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Abstract

Suppose {X;, 0 < s < T} is an m-dimensional geometric Brown-
ian motion with drift, u is a bounded positive Borel measure on [0, T
and ¢ : R™ — [0,00) is a (weighted) {9(R™)-norm, 1 < g < oo. The
purpose of this paper is to study the distribution and the moments of
the random variable Y given by the L?(u)-norm, 1 < p < o0, of the
function s — ¢(X;), 0 < s < T. By using various geometric inequali-
ties in Wiener space this paper gives upper and lower bounds for the
distribution function of Y and proves that the distribution function
is log-concave and absolutely continuous on every open subset of the
distributions support. Moreover, the paper derives tail probabilities,
presents sharp moment inequalities and shows that Y is indetermined
by its moments. The paper will also discuss the so-called moment-
matching method for the pricing of Asian-styled basket options.
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1 Introduction

Assume (Q,F, P) is a given probability space carrying an m-dimensional
standard Brownian motion {W,, 0 < s < T'}. Consider the stochastic dif-
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ferential equation

dXs = Xg(nds + CdWs), 0<s<T,
XO =7, S (07 OO)m,

where C' is a non-singular m by m matrix and n € R™. Vectors in R™ are
regarded as m by 1 matrices. Moreover, multiplication of two vectors in R™
should be understood as coordinate-wise multiplication. Thus, the process
{Xs, 0 < s <T}is a geometric Brownian motion with drift.

Assume that p € [0,00)™ ! x (0,00) and 1 < g < oco. Let the function
¢p,q be defined for each = € (0,00)™ by

1
boa() = ( ;ilpia:g)q if 1 <g< oo,
p’q -

max;—1,....m Pi%i, if ¢ = 00,

where p; and z; denote the ¢:th coordinate of p and z, respectively. Moreover,
suppose 4 is a bounded and positive Borel measure on the interval [0, T].
Introduce the random variable

\IJII;:%(X) = ||¢Pa‘1(X(-))||Li”(u), 1<p< o0,

that is,

_ (foT ¢p,q(XS)pH(d3)) ’ if 1 <p<oo,
inf {u; p({s € [0,T]; pp,o(Xs) >u}) =0}, if p=occ.

P

The purpose of this paper is to investigate the law and the generalized
moments of the random variable ¥;%(X). By a generalized moment we
mean the quantity
M(r) = B[(275(X))"],

where r is a real number; if r is a positive integer, we speak of a moment
instead of a generalized moment.

There are various sources of interest of the random variable ¥}%(X).
In particular in mathematical finance it is relevant in the pricing of Asian
basket options (p = ¢ = 1), lookback basket options (p = 0o, ¢ = 1) and
options on the maximum of several assets (¢ equal to the Dirac measure at
T and ¢ = o). If £ is the Lebesgue measure on [0,7] and the dimension
m equals 1, the random variable \I'é,’; (X) is also of interest in the study of
disorded systems as well as in the study of hyperbolic Brownian motion,
see Yor [22]. The law of sums of lognormal random variables, which would
correspond to p equal to the Dirac measure at T" and ¢ = 1, is of interest in



geology, see Barouch et al. [2], and in radar theory, see Janos [15], to name
a few areas.

Previous studies of the random variable ¥9%(X) have been concentrated
on the one-dimensional case with y equal to the Lebesgue measure and p = 1,
that is, on the random variable

T
/ Xl,sds, (1)
0

where {X; 5,0 < s < T} is a one-dimensional geometric Brownian motion.
Yor, and co-authors, have written a large number of articles focusing on this
random variable, articles which have been collected in the monograph Yor
[22]. Here Yor, among other things, describes the density of the random
variable in equation (1) in terms of series of one-dimensional integrals, see
Yor [22] p.43. Other results in the same direction can be found in Alili [1],
Comtet et al. [8], and Dufresne [10],[11]. Moreover, Bhattacharya et al.
[3] derives a partial differential equation for the density function. Explicit
expressions for some of the generalized moments of the random variable in
equation (1) are given in Yor [22] p. 31, Dufresne [10],[11], and Donati-
Martin et al. [9]. Recently, Nikeghbali [18] has proven that the law of the
random variable in equation (1) is indetermined by its moment, a question
that was unsolved for a long time.

It should be mentioned that there is a large number of articles dealing
with the problem of computing the expectation

T
E[max(/0 X1,sp(ds) — K,0)], K >0.

