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Abstract

The well-known and established global optimality conditions based on the Lagrangian
formulation of an optimization problem are consistent if and only if the duality gap is zero.
We develop a set of global optimality conditions which are structurally similar but which are
consistent for any problem with continuous objective and constraint functions. This system
characterizes a primal-dual optimal solution by means of primal and dual feasibility, primal
Lagrangian e-optimality, and, in the presence of inequality constraints, §-complementarity,
that is, a perturbed complementarity condition. The total size £+§ of those two perturbations
equals the size of the duality gap at an optimal solution. The system developed can therefore
also be used to explain, to some degree, when and why Lagrangian heuristics for integer and
combinatorial optimization are successful in reaching near-optimal solutions. Experiments
on a set covering problem illustrate how the new optimality conditions can be utilized in the
construction of Lagrangian heuristics. For more general integer programs, we outline possible
uses of the optimality conditions in column generation algorithms and in the construction of
core problems.

Key Words: Global optimality conditions; nonconvex optimization; integer programming;
Lagrangian relaxation; Lagrangian heuristics; set covering problem; column generation; core
problems.

1 Introduction

Classic optimality conditions for optimization problems are based on the fulfillment of primal-
dual feasibility, primal Lagrangian stationarity, and complementarity conditions, associated with
a particular Lagrangian function; global versions of them are fulfilled precisely at saddle-points
of this function. These conditions are also the foundation of many algorithmic approaches
for the search of (near-)optimal solutions. In one such class, the optimality conditions are
approximated with simpler systems, such as in sequential quadratic (SQP) and linear (SLP)
programming, and interior point methods. Other approaches are associated with satisfying a
subset of the conditions while making adjustments in the primal-dual space in order to satisfy
the rest. Among these we may count the simplex method for linear programming, while dual
cutting plane algorithms perhaps more obviously belong to this class of methods. When there
is a positive duality gap, however, which is typically the case with nonlinear, integer, and
combinatorial optimization problems, the primal-dual system describing the set of saddle points
of the Lagrangian function is inconsistent.
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We consider the problem of finding

f* = minimum f(x), (1a)
subject to g(z) < 0™, (1b)
z € X, (1c)

where f : " — R and g : R" — R™ are continuous, and X C R" is compact. We assume
that there exist feasible solutions to the problem, and hence also a compact set X* of optimal
solutions. An e-optimal solution to any problem refers to any vector that is feasible and deviates
in objective value at most ¢ from the optimal one; the set of such vectors in the above problem
is denoted X°©.
Let
O(u) = mil;iE%um {f(z)+ uTg(x)} , u € R™, (2)

be the Lagrangian dual function associated with the relaxation of the constraints in (1b), and

0" := maximum 6(u), (3a)
subject to u € R, (3b)
be the Lagrangian dual problem. The duality gap for this primal-dual pair then is I" := f* —6*.

Letting (z,u) € X x R, we define the global optimality conditions for the problem (1) as
the combination of Lagrangian optimality, primal feasibility, and complementarity:

f(@) +uTg(z) < 0(u), (4a)
g(z) <07, (4b)
ubg(z) = 0. (4c)

The following result establishes the consistency of the system (4). Similar results can be found
in [Sha79a, Theorem 5.1] and [BSS93, Theorem 6.2.5].

THEOREM 1 (primal—dual optimality conditions). Let (z,u) € X x R"". Then, the following three
statements are equivalent.

(i) The pair (z,u) satisfies the system (4).

(ii) The pair (z,u) is a saddle point of the Lagrangian function (z,u) — L(z,u) := f(z) +
uTg(z) over X x R, that is,

L(#v) < L@u) < L), Vlg0) € X x R,
(iii) z solves the primal problem (1), u solves the dual problem (3), and f* = 6*. O

COROLLARY 2 (a primal characterization of optimality). Given any u € R,

X*, if O(u) = f*,
0, ifO(u) < f*

{z € X | (4) is satisfied } = {

holds. O



There are two possible cases in which #(u) < f*, whence the system (4) is inconsistent: (a)
the vector u is not optimal in the Lagrangian dual problem (3); (b) there is a positive duality
gap, that is, f* > 6*. Convex problems satisfying a Slater constraint qualification define a class
of nonlinear programs for which the duality gap is zero (cf. [BSS93, Theorem 6.2.4]); linear
programming is another important class of such problems. In the nonconvex case, Corollary 2
in general becomes a theorem about the empty set. Note further the following easy consequence
of the above, which is a quite negative result: if there is a positive duality gap, then a primal
optimal solution will never satisfy the global optimality conditions (4) for any value of v > 0™.
If, in particular, the relaxed constraints are equality constraints (see Section 2.2 for results
corresponding to the above), then the solution to the Lagrangian relaxed problem can never
yield a primal optimal solution, regardless of the choice of dual optimal solution.

Nevertheless, and somewhat surprising given that it is in fact based on the same system (4),
Lagrangian relaxation is a popular and often successful approach to integer and combinatorial
optimization problems. The interest in Lagrangian relaxation started with the publication of
the papers by Held and Karp [HeK70, HeK71] on the application of subgradient optimization
to the Lagrangian dual of a formulation of the traveling salesman problem, and grew with the
subsequent publications in the 1970’s and early 1980’s (e.g., [Las70, HWC74, Geo74, MSW76,
Erl78, Sha79a, Sha79b, Fis85]); see also the survey papers [Fis81, Bea93]. Until the 1980’s,
Lagrangian relaxation was often used as a bounding procedure in branch and bound algorithms
(cf. [Fis81]). Since then, interest has shifted towards the combination of (a) Lagrangian relax-
ation, with a solution technique for (approximately) maximizing the dual function, and (b) a
Lagrangian heuristic (cf. [Fis81] and [Bea93, Section 6.4]) that adjusts the (typically) infeasible
Lagrangian subproblem solutions into feasible ones.

To be more precise, we shall define a Lagrangian heuristic as follows: Initiated at a vector
in the set defined by the non-relaxed constraints, it adjusts this vector by executing a finite
number of steps that have the properties that (a) they utilize information from the Lagrangian
dual problem, (b) the sequence of primal vectors generated remains within the set of non-relaxed
constraints, and (c) the terminal vector is, if possible, primal feasible and hopefully also near-
optimal in the problem (1).

Included in this definition is the possibility that the heuristic does not terminate at the first
primal feasible solution found, but continues with a primal local search. We remark that the
most common means in which to comply with the property (a) are to initiate the heuristic at a
(near-)optimal solution to a Lagrangian relaxed problem or to perform the adjustments guided
by a merit function defined by the Lagrangian cost.

We especially distinguish between two important types of Lagrangian heuristics that we will
analyze. The first, which will be referred to as conservative, has the properties that the initial
vector is a (near-)optimal Lagrangian subproblem solution, and that the moves are local only, in
the sense that the iterations retain near-optimality in the Lagrangian subproblem. The second,
which will be referred to as radical, or nonconservative, has the property that it allows the
resulting primal vector to be far from optimal in the Lagrangian relaxed problem. This type
of heuristic includes those which are initiated at a point far from the Lagrangian subproblem
solution, those that are defined by the solution of a restriction of the original problem, and large
scale neighbourhood search.

