivative of a polynomial of order at mgst 1.

Thus we see that the proof of Lemma 2 can be translated to this case, with very
little change. Of course all the calculations done here assume that the fuiti®on
sufficiently regular, but this can be achieved by a density argument, just because the
involved operations do no introduce any unnecessarily high order of differentiation.

To conclude, we also comment on the changes of variables as in (25), (26) and (27).
We have already seen that far =

dv = i cos? Q dv,
though it was then expresseddhandv. The variableu in (27) is simply a convex
combination ofv and¢. With notation (32), we get

u=(l=s)v+s0=uv.+w+slv—utan(6/2)
= v+ s|v—uv, tan(/2)Q

It is hence easy to compute the Jacobian corresponding to the one in (27), and also to
verify that (28) holds.

This concludes the proof of Theorem 1 in all cases.

Appendix : Interpolations

Definition 2 : Letk € R, andp € N. We denote by{I’j(RN) the weighted Sobolev
space of functiong such that

gy = 3 [ 16D O R de < oo

laj<p”®

The quantity|| /|| (z~) defines the natural norm oH¥(RY), and endows it with a
structure of Hilbert space.

Note that whenk € N, then Hz’j is nothing else than the space defined in (21),
endowed with an equivalent norm.

We prove here the following result of interpolation, used in Section 2.3.
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Proposition 1 : Letk € R,, p € Nande > 0. Then, there exists a constant number
Kk pen > 0such that for allf € D(RY),

-3 1—J
2= 2 ) 2~ 2 2 1-2—
A m vy < Kipen 11171 P 1 gy vy 11 e vy

where

J = | (log(ke™ + 1)) /log 2]

and where| x| denotes the largest integer smaller than

We begin by the proof of the following result:

Lemma5 : Letk € Ry, p € Nande > 0. Then, there exists a constafi}, , > 0 such
that for all f € D(RY),

Hf”?{{;(RN) < Ky HfHHQC;E(RN) HfHH(’)”E(RJV)'

Proof: We write down

11y = Z/ (1+ €Y (O 7o) de

lal<p”®

<> [ IR a0 7)) i
<3| Lol Prou ) Fload,

Then, we notice that
0a((L+[E7)* g(©)) = D Pa—p(€) (1 + [P 5g(¢),

B<a

where theP,_ 3 are polynomials of degreer| — |3|.
Introducing constant&’,, 3 > 0 such that

Pa—p(€) (1 + €)1 < 1 g,
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we obtain the estimate

11y < D >

la|<p B<a

/ S(€) (L4 [€PY 118 0, 5 () Fle) dg'

/2 R
| Paes () (L4 €)M 1=E 0, 4 f(€)]

/2
X | Pag(€) (1 4 [¢2)klelriflrel ) f(e)] de
. 1/2
<Y YK, ( / 1+ |§|2)'““|f(§)l2d§)
la|<p BLax
/\ 1/2
y ( / (1+15\2)k‘€!(')“+ﬁf(§)\2d£) ,
¢eRN
and the lemma is proven. O

Proof of proposition 1. We apply Lemma 5 to get
1/2 1/2
1 llzg vy < () 110 e gy 1 e vy

1/4 3/4
< (K ) () T e oy 1 e vy

and then, by induction, for all € N,

J
-1 J—1
(TS | (1A e N 1 et
: 2J+1

We then consider the smalleéte N such that’/+! > § + 1, that is,

J= | (log(ke™ + 1)) /log2] .
Denoting
J .
i
K'Ilclvpve = H(Klgf(ijl) 872j p)2 Y
j=0
we obtain the inequality

—1-J

1 ey < Kipe HfHLz .

21]

I (43)

We now use the following lemma :
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Lemma6 : Letr € R,. Then, there exists a constaﬁtﬁf’N > 0 such that for all
f e DRY),

2 "
gy < K7 Mlles I gy

Proof of lemma 6: We writex = (x1,..,zxn), t = (t1,..,tn). Foralla > 0,

[Py @R de = [+ jaPy s ﬁ dz

= [a+lalyes) / / o N( |t)|) )dtl..dtNdx
< [Lariapry@la [ o) o

£t
aN(W)\ < m;N\aﬁf(t)’ Pa(t)] (1 -+ [t[2) =19,

But

whereP; is a polynomial of degree of ordé¥ — |5|. We introduce a constamst’gl) >0

such that
|1Pa(t)] (1 + [t~ V=0 < g (1 4 Jtf2) o V=02,

we see that
/ (1 + |e2)7 |f () de < / (1+ |22 £ (2)] da
RN
< 0K [ s e e

IBISN

1/2
< > Ky </RN(1+Iul2)2“du>

<[ v ([ rore)”

The first integral is finite for alla: > N. We conclude by taking = N/4 + 1.

We now end the proof of Proposition 1. We use eq. (43). We get

1

-5 J

l\.’)\»—l

-1
Hf\!2 i

. N <K K/l/
HfHH (R k‘,ps( 2p ( +1),N ) op (k)4 M1
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1—J
X ey 11y

We get proposition 1 by denoting

_1
Kk:P&N - Kk:pe(Kg;( k1), N)2 ’

O
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