The problem appears in the pricing of Asian options. This problem is, as
we can see, closely related to the problem of finding the the law of \I!L’,})(X )
in the one-dimensional case. For a further discussion about this problem
the reader may consult Linetsky [17], Rogers et al. [20] and the references
therein.

For some results concerning the distribution and the moments of sums
of lognormal random variables, see Barouch et al. [2] and Janos [15].

This paper will derive upper and lower bounds for the distribution func-
tion of UN%(X), prove that the distribution function is log-concave, and
discuss conditions on p and y in order for the distribution function to be
absolutely continuous. The paper will also present the asymptotic behaviour
of the distribution function and give sharp inequalities for the generalized
moments. Moreover, it will proven that the distribution of 5% (X) is inde-
termined by its moment. As we will see, this result has some consequences
for the so-called moment-matching method for the pricing of Asian-styled
basket options. The main tool in this paper is various geometric inequalities
in Wiener space.



2 Upper and Lower Bounds for the Distribution
Function

To begin with we will introduce some definitions that will be used throughout
this text. The class M denotes all bounded positive measures p on the Borel
o-algebra of [0, T], where 0 < T' < co. The class M(0,T) includes all 4 € M
such that sup{s > 0; u((s,7]) > 0} = T and if 0 < ¢t < T then M(¢,T)
consists of all u € M(0,T) such that x([0,¢)) = 0. The norm in LP([0, T, u)
will be denoted || - || p(,)-

If x € R™ then z; will denote the i:th coordinate of z. Let as previous
the function ¢, , be defined for each z € (0,00)™ by

1

(Zg’ilpimg)a if 1 <gq < oo,

max;—1,....m Pi%i, if ¢ = 00,

Bpqlz) =

where p € [0,00)™ ! x (0, 00). Henceforth we put A = [0,00)™ "1 x (0,00) .
Let X be a stochastic process defined by the stochastic differential equa-
tion

{dXs = X,(nds + CdW,), 0<s<T,

Xy =z, z € (0,00)™.

Here n € R™ and C is a non-singular m by m matrix with rows ¢i,... ,¢p.
Vectors in R™ are regarded as m by 1 matrices. Moreover, multiplication of
two vectors in R should be understood as coordinate-wise multiplication.
Let also 0y, = |cm|2 = maxi=1,... m |ci|2, where |- |2 is the Euclidean norm in
R™,

In what follows, let the functional ¥%% be defined by

V(X)) = l1dp.a(X)llzo(uy (2)

where y € M(0,T), p€ A and 1 < p,q < oo, that is

_ (foT ¢p,q(X5)pN(d3)) ’, if 1 <p < oo,
inf {u; p({s €[0,T] : ¢ q(Xs) >u}) =0}, ifp=oc.

W4(X)

For simplicity, the functional ¥%% will mostly be abbreviated ¥, ,. The law
of U%(X) will be denoted F};’4, that is

FPA(s) = P(U09(X) <s), s>0.

Similarly, F}’d will mostly be written F}, ,.
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As we will see, the distribution F), , has some similarities with the log-
normal distribution G, defined by

Ins

G.(s) = <I><—>, >0, ¢>0,
S
where @ is the standard normal distribution function. Thus, G¢ is the dis-
tribution function of the random variable ef, where ¢ is a normal distributed
random variable with mean 0 and variance ¢2.
The next lemma will play an important role in Section 4 and 5.

Lemma 1. Suppose 0 < t < T, p € M(t,T), p € A and ¢ = o, VT.
Assume 6 > 1 and chose a,b > 0 such that

F,u'ap(a') = Gg(b)’
then
Fp(ba) > G.(6D). (3)
If, in addition, t > 0 then
Fp(0a) < Go(67D), (4)
where
omVT .
= th = ; .
VE g Wih o= max i (en0) >0

Moreover, if 0 < 6 < 1 then the inequalities in equation (3) and (4) are
reversed.

Equation (3) follows at once from Corollary 2 in Horfelt [14]. However,
in order to make the paper more self-contained and since the paper [14] has
not been published equation (3) will be proved in this paper as well.

The proof of Lemma 1 is based on two geometric inequalities in the
Wiener space. To present these inequalities we will introduce some further
notation. From now on the sample space 2 = Cy([0,T]; R™) consists of all
functions w = (wy,ws, ... ,ws,) such that, foreach i = 1,... ,m, the function
w; : [0,T] = R is continuous and w;(0) = 0. The space 2 is equipped with
the norm || - ||¢,, defined by

lwlleo =, max  max |wi(s)], w € Q.