Depending on the nature of the problem being attacked by Lagrangian relaxation, and the
design of the heuristic, a conservative heuristic may provide very good primal feasible solutions,
or no feasible solution at all. A new set of optimality conditions for general, possibly nonconvex,
optimization (but which is structurally similar to those in the convex case) developed in the
next section, provides an analysis of the success or failure of conservative Lagrangian heuristics.
The decisive factor in this context is the size of the duality gap. In the event that conservative
Lagrangian heuristics fail, this analysis motivates the use of radical Lagrangian heuristics, which



may work in much larger neighbourhoods of the Lagrangian solution in the sense of the value of
the Lagrangian function. A further consequence of the analysis which immediately follows from
the appearance of the new optimality conditions, is that Lagrangian heuristics for problems with
large duality gaps must take both subproblem optimality and complementarity fulfillment into
account; the latter has to our knowledge never before been considered in Lagrangian heuristics.

In order to analyze Lagrangian heuristics, in particular for (mixed) integer programming
problems, a primary goal of this paper is to reach a characterization of the set of primal-dual
optimal solutions to (1), which has a structure similar to the system (4) but also covers the case
of a nonzero duality gap. In contrast to (4), the system which will be developed contains perfect
information about the primal-dual set of optimal solutions, and it lends itself very well to the
construction of Lagrangian heuristics. Since the system (4) is not consistent for problems with
a positive duality gap, it seems reasonable to investigate relaxations of it.

2 Global optimality conditions

2.1 Inequality constraints

We introduce nonnegative numbers ¢ and . Given the pair (z,u) € X x R, we define the
global optimality conditions for the problem (1) as

f(@) +ug(z) < 0(u) +e, (5a)
g(z) <0™, (5b)

ulg(x) > -9, (5¢)

e+6 <T, (5d)

g,0>0. (5e)

In this system, (5a) and (5c) define e-optimality in the Lagrangian subproblem, and §-
complementarity, respectively. The systems (4) and (5) are equivalent precisely when the duality
gap is zero.

The following theorem provides the analogous result to Theorem 1.

THEOREM 3 (primal—dual optimality conditions). Let (z,u) € X x R"". Then, the following three
statements are equivalent.

(i) Together with the pair (g,0), the pair (z,u) satisfies the system (5).

(ii) The pair (¢,8) > (0,0) satisfies € + 0 = T', and the pair (z,u) satisfies the following
saddle-point like condition for the Lagrangian function (z,u) — L(z,u) over X x R':

L(z,v) — § < L(z,u) < L(y,u) + ¢, V(y,v) € X x R (6)

(iii) x solves the primal problem (1) and u solves the dual problem (3).

PROOF. We establish first that (i) and (ii) are equivalent. It is clear that the consistency of
(5) implies that € + § = I' holds [combine (5a), (5c), and the duality gap consequence that
f(z) — 0(u) > T holds with (5d)]. That the second inequality in (6) is equivalent to (5a) is
immediate. The first inequality in (6) is equivalent to

g(z)T (u —v) > =4, Vo € R (7)



With v = 0™, we obtain (5c). To reach (5b), we note that if it is not satisfied, then there is
some i € {1,2,...,m} for which g;(z) > 0; by letting v; - +00, we contradict (7). Conversely,
for all v € R,

f(@) +vTg(2) =6 = f(z) +ulg(z) +g(z) (v —u) — &
< f(2) +u’g(z),

where the inequality follows from (5b)-(5¢). This completes the first part of the proof.
Next, we establish that (i) and (iii) are equivalent. Suppose that (i) holds. Then, (5a), (5c),
and (5d) imply that
f(z) <6(u) +T. (8)

By definition, I' = f* — §*. Therefore, (5) holds if and only if (z,u) is primal-dual optimal,
whence (iii) follows.

Finally, suppose that (iii) holds. Then, (8) holds. Further, suppose that for the given pair
(z,u), we choose ¢ and ¢ according to

e:=¢e(z,u) =T +ulg(x) and §:=d0(x,u) = —ulg(x). 9)

Adding u'g(z) to both sides of the inequality (8) yields (5a). The inequality (5b) follows from
the optimality of z in the primal problem (1), and (5c¢) is trivially satisfied, by the choice (9),
and (i) follows. This completes the proof. O

Theorem 3 implies the following (cf. Corollary 2):
COROLLARY 4 (a primal characterization of optimality). Given any u € R,

X*, ifO(u) = f* - T,

{z € X | (5) is satisfied } = {(2), if O(u) < f*-T

holds. O

The two systems (4) and (5) both state that the (Cartesian product) set of primal-dual
optimal solutions satisfy similar saddle-point conditions. The main difference between the convex
and nonconvex case is that in the nonconvex case, primal-dual optimal solution are only near-
saddle points. An interpretation is provided in Figure 1 in the context of the example of
Section 2.3.

In the case of convex programming, the global optimality conditions (5) are related to,
but much simpler than, those presented by Strodiot et al. [SNH83], which are based on an
e-subdifferential form of a global Karush-Kuhn—Tucker condition.

We next present a relaxation of the system (5), which is consistent also for near-optimal
solutions in the primal and dual problems. We will use this system particularly when analyzing
algorithms, such as Lagrangian heuristics, for integer programs later on in this paper. To this
end, we introduce a nonnegative parameter , which defines the level of near-optimality allowed.

Given the pair (z,u) € X x R, we define the relaxed global optimality conditions for the
problem (1) as

f(z) +u g(z) <6(u) +¢, (10a)
g(x) <0™, (10b)

u'g(z) > -6, (10c)

e+ <T +k, (10d)

g0,k > 0. (10e)



We note immediately, with reference to the above result, that a consistent system (10) always
has
Fr<e+d<T+xk.

For this system, we state some immediate consequences in terms of the relations to near-
optimal, and near-complementarity, solutions to the primal-dual problem.

PROPOSITION 5 (near-optimal solutions and the system (10)).

(a) (near-optimality in the primal problem (1)). Let (z,u) € X x R'?. Suppose that, for some
g,0,k > 0, (10) holds. Then, x is feasible in (1), and

flz) <O(u) +T + k.

Suppose further that u solves the dual problem (3). Then,
f(@) < f*+k.

(b) (near-optimality in the Lagrangian subproblem (2)). Suppose that (z,u) € X x R is -
optimal and a-optimal, respectively, in the primal and dual problem (1) and (3), for some
B, a > 0. Then,
O(u) < f(z)+ulg(z) <O(u) + T+ B+ o

Suppose further that (z,u) € X x R solves the primal and dual problems (1) and (3),
respectively. Then,
0" < f(z) +ulglw) < f*. (11)

(c) (near-complementarity). Suppose that (z,u) € X x R} is f-optimal and a-optimal, respec-
tively, in the primal and dual problem (1) and (3), for some 3, & > 0. Suppose further that
€ > 0 is such that (10a) holds with equality. Then, (10) holds, with § :=T —e+a+ >0
and k := a + . In fact,

F+B8+a<e+d<T+k

always holds when (10) is consistent.

Suppose further that (z,u) € X x R solves the primal and dual problem (1) and (3),
respectively. Then, (10) holds, with § :=T' —¢ > 0 and k = 0. 0

REMARK 6 (interpretations). The result in (a) states that vectors z that are near-optimal in
the Lagrangian problem (2) and near-complementary also are near-optimal solutions to the
primal problem (1), in particular so when the value of k is small, that is, when the sum of
the perturbations € and ¢ are in the order of the size of the duality gap. It implies that the
goal, when searching for a primal vector x which satisfies (5), should be to minimize s, that is,
essentially minimizing € + §. A specialization of the result (a) to linear integer programming is
found in [NeW88, Corollary I1.3.6.9].