The measure P will henceforth denote Wiener measure on (). Setting
Wiw) = w(s), 0 < s < T, we Q, the process {W;,0 < s < T} is a
standard m-dimensional Brownian motion with respect to P.



Moreover, H will denote the Cameron-Martin space. Here H consists
of all functions h = (hi,hg,... ,hy) such that, for each 1 = 1,... ;m, the
function h; : [0,7] — R is absolutely continuous with a square integrable
derivative and h;(0) = 0. The space H is equipped with the norm || - ||%,
defined by

Il = (3 /0 ")), nen
=1

Now, let O be the set of all h € H such that ||h]lyz < 1. Suppose A4 is a
Borel set in Q and h € O. If

then

P(A+ Ah) <®(a+ ) < P(A+ 20) (5)
for each A > 0. The right inequality in equation (5), i.e. ®(a+ ) < P(A+
A0), is a special case of the celebrated isoperimetric inequality for Gaussian
measures, which was discovered independently by Borell [5] and Sudakov and
Tsirelson [21]. The left inequality in equation (5), i.e. P(A+Ah) < ®(a+]),
is a so called shift inequality and it can be found in Kuelbs and Li [16].

Before we go on and prove Lemma 1 let us note that the process X may
for each w € Q and s € [0,T] be written as

Xs(w) = zestCw(s)

where the coordinates of 7 are given by 7; = 7; — %|ci|2 and e* with z =
(1,-.. ,Zm) € R™ should be interpreted as (e*,... ,e*m).

Proof of Lemma 1. Firstly, suppose w € Q, h € H, A > 0 and note that
X, (w) = e PO X (w + Ah)

for each 0 < s < T. Thus, if p € M(¢,T) and I = {i; p; > 0} then

U, (X (W) < Nk g, (X :
wp(X()) < (max maxe ) i (X (w +AR)) (6)
Now, to prove equation (3) assume that h = (hy,... , hy). Since

S
h(s) = / h'(u)du, 0<s<T,
0
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the Cauchy-Schwarz inequality gives for 0 < s <T andi=1,... ,m

o < om( 35 )’
z

< omVs ( i/os (h;(u))2du);
< o V|

and thus exp(—X{c;, h(s))) < exp(AoyVT||h|j%) for any i = 1,... ,m and
any 0 < s <T. By equation (6) it now follows

nf W (X (w4 M) > e 2T, (X ()

for any w € Q and any A\ > 0.

Since ¥, ,(X(-)) is continuous and {h € H;||h|jz < 1} is a separable
subset of €, the random variable infjp, <1 ¥y, (X (- + Ah)) is Borel mea-
surable because the infimum can be taken over a dense denumerable subset.
Hence

P(ef/\am\/flpu,p( X) < a) > p( o W, (X(-+ Ah)) < a).

It is given that
Inb
P(0,,(X) <a) =o(=2)
S
and therefore, according to the isoperimetric inequality (cf. equation (5)),
P inf W,,(X(-+AR) <a) > @(@ +2)
Ialla<t 7 NS

for any A > 0. To sum up,
~AomV/T Inb
P(e \Ilu,p(X)ga)th( . —l—)\).

Set A = % and the proof of equation (3) is done.
To prove equation (4), suppose henceforth that pu € M(t,T) with 0 <
t < T. Counsider equation (6). Substitute w by w — Ah and (subsequently
replace) h by —h to conclude that
Uy p(X(w+ Ah)) < ( max maxe’\@“h(s))) Ty (X (w))

t<s<T i€l

for every w € Q, h € H and X > 0.



Let x[o,s) be the characteristic function of the interval [0, #] and fix h € H
such that

X
W(s) = WX[O,t](S)a 0<s<T,

where z € R™ satisfies |z|2 = 1 and

mgplen ©) = nin, e v)

Observe that ||hlly = 1 and max;ecr(c;, ) = —a, where « is defined as in
Lemma 1. Since h(s) = v/tz for all t < s < T it follows

Mt{c;,T) — e—)\a\/i_

max max e M M5) — maxe
t<s<T i€l i€l

Consequently,
Uyp (X (w+AR)) < e Vg, (X ().

Recall that ||h||y =1 and

P(0,,(X) <a) = @(g).