The result in (b) shows that a (near-)optimal solution to the primal problem (1) must also
be near-optimal in the Lagrangian subproblem defined at a (near-)optimal dual solution. The
example in Section 2.3 will show that either of (or neither of) the two inequalities in (11) may
be tight for some optimal solutions. (In the case of equality constraints, the last inequality is
always tight at optimal solutions.)

The result in (c) shows that a (near-)optimal solution to the primal problem (1) must also
be near-complementary. It shows how closely related the two perturbations € and § are to the
value of T, and it follows that the system (5) is always consistent at an optimal primal-dual
solution. O



Theorem 3 also implies the following:

COROLLARY 7 (a primal characterization of near-optimality). Let u € R be a-optimal in the
dual problem (3), for some « > 0. Then,

XrE—a  if Kk > a,

0, ifk<a (12)

{z € X | (10) is satisfied } = {

holds. O

REMARK 8 (interpretations). We characterize the optimal solution set X* precisely when k = .
From this characterization, we see that primal optimal solutions can be obtained from non-
optimal dual solutions, provided that the sum of the perturbations € and § matches precisely
this non-optimality, in the sense that e+ = '+ k = '+ a. (The sum is clearly unique, but not
necessarily the values of ¢ and ¢ individually; cf. the example in Section 2.3.) Since this result
is more general than Corollary 2, it follows that it is true also for convex problems.

Theorem 1 and Corollary 2 are special cases of Theorem 3 and Corollary 7, and follow when
in addition ' = ¢ = § = k = a = 0. Moreover, Corollary 4 is the special case of the above, for
the case where Kk = a = 0.

The relation (12) combines the results of the above theorem with that of Proposition 5, in
that we relate near-optimal solutions of the primal problem (1) and the dual problem (2) to
each other. [One can of course also characterize the set of dual (near-)optimal solutions through
a statement analogous to (12).] a

A special case of Corollary 7 to linear integer programming is found in [NeW88, Theo-
rem I1.3.6.7], however stated in terms of objective values. (That theorem traces back to results
in Everett [Eve63], and is outlined in [Las70, Section 8.3.2].)

REMARK 9 (on the use of the system (5)). If the set X is discrete, then it is possible, in principle,
to solve the problem (1) by enumerating the points in X according to an increasing value of
the Lagrangian function (z,u) — f(z) + uTg(z). Every time a feasible solution appears, we
obtain an upper bound on f*. It is easy to show that during the enumeration, the value of
the Lagrangian function always underestimates the objective value of every feasible solution
that still has not been found. In particular, if the enumeration continues until the value of the
Lagrangian function becomes at least as large as the best upper bound found, then that solution
is globally optimal. (As a special case, with the choice of u = 0™, we recover the simple method,
where the first feasible solution found is optimal, as then the enumeration is made in terms of
the original cost.) If, on the other hand, the enumeration is terminated prior to this occurrence,
then the terminal value of the Lagrangian function is a lower bound to f*.

Handler and Zang [HaZ80] utilized a Lagrangian cost based ranking methodology to solve a
knapsack constrained shortest path problem, from an optimal dual solution u. Recently, Caprara
et al. [CFT02] have constructed a similar feasibility heuristic for a train timetabling problem. A
similar methodology with the purpose of constructing core problems is developed in Section 5.1,
for the case where X is a discrete Cartesian product set. d

2.2 Equality constraints

We next specialize the above main result to the case of equality constraints. So, suppose, locally
in this section only, that (1b) is replaced by

h(z) = 0°, (1b)



where h : R — R¢ is continuous. The multiplier vector for these constraints is v € R¢; the dual
function 6 : R¢ — R is defined accordingly. The condition corresponding to (5) then is

f(z) +vTh(z) < 0(v) +¢, (13a)
h(z) = 0¢, (13b)
0<e<T. (13c¢)

THEOREM 10 (primal—dual optimality conditions). Let (z,v) € X x Rf. Then, the following two
statements are equivalent.

(i) Together with e, the pair (z,v) satisfies the system (13).

(ii) The perturbation ¢ = I', and the pair (z,v) satisfies the following saddle-point like condi-
tion for the Lagrangian function (z,v) — L(z,v) := f(z) + vTh(z) over X x R¢:

L(z,w) < L(z,v) < L(y,v) + ¢, V(y,w) € X x RE.

(iii) z solves the primal problem (1) and v solves the dual problem (3). a

COROLLARY 11 (a primal characterization of optimality). Given any v € R,

X*, iff(v)=f*-T,

{z € X | (13) is satisfied } = {(Z], £0(0) < f* T

holds. O

The relaxed optimality conditions here are:

f@) +v'h(z) <O(v) +e, (14a)
h(z) = 0, (14b)

e<T'+k (14c)

g,k > 0. (14d)

COROLLARY 12 (a primal characterization of near-optimality). Let v € R’ be a-optimal in the
dual problem (3), for some « > 0. Then,

XrE—el if Kk > q,

z € X | (14) is satisfied } =

holds. O

2.3 A numerical example

Consider the following linear integer programming problem:

f*:= minimum f(z) := —z9, (15a)
subject to g(z) := 1 + 4z — 6 <0, (15b)
reEX:={z€2?|0<21 <4 0<1zy<2}. (15c)



The Lagrangian function associated with the dualization of the constraint (15b) with a multiplier
u > 0is (z,u) = L(z,u) := uz1+ (4u—1)z9 —6u, and the dual problem has an objective function
with the following form:

2u — 2 <u<1l/4
O(u) := u=2 0<u<i/4,
“6u, 1/A<u,

whose maximum over R, is attained at u = 1/4, with 6* = 6(u) = —3/2.

The linear relaxation [R? replaces Z2 in (15¢)] of the above problem has the same Lagrangian
dual problem, and its primal solution is characterized by the system (4) as follows. At u = 1/4,
the minimum of the Lagrangian function over the set [0,4] x [0,2] is the set X (u) := {z € R2 |
z1 = 0; z9 € [0,2] }. [This is the set defined by (4a).] Together with primal feasibility [that is,
(4b), or, in this case, (15b)], we obtain that z is further restricted to be less than or equal to
3/2, while complementarity [that is, (4c)], forces zo to take on the value 3/2. So, from (4) we
obtain that the primal-dual optimal solution set is the singleton set {(0,3/2)T} x {1/4}, with
optimal (or, saddle) value —3/2.

Returning to the integer program, there are three optimal solutions, z! = (0,1)T, 22 = (1,1)7,
and 23 = (2,1)T, with objective value f* = —1. The duality gap is T' := f* — 6* = 1/2. In order
to show how these optimal solutions will arise from an application of the system (5), we begin
by noting that € and ¢ must sum to I' = 1/2, according to Theorem 3.

We first investigate the case where € = 0, that is, the Lagrangian subproblem is solved exactly.
Then, from (5a), we obtain that X (u) = {(0,0)T,(0,1)T,(0,2)T}. Primal feasibility [that is,
(5b)] then dictates that z is either (0,0)T or (0,1)T. Finally, we know that uTg(z) > —1/2
[that is, (5c)] since 6 = 1/2. The only primal vector of the two satisfying (5) with ¢ = 0 is
z! = (0,1)T. (So, this solution violates the complementarity conditions.)

That the system (5) is consistent when £ = 0 is not necessarily the case; € may need to take
on positive values in order to reach an optimal solution. The optimal solution z? = (1,1)T
corresponds to letting ¢ = § = 1/4. In Figure 1, this optimal solution is contrasted with a
non-optimal solution, and the values of € and § are given a further interpretation.

The optimal solution 2% = (2,1)T corresponds to letting ¢ = 1/2, while § = 0. This solution
violates primal subproblem optimality even more than in the previous solution.

3 A dissection of Lagrangian heuristics

While Lagrangian heuristics are designed primarily to identify primal feasible solutions, a main
goal is to also reach near-optimal solutions. We may interpret a Lagrangian heuristic as a pro-
cedure for attempting to satisfy the system (10); according to Theorem 3 and its corollary, the
heuristic should also be designed to recover a primal feasible solution z such that the corre-
sponding value of x, hence of ¢ and ¢, is small, relative to the size of the duality gap which
their sum must not underestimate. If, and only if, this is possible, then near-optimal solutions
to (1) are identified. Conservative Lagrangian heuristics (as defined in Section 1) for equality
constrained problems will typically result in near-optimal solutions to (1), since making local
moves will guarantee that subproblem near-optimality is retained; cf. Theorem 10.

We stress that for equality constrained problems, the value of ¢ is fixed at I" for every optimal
solution [statement (ii) in Theorem 10]. In the case of inequality constrained problems, however,
only the sum ¢ + ¢ is fixed, at I' [statement (ii) in Theorem 3]; the respective sizes of ¢ and §
may vary significantly, not only among problem instances, but even among optimal solutions for
the same problem. (See the example in Section 2.3.) Therefore, whether a Lagrangian heuristic
will be successful or not depends on several additional factors that are not so easy to determine
the nature of in advance. For example, minimizing the value of ¢ in this context may result
in an inconsistent system, thus making the heuristic fail to produce a feasible solution. This
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Figure 1: Tlustration of the role of € and § in the characterization of optimality. For the optimal
solution 22, the value of (22, u*) equals the vertical distance between the two functions 6 and L(z?,-) at
u*. The remaining vertical distance to f* equals minus the slope of the function L(z?,-) at u* [which is
g(z%) = —1] times u*, that is, 6(z2,u*) = 1/4. In the case of the candidate vector Z := (2,0)T, the value
of € is 1/2, and § =1 [the slope of L(Z,-) at u* is —4]; in this case, then, 8* + e+ 6 = f(Z) =0 > f*, so
Z cannot be optimal.

section collects some basic consequences of Theorem 3 in terms of the workings of a successful
Lagrangian heuristic, depending on the type of problem being attacked through Lagrangian
relaxation.

3.1 Small duality gap

We begin by describing the connection between the system (10) and conservative Lagrangian
heuristics, according to the definition in Section 1. We have at hand some dual vector u € R?,
which is a-optimal for some (unknown) @ > 0 in the problem (3). We attack the primal
subproblem (2), obtaining a primal solution Z(u) € X which is gp-optimal in (2) for some
(possibly unknown) €9 > 0. [Thus, we satisfy (10a), with € = ¢(.] For future reference, we also
introduce &y := —uTg(Z(u)) € (—o0,00) to denote the level of complementarity fulfillment at
Z(u). If Z(u) does not satisfy the relaxed constraints, then an attempt is made to attain primal
feasibility through a manipulation of this primal solution, while, typically, remaining within the
set X; sometimes, this manipulation is not terminated when a primal feasible solution has been
found, but is instead followed by a primal local search heuristic. If successful, the result of this
heuristic projection of the infeasible solution Z(u) onto the feasible set is a feasible vector, Z.
This vector is associated with the values ¢ > 0 and 6 := —uTg(z) > 0, satisfying (10a) and
(10c). The vector z is further S-optimal in (3), where S > 0 satisfies the relation in Corollary 7.
[Obviously, 8 < f(Z) — 0(u).]

Suppose that I' and a both are close to zero. Since € + § < I'" + k holds in any solution
to the system (10), according to Proposition 5(c), both ¢ and ¢ are then known to be close

10



to zero at near-optimal primal solutions. Then, the near-optimal primal solutions all lie in
a small neighbourhood [in the sense of the value of L(-,u)] of the subproblem solution z(u);
consequently, when g9 = 0 holds, it is then sufficient to consider a feasibility heuristic which is
conservative in the sense of the adjustment in the value of L(-,u). Since § is small, the heuristic
must also be able to ensure that the complementarity violation is kept down. As it is possible
that complementarity is violated to a large degree at z(u), the feasibility heuristic must in fact
be designed so that it is able to reduce the value of § substantially, if necessary.

Conclusion When the dual solution at hand is near-optimal and the duality gap is small,
then in order to be able to find near-optimal primal feasible solutions, it is always sufficient to
consider Lagrangian heuristics that are conservative in the value of the Lagrangian function,
provided that they are also able to reduce any complementarity violations, if necessary. (In the
case of equality constraints, the last remark may be stricken.)

If the value of ¢q is large, then it is necessary that feasibility and Lagrangian optimality are
improved simultaneously in the heuristic. This case might arise, for example, if the Lagrangian
relaxed problem is a difficult discrete optimization problem.

Some examples of specialized conservative heuristics which have yielded very good results for
certain combinatorial problems are given in [BGB81, JLV90, CaM91, Fis94].

A special case of the above is convex programming, whereI' = ¢ = § = 0 (if &« = 0). Although
it is not easy to state exactly what a well-designed Lagrangian heuristic should be, it is quite
simple to find examples of what it should not be. A feasibility heuristic which is not based on
an optimization in the original objective or on a Euclidean-like projection operation may clearly
result in large values of €, and therefore in solutions of low quality when applied at near-optimal
dual solutions.

An example problem where this has been observed is in dual solution procedures for strictly
convex minimum cost network flow problems. The feasible set is then of the form {£ < z <
c | Az = b}, where z; is the flow on a directed link j which is subject to bounds and flow
conservation constraints, A € {—1,0,1}™*" and b € R™ being the node-link incidence matrix
and the demand vector, respectively. The objective function is often modelled as separable,
that is, of the form f(z) = Z?Zl fi(z;), where each function f; : ® — R is strictly convex
and coercive. A Lagrangian relaxation of the flow conservation constraints leads to a strictly
convex Lagrangian dual problem, with a multiplier for each node in the network. The classic
algorithm for this problem is the Gauss—Seidel (coordinate ascent) algorithm, which amounts to
balancing the flow through one node at a time by a line search in the associated multiplier, cf.,
for example, [BeT89, Chapter 5]. We add that due to strict convexity, at any dual vector u* the
(unique) Lagrangian subproblem solution is a (unique) solution to the original problem. Few
articles are devoted to the generation of primal feasible flows in this application. One of them
is Ventura [Ven91]. From a dual solution, u!, his Lagrangian heuristic works as follows. Unless
u! is optimal, the resulting subproblem solution, z(u'), does not satisfy all the flow conservation
constraints. A linear network flow problem is then constructed, where the demand vector is
the residual b’ := b — Az(u'), and where the linear cost vector is Vf(z(u?)). Letting =’ be a
solution to this problem, the vector z := z(u') + z' is feasible in the original problem. We note,
however, that the quality of this solution may be poor, since the use of a linear cost makes the
solution extremal, whereas the original problem will typically have an optimal solution in the
relative interior of the feasible set. In the notation of this paper, we conclude that the heuristic
is not conservative (¢ may be large), since the size of z’ can still be substantial even when we are
close to a dual optimum (and, further, it does not tend to zero as {u'} — u*). This observation
lead Marklund [Mar93], in a master’s project supervised by the authors, to devise heuristic
projections based on conservative node imbalance-reducing graph search techniques, which in
comparison yield feasible flows of a much better quality. (See further [Pat94, Chapter 4.3] for
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the so far only published account of the procedures in [Mar93].)