The left inequality in equation (5) implies

P(@,,(X(- + M) <a) < @(g +2),

for each A > 0, and therefore
o Inb
P(\IJW,(X)Se a) g@( . +)\). (7)

The constant « is strictly greater than 0. In fact, if A denotes the convex
hull of the vectors {c;}ier then, since 0 ¢ A, (¢;,z) > 0 foralli € I if
denotes the point in A closest to the origin. Hence, equation (4) follows by
setting A = ;n_\/ei in equation (7).

The last part of Lemma 1 is obvious. O

3 Convexity Properties and Absolute Continuity

This section will prove that the distribution F), , is log-concave and discuss
conditions that implies that F), , is absolutelly continuous. From now on,
absolutelly continuous should be understood as absolutelly continuous with
respect to the Lebesgue measure.



Theorem 1. Suppose p € M(0,T) and p € A. The function F,,, is log-
concave, that is

Fup(0s+ (1—0)u) > F,,(5)0F, (u)'™°
for all s,u >0 and all 0 < 0 < 1.
Proof. The Wiener measure P is log-concave, that is
P(0A+ (1-0)B) > P(A)’P(B)'?

for all Borel sets A and B in Q and all 0 < 6 < 1, see Borell [4]. In particular,
if T :Q+— R is convex and continuous then

{Y<O0s+(1-0)u} 26{TY <s}+(1-0){Y <u}
for all s,u € R and all 0 < 8 < 1 and, accordingly from this,
P(Y <Os+(1-0)u)>P(Y <s)'P(YT <u)'?

for all s,u € R and all 0 < 8 < 1. Thus, to prove Theorem 1 it remains to
show that the functional w — ¥, ,(X(w)) is convex.

For each fixed y € R™ and k£ > 0 the function z +— kexp((y,z)) is
convex and thus, if X,(w) = (Xi5(w),... ,Xms(w)) then w = X; (w) is
convex for each fixed i = 1,... ,m and fixed s € [0,7]. The function z; —
bpg(T1,... iy .. ,Zm), 1 < g < 00, is convex and non-decreasing for each
i =1,...,m, which implies that w = ¢, ¢(X,(w)) is convex for each s. The
Minkowski inequality now gives that w — ¥, ,(X(w)) is convex and the
proof is complete. O

Although the distribution F}, , is log-concave, the measure with distri-
bution function F), , is not log-concave for all choices of ;1 and p. Indeed,
an absolutely continuous bounded and positive Borel measure on some open
subset of R is log-concave if and only if the density function is log-concave,
see Borell [6]. The lognormal distribution function G has a density g. given
by

_ w1
gC(s) =€ < S\/27§’
It is easily seen that the function ln g is not concave and thus, the measure
with distribution function G¢ is not log-concave.

The proof of the next corollary exploits an idea in Hoffman-Jgrgensen et
al. [13].

s > 0.

Corollary 1. Suppose p € M(0,T), 1 <p,q <00, p€ A and put
s* =inf{s > 0; F}’l(s) > 0}.

The distribution F})} is absolutely continuous on (s*,00). Moreover, if u €
M(t,T), t >0, or if p < oo then F)} is absolutely continuous on [0, 00).



Proof. Theorem 1 gives that In F}’}(s) is concave for all s > s*. Thus, if
s > s* then the distribution F};’}(s) can be written as exp(t(s)) for some
concave function 1. A concave function is absolutely continuous and hence,
F'1 is absolutely continuous on (s*, 00). It remains to establish that F.’(s)
is continuous at s* if y € M(¢,T), t > 0, or if p < co. Since a distribution
function is right continuous this amounts to the same thing as proving that
PURL(X)=s*)=0if p € M(t,T), t>0, or p < oo.

Firstly, suppose either that p € M(¢,T), t > 0, or that p < oo
and u({0}) = 0. For any given ¢y > 0 there is an wy € 2 such that
U9 (X (wo)) = €. Define T(w) = U5%(X(w)), the map Y is continuous
which yields that for each e; > 0 the set T~ ((—oc0,€y + €1)) is an open
non-empty subset of ). The topological support of P equals €2 and, hence

P(T_l ((—OO, € + 61))) >0
and therefore s* = 0. But T(w) > 0 for all w € Q, which yields
P(URI(X) = s") = P(YT = 0) = 0.