3.2 Large duality gap

We take as a starting point the inequality constrained case. Suppose that I', and possibly also
a, is large. Then, in general, since we do not know beforehand whether the identity (assuming
that 8 = 0) e + 6 = I' + «a requires € or d, or both, to be large, we cannot guarantee that a
conservative heuristic (in terms of the value of €) will be able to produce near-optimal solutions
to (1). (In some cases it may be successful, since violating complementarity could compensate
for a small value of €. In the equality constrained case, however, conservative heuristics cannot
yield feasible solutions.) This implies that it is necessary to choose a heuristic which is radical
in that it allows £ to become, or remain, large.

Further, since the value of § is unknown, the heuristic must also be radical in the sense of
allowing, if necessary, J to take on both small and large values in order to reach good solutions.

Conclusion When the dual solution at hand is far from being optimal (that is, the value of
« is large), or the duality gap is large, then in order to be able to obtain near-optimal primal
feasible solutions, it is necessary to consider Lagrangian heuristics that are radical with respect
to the value of the Lagrangian function and allow for both small and large complementarity
violations. (In the case of equality constraints, the last remark may be stricken.)

Because of the radical, and therefore global, nature of the above type of heuristic, it may be
more appropriate to think of them as being global heuristic optimization procedures, as opposed
to the local nature of conservative heuristics. One example of a radical type of heuristic is very
large-scale neighbourhood search (see [AEOP02]). Another example of a heuristic which may
be designed to be radical in our sense is the class of greedy algorithms for discrete optimization.
Another type of technique which may serve as a radical Lagrangian heuristic is available in
integer optimization problems with two groups of variables, such as mixed-integer linear pro-
grams: the Benders subproblem (e.g., [Las70]). Suppose that z = (z1, z2) where the subvector
x1 is required to be integer valued whereas the subvector zo may take on fractional (continuous)
values. Such models are frequent in design type problems, where the integer variables are as-
sociated with design decisions, while the continuous variables are associated, for example, with
network flows. The Lagrangian heuristic is to solve the (linear) Benders subproblem for the
original problem, which here means that the original objective function is optimized over the
continuous variables zo while the integer variables z; are fixed to their values Z;(u) from the
Lagrangian subproblem. Typically, the Lagrangian relaxation is such that the resulting solution
71 will be feasible; otherwise, the integer solution may have to be heuristically updated and the
LP resolved. This heuristic clearly qualifies as a radical heuristic, as it allows for large moves in
x2, and therefore also in the value of . (Depending on the problem instance, even a large move
in some variables can amount to a small adjustment in the value of ¢, however.) A successful
case is given in [MuC79] for a location problem.
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4 Experiments on the set covering problem

4.1 The set covering problem and its dual

The set covering problem is to find

n

f* := minimum chxj, (16a)
i=1
n
subject to Zajxj > 1™, (16Db)
j=1
z € {0,1}", (16¢)
where ¢; € ® and a; € {0,1}™, j = 1,...,n. Its Lagrangian with respect to the relaxation
of the linear constraints (16b) has the form L(z,u) := (1™)Yu + ¢ 'z, u € R™, where we have
defined the reduced cost vector ¢ := ¢ — ATu. Here, c = (¢j)7-1 and A= (a1az - an).

We define the Lagrangian dual problem to find

0" := maximum 6(u),
subject to u > 0™,

where
n

0(u) :== (1™)Tu + Z minimum ¢;z;, u > 0™
= z;€{0,1}

is the dual function; the Lagrangian subproblem is of course solved such that

=1, if¢; <0,
wj(’ul) € {0,1}, if cj =0, (17)
—0,  ifg >0.

In the following, we will report upon two experiments with Lagrangian heuristics for set
covering problems. Our main goal with these experiments is to illustrate the potential of uti-
lizing our theoretical findings, in particular by considering also complementarity fulfillment in
Lagrangian heuristics for such problems. Throughout, we have worked with the set covering
problem rail507, for which we have the following data: n = 63,009, m = 507, and the best
bounds reported in the literature are [172.1456,174] (see [AMRTO01] and [CFT99], respectively;
the lower bound of 172.4 reported in [CNS98] is probably incorrect.) We note that the ex-
periments that we have performed on the similar set covering problems rail516 and rail582
corroborate the conclusions that are made below in Sections 4.4 and 4.5.

4.2 A generic primal greedy heuristic

A primal greedy heuristic is often a main component of a set covering algorithm. In our exper-
iments, we will use several such algorithms, some of which are classic, and all of which can be
written (at least essentially) as instances of the following generic primal greedy heuristic:

(Input) A primal vector z € {0,1}" and a cost vector p € R™.
(Output) A vector z € {0,1}", feasible in (16).

(Starting phase) Given Z, delete all rows ¢ in (16b) that are covered. Delete all variables z;
with T = 1.
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(Greedy insertion) Identify an undeleted variable z, which has the minimal value of p; relative
to the number (k;) of uncovered, undeleted rows which it covers. Set z; := 1. Delete all rows in
(16b) which have been covered. Delete z,. If any uncovered rows in (16b) remain, then repeat
this step; otherwise, let Z € {0,1}™ denote the feasible solution found.

(Greedy deletion in over-covered rows) Identify a variable z,; with Z, = 1 which is present
only on rows which are over-covered at Z, and which has the maximal value of p; relative to
kj. Set z, := 0. If any such variable remains, then repeat this step; otherwise, let £ € {0,1}"
denote the feasible solution found, and terminate.

We can identify several known instances of the above algorithm:

(I) Let z := 0™ and p := c. This procedure is described by Chvital [ChvT79].

(IT) Let z := 0™ and p := ¢, defined at some dual vector u (see above). This is essentially the
heuristic PRIMALS of Balas and Ho [BaH80].

(IIT) Let Z := x(u), whose component z;(u) is given by (17), and let p := ¢. This heuristic is
described by Beasley [Bea87, Bea93] and Wolsey [Wol98, Section 10.4].

(IV) Let z := z(u) and p := ¢. This is essentially the heuristic ERCGH of Balas and Carrera
[BaC96].

The greedy selection criterion utilized in our description above is often of the form p;/k;, but
can combine the entities p; and k; in different ways; such versions of the procedure (I) can be
found in Balas and Ho [BaH80], and Vasko and Wilson [VaW84], where ¢;/k; is replaced by,
among other choices, ¢;/logs k;. (See [BaC96, Section 4] for an account of numerical experience
with such heuristics.)

4.3 A simple dual algorithm

To find a good lower bound on 6*, we apply conditional subgradient optimization ([LPS96]),
using Polyak [Pol69] step lengths, that is, starting from a u° € R,

ultl = [u + Et’yi(ut)LL , t=0,1,...,

where [-]; denotes the Euclidean projection onto R,
0, if ul = 0 and a’z(u?) > 1,

t(u’t))i:: ; s . " al‘(U) 1=1,2,...,m,
1 —a'z(ul), otherwise,

is a projected subgradient of 6 with respect to R7 at u’, a’ being row i of the matrix A, and
where the step length is
UBD — 0(u')
AT ANV
174 ()2

where the parameter v, := 1.5-0.99%, t = 0,1,....

The upper bound UBD used in the step length formula was calculated a priori by applying
the greedy heuristic (I) above. For the instance rail507, the primal heuristic (I) produces
UBD = 209. (The feasible solution found after the greedy insertion phase has the objective
value 216.)

This subgradient algorithm is, in our experiments, terminated after a fixed number of itera-
tions, a number which is altered among the experiments. The dual vector u chosen at termination
was the final iteration point.

ft:: t:O,].,...,
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4.4 Experiment I

We have little information a priori about the violation of the complementarity conditions and
subproblem optimality at an optimal solution. To ensure that all possibilities are considered we
will use an objective in the heuristic search which combines the Lagrangian function [L(-,u)]
and complementarity fulfillment [—uTg(-)], that is,

h(z) = A[f(z) +u'g(@)] + (1 - N[-u"g(@)], 1/2<A<1L (18)

In the set covering application, h(z) = [Aé+ (1 — A) ATu]Tz holds. We obtain the original cost ¢
by the choice A := 1/2, while the Lagrangian reduced cost ¢ follows from the choice A := 1. As
remarked above, we will also consider values in between.

In order to motivate the lower bound of 1/2 on A in (18), consider the problem to minimize
f(z) over {x € X | (10) is satisfied }, for a given u € R7?. If k is chosen large enough, then
this problem has X* as its solution set. The objective in (18), which can be rewritten as
A (z)+ (22 —1)uTg(z), is equivalent to the Lagrangian function corresponding to the relaxation
of (10a) with a multiplier ; and of (10c) with a zero multiplier; the condition A > 1/2 then
stems from the requirement that u > 0.

Based on the generic primal heuristic of Section 4.2, we then define a set of heuristics which
use a cost vector of the form p := Ae+(1—A)ATu. Note that all four instances (I)—(IV) described
above use cost coefficients that are defined at the end-points of the interval for A: (I) and (III)
correspond to A := 1/2, while (IT) and (IV) correspond to A := 1. In this first experiment, we
define Z := 0™, so the heuristics in this first test are all radical, according to our definition; the
experiments in the next subsection also look at more conservative heuristics, where Z := z(u).

We ran two tests, the first with ¢ = 200 as the final iteration, and the second with ¢ = 500.
For each of these two final values, we ran the above heuristic with values of X in [1/2, 1], with
an increment of 0.005. (We also ran the same problem with values of A less than 1/2, but the
solutions obtained were inferior.) The results are shown in Figure 2.

T T T T T T T T
—— objective values for feasible solutions —— objective values for feasible solutions
— - delta (plus final dual objective value) — - delta (plus final dual objective value)

— - epsilon (plus final dual objective value) 210Q i

2101 — - epsilon (plus final dual objective value)

final Lagrangian dual objective value final Lagrangian dual objective value

160~ = 160 —

I I
05 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 05 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure 2: The Lagrangian heuristic for the set covering problem rail507. (a) ¢ = 200; (b)
t = 500.

Looking at Figure 2(a), the horizontal, dotted line is the value of the last lower bound found,
which in this case was 6(u?°’) = 159.53. The three other lines, taken from the highest to the
lowest, show the objective values of the feasible solutions obtained by the proposed Lagrangian
heuristic, the values of §, and the values of ¢, as the value of A ranges from 1/2 to 1. The scale
on the y-axis only applies to the original cost; for the latter two lines, the value zero corresponds
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to the dotted line. This line is, for Figure 2(b), at the level 6(u?%?) = 170.84. Both figures also
illustrate that f(z) = 60(u) + 0 +¢.

After 200 iterations, the quality of the lower bound is quite poor, and running the primal
heuristic from better dual solutions, we have found that better primal solutions are then always
provided.

According to the Figures 2(a) and (b), the value of ¢ clearly decreases with an increase in the
value of A\, which is expected, since for A = 1 the merit function used is the Lagrangian. The
variation in § (which always dominates in value over ¢ here) is less regular, except for larger
values of A\ when it increases rapidly, again as expected.

The value of € is very small for solutions that are of high quality, meaning that near-optimal
solutions to this set covering problem violate complementarity to a large extent. From runs with
the heuristics used in our experiments on other, similar, instances of the set covering problem,
we have experienced a similar behaviour. It has indeed been observed that, for this class of
problems, often several rows are over-covered in an optimal solution ([Tak01]).

The result of applying the heuristic (I) is a feasible solution with the cost 209; this corresponds
to the height of the uppermost line at A = 1/2 in both figures. The result of using the heuristic
(IT) can be seen as the height of the uppermost line at A = 1 in both figures (with the objective
values 210 and 204, respectively). Clearly, both of these choices are inferior to using values
of A in the open interval (1/2,1). The best solutions are found for relatively large values of
A, as long as they are not very close to 1. At both endpoints of the interval for A, we can
observe from the appearance of (18) that the violation of complementarity is ignored. The
above observations lead us to advocate the use of heuristics based neither on the original cost,
nor on the Lagrangian cost, but on a combination of the two of them, because this combination
does take complementarity violation into consideration.

The following experiment takes these observations as its starting point.

4.5 Experiment II

Based on the previous experiment, we chose to set A := 0.9, and performed a second experiment.
We ran three primal greedy heuristics at every iteration of the dual algorithm, starting from
t = 200 and terminating at ¢ = 500. For each of these, we recorded the objective value of the
feasible solution & obtained, and created histograms, as can be seen in Figure 3. The top one was
obtained by using the heuristic (III), that is, starting at the solution Z := z(u') and using the
original cost coefficients, p := ¢. This is a conservative heuristic. The middle one was obtained
by the instance of the generic heuristic where Z := z(u?) but where p := A& + (1 — A\)ATu! with
A = 0.9. This is also a conservative heuristic, which however is based on a better cost function.
The bottom one, finally, was created by the use of the primal heuristic which also uses this cost
vector p, but which is radical because it takes z := 0" as the starting point.

We observe from the figure a quite remarkable difference especially between the two conser-
vative heuristics and the radical one which consistently provides feasible solutions of rather high
quality. For each of the three respective histograms, we have the following minimum, mean, and
maximum objective values:

(192,203.99,221);  (182,194.45,212);  (182,186.55,195).

The radical heuristic produces solutions the worst of which is nearly as good as the best outcome
of the heuristic (III).

We have also, in Figure 4, for each iteration plotted the moving average of the objective
values over 30 iterations. (The value plotted for iteration 230 corresponds to the average of the
iterations 201-230.) Figure 4 reveals that the radical heuristic provides relatively good primal
solutions already at an early stage of the dual algorithm, and it clearly improves upon the other
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Figure 3: Quality of primal solutions obtained by three greedy heuristics. (a) z := z(u') and p :=
¢ [heuristic (IIT)]; (b) Z := z(u’) and p := 0.9¢" + 0.1ATu?; (c)  := 0™ and p := 0.9¢" + 0.1ATw’.

two. Further, the second of the conservative heuristics (which is also new) is in turn much better
than the first, while being a very simple modification thereof.

While the above experiments were certainly not performed in order to establish the superiority
of these new Lagrangian heuristics for solving large-scale set covering problems, the result is
encouraging for their use, especially when taking into account how simple it was to incorporate
them into the well established greedy strategy for set covering problems.

5 Applications to column generation and core problems

5.1 Column generation

The principle of column generation is most frequently used for attacking discrete optimization
problems. (See, for example, the recent survey in [Wil01], and [Wol98, Chapter 11].) Since,
however, column generation is founded on linear programming duality, it is merely a continuous
relaxation that can be solved by means of this principle. The results to be presented below
introduce a certain control over the integer programming quality of a column generation scheme.