Next, assume that p < co and p({0}) > 0. It is readily seen that

=

s 2 k= ¢pq(z) n({0})7,

where z = Xg. Set v(A) = u(A N (0,7T]) for every Borel set A of [0,T]. For
any s > k it holds
1
P(UP9(X) =s) = P(¥09(X) = (s — kP)7 ).
Since v({0}) = 0 the previous results implies that P(¥55(X) = s) = 0 for
all s > 0, and therefore P(U1;%(X) = s) = 0 for each s > k. In particular,
P(I%(X) = s*) = 0 and the proof is complete. O

If 4 € M(0,T) then F; ;7 is not necessarily continuous at s*, where s*
is defined as in Corollary 1. For instance, if v = dg + d7, where d, is the
Dirac measure at s, then it is easily seen that F,? is discontinuous at s*.

4 Tail Probabilities

This section considers the tail probabilities for the law of ¥, ,(X). To begin
with we will study the upper tail probability.

In what follows we write f(s) ~s g(s) if f(s)/g(s) — 1 as s — oo. The
lognormal distribution satisfies

11n’s
In (1 — G;(As)) ~g —5 g—z’ (8)

10



for any A > 0 and any ¢ > 0. This follows at once from the well-known
estimates
1 S s2 1 1 s2

————e 2 <1-®(s) < -e 2, s§>0

Varly2¢ T SITRI s et 20
and the definition of G¢. The next result, Theorem 2, extends this observa-
tion as well as a previous result by Janos, see [15]. Janos obtains by other
methods the same result in the specal case p = ¢ = 1 and p equal to a
positive linear combination of Dirac measures.

Theorem 2. If p € M(0,T) and p € A then

1In?%s

In (1= Fiup(s)) ~s =57
m

Proof. Firstly, let a,b > 0 be chosen such that

Fp(a) = Gg(b).
Suppose ¢ = 0,,V/T. From Lemma 1, equation (3), with § = s/a it follows

b
Fliyp(s) Z GC(as)a s Z a,

which gives In (1 — Fy, ,(s)) <In (1 — Gg(gs)) and therefore

b
‘ In(1— F,,(s)) ‘ > ‘ In(1- Gg(as)) ‘
for each s > a. Hence, if
[” = liminf In (1 — F“’p(s))
smo0 In (1 — Ge(s))
then
b
I > lim g 2 Gs(69) 1,

according to equation (8).
The next aim is to find an upper bound. Fix € such that 0 < e < T and
define

V(4) = (AN (T = & 7).

for each Borel set A of [0,7]. Note that v € M(T —¢€,T). Moreover, set
0=1(0,0,...,0,pp). It is evident that

Fu,p(s) < Fv,g(s) (9)

11



for each s > 0.
Next, because v([0,T]) > 0 there are a,b > 0 such that

Fuo (a) = G¢(b).

If s > a and 6 = s/a, then Lemma 1, equation (4), yields

b
Fu,g(s) < G((a_vs’y)a s > a,
with
_ T
TEVT €

In view of equation (9) we find In (1 — F, ,(s)) > In (1 — Gg(a%s'y)) so that

‘ In (1 — Fu’p(s)) ‘ < ‘ In (1 - Gg(a%sy)) ‘

for each s > a. Thus, if we set

It =

lim su a
,s—)oop ln ]. — Gq 3))

we obtain

T <1
<lmew — e )

according to equation (8).
To sum up, for every e > 0,

and the proof is done. O

It is far more difficult to state any general results about the lower tail
probability. For instance, if x#({0}) > 0 or if p = oo and p € M(0,7) \
Uiso M(t,T) then inf{s; Fj’l(s) > 0} > 0. However, it is possible to
find upper bounds for F, ,(s) as s — 0". For instance, Lemma 1 implies
that F, ,(s) < G¢(As) for some XA > 0 and all sufficiently small s > 0. In
particular, since G¢(As) = 1 — G¢(1/As) equation (8) gives that there is a
k > 0 such that

F,(s) < e ks (10)

for all sufficiently small s > 0.

12



5 Moment Inequalities

The purpose of this section is to derive inequalities between the generalized
moments of F’d. To this end, set

o
MPA(r) = /0 SFPY(ds), rER

The function MJ'} will often be written M), ,. From Theorem 2 and equation

)

(10) we can draw the conclusion that the function M, ,(r) is finite for all
real r.
If —00o <719 <71 < o0 and ror; # 0 then it is well-known that

1 1
My,p(ro)7o < My (1)
The main result in this section is a sharp reversed inequality.