Consider a discrete optimization problem with a feasible region that is defined by a finite
Cartesian product set and a number of linear and coupling side constraints, that is, a problem
of the form

n
f* := minimum Z C]Tl‘j, (19a)
j=1
n
subject to ZAJ'QI]' > b, (19b)
j=1
.’I,'jEXj, j=1,...,n, (190)

where the sets X; C R, j = 1,...,n, are finite, ¢; € ™ and A; € R™", j =1,...,n, and
b € R™. The problem is assumed to have a feasible solution.
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Figure 4: Moving averages of the solution quality for three greedy heuristics.

In many applications which give rise to a model of this form, the sets X;, 7 = 1,...,n, are
described by linear constraints and integrality restrictions. The result to be presented below
does not require this description to have the integrality property. Further, the objective function
and the side constraints are stated as being linear in order to ease the presentation only. (In the
case of nonlinearities, additive separability over the Cartesian product is however required.)

Denote, for j = 1,...,n, by P; the number of points in the set X;, and denote these points
by mé-, i =1,...,P;. The problem (19) is then equivalent to the disaggregated master problem

n b
f* = minimum Z Z (c;rmz) )\2-, (20a)
j=1i=1
n P
subject to Z Z (Ajzc;) /\§ > b, (20Db)
j=11i=1
by
doXi=1, j=1,...,n, (20¢)
=1
Xoe{0,1}, i=1,...,P, j=1,...,n (20d)

Let u € R be multipliers associated with the side constraints (19b), define the Lagrangian
subproblem

n
O(u) := b+ 6;(u), (21)
7j=1
with
c— mini T TAN .. S
0i(u) := mlwI]llergl(ljlm (cj —u Aj) zj, j=1,...,n,

and suppose that u € R’ is near-optimal in the Lagrangian dual problem to maximize the value
of 6(u) over u € R
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Suppose further that p; > 1 points in the respective sets X;, 7 = 1,...,n, are available
explicitly, let 6 € R, and consider the following restricted master problem.

n Dj
f¥ := minimum Z Z (c;fa:;) Aj-, (22a)
j=1l1=1
n Pj
subject to Z Z (ij;) )\; > b, (22b)
j=11i=1
n Dj
SN (aTAh) N <ab+, (22¢)
j=1i=1
Dy
doXi=1,  j=1,...,n (22d)
i=1
X; € {0,1}, i=1,...,p;, j=1,...,n. (22¢)

The purpose of this nonstandard formulation of a restricted master problem is that any
feasible solution to it will satisfy near-complementarity [cf. (5c)].

This problem can be built up by, for example, enumerating (ranking) points in the product
sets according to increasing objective values, or by applying column generation (to optimality or
truncated) to the linear programming relaxation of the master problem (20). Another alternative
is to apply subgradient optimization to the above defined Lagrangian dual problem, and during
the course of this scheme accumulate optimal solutions to the relaxed problems (all of them
or some only). (The use of subgradient optimization for accumulating columns to a linear
programming restricted master problem is justified by, for example, [LaL97, Proposition 7]; see
also [PeP97, LPS98, LPS99, LPS03] for similar results for subgradient optimization applied to
more general problems, and [Kiw95, FeK00] for primal recovery results using proximal dual
subgradient methods.) Still another alternative for creating a restricted master problem is to
enumerate the points in the product sets according to the reduced costs that are obtained within
the column generation or Lagrangian relaxation approaches (cf. the discussion in Remark 9).
One might of course also consider combinations of all or some of these strategies. [Note that the
result to be given below is valid whichever principle has been used for constructing the restricted
master problem (22).]

We mention as a special example of the above the restricted master problem defined by
Sweeney and Murphy [SwMT79] in their decomposition method for integer programs; they built
their restricted master problem by enumerating the vectors in the respective sets X; according
to a ranking based on Lagrangian reduced costs. [Their master problem is however the standard
restriction of the problem (20).]

In order to state the main result, we define the (Lagrangian) reduced costs

&= (¢ —u' Aj)zh — 0;(u), i=1,...,p;, j=1,...,n, (23)

for the variables in the restricted master problem. (Note that 5; > 0 always holds.)

THEOREM 13 (quality of restricted master problem). Let 4 € R and § € R,. Suppose that the
restricted master problem (22) has a feasible solution. Then,

fF<0(a)+e+d,

where

n

€= E _max ;.
) ZZI,...,pj
J=1
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PrOOF. We utilize Proposition 5(a), as follows. Let z; = .CCJ( ) where i(4) € {1,...,p;}, for
j=1,...,n, be a feasible solution to the problem (19) that corresponds to an optimal solution
o (22). Denote this solution by Z. By using (23) and (21) we then have that

L(z,u) —bTu—I-Z J)—bTu-i-Z( )

+Z max C—H()

1,. -Dj

Hence, (10a) holds. Further, (10b) holds by assumption. Finally, with g(z) := b — Z? 1Az,
(22¢) gives that @' g(Z) > —6 holds, whence (10c) follows. Hence, the pair (z, %) satisfies (10),
and the conclusion follows. O

In the case where the inequality constraints (19b) are replaced by equalities, the restricted
master problem is modified accordingly, (22c) is not present, and ¢ = 0.
The theorem immediately implies that

holds.

The below result provides a (limited) possibility to assess the quality of the restrification which
lead to the restricted master problem. It can also be used as a guide to its adjustment; especially,
it describes a property of the restricted master problem such that its feasible set contains an
optimal solution to (19). Its proof is rather straightforward, and is therefore omitted.

PROPOSITION 14 (variable fixing and optimality). Let u € R'"'. Suppose that the restricted
master problem (22) has a feasible solution, and let Z be the feasible solution to (19) that
corresponds to an optimal solution to (22). Suppose further that we know an upper bound

f > f* (for example, f = f}).

(a) Ifaj€{l,...,n} is such that ¢ > f —0(a) holds for i = pj +1,..., P;, then T} =1I;in
every optimal solution z* to (19)

(b) If§ > f—60(a) and if(_:j- > f—6(a) holds for i = pj+1,..., P; and for every j € {1,...,n},
then z* = T is an optimal solution to (19). O

REMARK 15 (observations). The obvious way to tighten the upper bound in the theorem is to
delete from the restricted master problem the columns with maximal reduced costs (23), and to
decrease the value of d; such further restrifications of (22) might however cause the problem to
become infeasible. Note however that the continuous relaxation of (22) always is feasible.
The columns corresponding to the solutions to the relaxed problems
7\ c— mini T =T -
0;(a) := mlwI]llergl(ljlm (cj —a' 4) zj, j=1,...,n,
do not need to be present in (22) [although it is of course quite natural that they are].

Whenever a feasible solution to (19) is known, it can be utilized to define vectors in X; and
a value of ¢ such that the restricted master problem (22) always has a feasible solution. O
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We end with a corollary to the above result, which stems from the application of column
generation to the LP relaxation of (20). Suppose we have the solved to (near-)optimality the
linear program that is the LP relaxation of the restricted master problem (22), that we have
a primal basic feasible solution (BFS) to this problem with objective value fryp, and that
(u,v) is a complementary dual solution. Let the best column obtained in the column generation
phase have the reduced cost Egj 1 (j =1,...,m). (If the restricted master problem was solved
to optimality and the current solution is not optimal, then this corresponds to a column not
previously generated.) Consider then the quality of the next restricted master problem:

COROLLARY 16 (solution quality in column generation). In the current setting, we have the
estimate

n n
fRMP—I—ZE?jH < f* < f: < fRMP+Z (E:;jﬂ + max E’é) +9

ZZI,...,pJ‘

of the optimal value. d

5.2 Core problems

The formulation and solution of core problems is a more sophisticated means to utilize La-
grangian duality to find primal feasible and near-optimal solutions, compared to simpler, ma-
nipulative heuristics such as those that were presented in Section 4. As such, core problems are
special Lagrangian heuristics which may or may not be conservative, depending on the principle
with which the core problem is defined, and the size of a resulting core problem. Core problems
lie at the heart of the set covering heuristics in [CNS98, CFT99], and efficient “core algorithms”
also exist for binary knapsack problems (e.g., [BaZ80, MaT90, Pis95]). These core problems,
and their optimization, are devised primarily on the (linear programming-)reduced costs of the
variables, and so they can be said to focus on Lagrangian near-optimality, as opposed to also
incorporating complementarity near-fulfillment. Our below analysis of core problems in relation
to the global optimality conditions, suggests that complementarity near-fulfillment can, and
should, be introduced in core problems.
Consider the binary problem

n

f* = minimum Z ciTj, (24a)
j=1
n
subject to Zajwj > b, (24b)
j=1
n
Zdj.’[)j Z e, (240)
j=1
z € {0,1}", (24d)

where b,a; (j =1,...,n) € R™ and e,d; (j =1,...,n) € R". Suppose that the problem is feasi-
ble. We propose solving this problem by means of a Lagrangian relaxation of the (complicating)
constraints (24b), the multipliers being v € R''. We assume that the resulting Lagrangian

subproblem
n

0(u) := b u + minimum Z(Cj —u'aj)z;, u > 0™, (25)

N o diz;>e <
E]:1 171 = ]:1

z;€{0,1}

has the integrality property, so that each constraint z; € {0,1} can be replaced by 0 < z; <1,
for all 7 = 1,...,n. We denote the corresponding linear programming dual multipliers for the
constraints (24c) by v € ®,..
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At a near-optimal @ € R in the Lagrangian dual problem to maximize the value of 0(u)
over v € N, let (z(u),v) be the optimal primal-dual solution to the Lagrangian subproblem
(25). The value of z(a) is used to predict the optimal values of the variables z; in the problem
(24). We denote by Jy (J1) those indices j € J := {1,...,n} for which the prediction is that
z; =0 (respectively, T} = 1). A core problem is a restriction of the original problem (24)
wherein the variables in Jy U J7 are fixed to their predicted values, and the remaining variables,
Jr =T\ (JoU J1), are free. The integrality property is imposed upon the subproblem (25) in
order to be able to utilize reduced costs in the ranking of the variables when deciding on these
predictions.

Let Ay € R, Ay € R,.. The core problem is

fi= Z ¢;j + minimum Z CiTj, (26a)
JET JjeTf
subject to b — Z aj + A > Z a;r; > b— Z aj, (26b)
JeET JETy JET
G—Zdj—{-AQZ Zdj,TjZe—Zdj, (260)
= JETS jET
s e{0,1}, jeJT. (264)

As was the case with the restricted master problem (22), the purpose with this construction
of a core problem is that feasible solutions are near-complementary. It is to be noted that the
means by which we enforce near-complementarity is slightly different from the one in (22); a
constraint like (22c) is here avoided because it would destroy any favourable structure inherent
in the constraints (26b)—(26c).

Although in principle the subsets Jy and J1 can be defined quite arbitrarily, it is natural to
choose them such that

JoC{jeT|e >0}, (27a)
J1C{jedle <0}, (27b)

where
Gi=cj—Ua;—vdj, JEJT (28)

define the (linear programming-)reduced cost vector in the Lagrangian subproblem. These
relations will be used below.

THEOREM 17 (quality of core problem). Let @ € R, and let (x(%), ) solve the subproblem (25).
Suppose that the prediction satisfies (27) and that the core problem (26) has a feasible solution.
Then,

e <6(u)+e+4,

where
€= Z |Ej| +1_)TA2,
JjETf
6= ﬂTAl.

PROOF. The proof utilizes Proposition 5(a), as follows.
Let £ := (a‘c TorTT T Jf) be the primal vector corresponding to the predictions and the optimal
solution to the core problem (26).
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To establish that (10a) holds, we use below that

ot Zdjzvj(ﬂ)—e =0, ot e—Zdj:Ej—l—Ag >0
jeJ JjeT

holds, the equality by complementarity in the linear programming subproblem equivalent to
(25), and the second by the feasibility of z in (26); in particular, then,

7T djlzj(@) — 3] + 0T Ay > 0. (29)
JjeET

We therefore have that

L(z,4):=b u—l—z — ' a;)T —i—Z — @' a;)[z; — z;(1)]

JjeT JET
u) + Z ¢jlz; — zj(w)] + 09 Ay [(28) and (29)]
JjeET
< 6(u) + ¢,

where the last inequality follows from the assumption that (27) holds.

That (10b) holds follows by assumption.

Finally, from (26b), we obtain that, with g(x ) =
holds, and so we obtain, because # € ', that atg(z
Hence, the pair (Z, %) satisfies (10).

Proposition 5(a) then yields the desired result. O

b— > e ajzj, the relation g(z) > —Ay
) > —utAy = —6, whence (10c) follows.

The theorem immediately implies that

fE=< ) lgl+at A+ 0T Ay
JETy
holds.

Note that if the core problem is constructed from an optimal dual solution (which can be found
by solving the continuous relaxation of the original problem, due to the integrality property)
and the values of A; and Ay are taken to be at least as large as the LP optimal slacks, then the
continuous relaxation of the core problem is feasible.

The following result corresponds to Proposition 14.

PROPOSITION 18 (variable fixing and optimality). Let @ € R'?'. Suppose that the prediction
satisfies (27), that the core problem (26) has a feasible solution, and that T is an optimal
solution to it. Suppose further that we know an upper bound f > f* (for example, f = f7).

(a) Ifaj € JoUJ is such that |¢;| > f — (@), then z*

o . . N
7 = Tj In every optimal solution z* to

(24).
(b) If

> (F - 0(2))/a;, if

(Al)Z {_ (f O(U))/UZ’ i > 9’ 1=1,...,m,
= 00, otherwise,
> (f — 0(n))/v;, ifv;

(A, {_ (F-o@)/os, ifm>o0,
= 00, otherwise,

and if |¢j| > f — 0(u) holds for every j € Jo U Ji, then z* = Z is an optimal solution to
(24). u!
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An implication of this result is the well-known fact that core problems should be built up
with variables having small reduced costs.

As an ending note, we provide an important comment on the construction of the master
and core problems in these last two subsections. [The comments are made for the case of core
problems, but the same arguments apply for the side constrained master problem (22).] The
value of f} is reduced by an increase in the value of each of the elements of A; and Ag, as
the feasible set of the problem (26) would then increase, and therefore one might ask what the
purpose of the additional restrictions in (26b) and (26c) is? The answer is that there is a trade-
off between obtaining good objective values with a core problem, and the complexity of solving
it; the additional restriction makes the problem easier to solve by restricting the feasible set.
Further, the additional restriction introduced in the problem (26) which serves to control the
violation of complementarity, incorporates explicitly a measure that we have shown previously
to be of utmost importance in forcing Lagrangian heuristics to strive for an optimal solution,
and a term which hitherto has not been present in core problems, as only the Lagrangian
optimality-based term defined by the vector ¢ of reduced costs is normally used.
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