Theorem 3. Suppose p € M(0,T) and p € A. If —00 < 19 < 11 < 00 and
ror1 # 0 then

1 1

MM,P(""I)E < C(ro,r1) Mu,p(TO)TO ) (11)
where
Clro,r1) = e2M =0T,

Moreover, there is equality in equation (11) if p = kér, k > 0, and p; =0
fori=1,... m—1.

Proof. Suppose N(r) = [;° s"G(ds) with ¢ = 0,,V'T and define a measure
o by po = kop, where the constant kg is given by

Put

It is readily seen that
o
Myg,p(r1) — Ne(r1) = 7‘1/0 s" Lap(s)ds.
Integration by parts implies
o
M,.p(r1) — Ne(r1) :7"1/ S”fmsmfld)(s)ds
0

[e.e] o
:rl(rl—ro)/ s”_’"o_l/ u™ " Lep(u)du ds.
0

S

(12)
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Note that

/Ooo um_lzp(u)du — Muo,p(ro) _ Ng('rO) = (13)

since My, ,(ro) = kg® M), »(ro) = N¢(ro). Next, let
u* = inf{u > 0; 9 (u) = 0}.

Lemma 1, equation (3), gives that ¥(u) < 0 for all u > u*. In combination
with equation (13) this yields

[e o]
/ w0 p(u)du < 0, for each s > 0.
S

Thus, equation (12) yields x (M, o(r1) — Nc(r1)) < 0, where x denotes the
sign of 7. The relation My, ,(r1) = ko' My, ,(r1) now implies

HO,P
1 1
M, ,(r1 N.(r M, (1) Ne(ry)m
(Muglr) M) M) M)
M, ,(ro) o N¢(rg) ™o My, ,(ro) 7o N¢(ro) o

Since Nc(u) = ¢3(5%)” we have established the desired inequality. The last
part of the theorem is obvious. ]

6 The Moment Problem and the Moment-
Matching Method

This section will prove that the distribution F), , is indetermined by its
moments and discuss the moment-matching method for the pricing of Asian
basket options.

We first recall some definitions. The distribution F, , is said to be inde-
termined (or Stieltjes-indetermined) by its moments if there exist a distri-
bution function F' with support on the positive real axis such that F' # F, ,
and

M, (k) = /O u"F(du) for all k €N,

where M, , is defined as in the previous section.

It is well-known that the lognormal distribution is indetermined by its
moments. This result goes back to Heyde [12] who also construct a class of
distribution functions with the same moments as the lognormal distribution.

Suppose ¢ = (0,...,0,0,) with g, > 0. Nikeghbali [18] has recently
proved that for any p € M(0,T) the distribution F,},’; is indetermined by
its moments. Nikeghbali proved this result using a criteria by Pakes in [19].

14



Namely, Theorem 5 in Pakes [19] states that if F' is a distribution function
with support on the positive real axis such that

pEYE) ds < 00,

/oo —In (1— F(s))
u
for some u > 0, then F' is indetermined by its moment.

The result by Pakes can also be applied to show that F), , is indetermined
by its moment. Indeed, from Theorem 2 it follows that

ds < o0, u>0,

/00 —In (1 - F,,(s))

$3/2
and thus, we have

Corollary 2. Suppose p € M(0,T) and p € A. The distribution F), , is
indetermined by its moments.

Corollary 2 has some consequences for the so-called moment-matching
method for the pricing of Asian basket options. Pricing these options is
equivalent to determine the expectation

E[max(¥;(X) — K,0)],

where 4 € M(0,T'), p € A, and K is some constant. Note that the quantities
M, ﬁ,’;(k), k € N, for many choices of y easily can be computed analytically. A
common approach used by practioners to estimate the price is the so-called
moment-matching method, which means that the one determines a random
variable Y such that

EBlY* =Mpi(k), k=1,...,n,

and then approximate
E[max(¥);(X) — K,0)] ~ E[max(Y — K,0)]. (14)

If K > 0, then Corollary 2 shows that even with n = oo then it is not
guaranteed that there is equality in equation (14). To be more specific,
there is a random variable Y such that E[Y*] = M, (k) for all k € N and
a constant K > 0 such that the left hand side is not equal to the right
hand side in equation (14). Recall that if Y and Y’ are two non-negative
random variables with finite expectation such that E[max(Y — K,0)] =
E[max(Y'— K,0)] for all K > 0, then Y and Y’ are equal in law. For other
aspects on the moment-matching method, see Brigo et al. [7].
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