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Abstract.

The stationary nonlinear Boltzmann equation is studied for forces including
hard spheres, in a Couette setting between two coaxial, rotating cylinders with
given maxwellian indata on the cylinders. The existence of isolated solutions
together with a hydrodynamic limit control, is obtained using an asymptotic
expansion and rest term in a frame with boundary layers. Depending on a pa-
rameter present in the boundary indata, two solutions connected at a regular
turning point may coexist. Other situations with several coexisting solutions
are also considered.

1 Introduction.

The asymptotic kinetic approach in a sharp mathematical form has its roots
in works by Grad and Kogan in the 1960’ies (see [G1], [G2],[K] and references
therein). A number of important results followed, concerning the nonlinear sta-
tionary Boltzmann equation in IR" in the close to equilibrium case ([G3], [Gu],
[H], [UA] and others), where techniques of a general scope were used, such as
contraction mappings (see also [EP]). Stationary problems in small domains
were solved in a similar way (e.g. [P], [IS]), and the unique solvability of inter-
nal, stationary problems for the Boltzmann equation at large Knudsen numbers
was likewise established (cf. [M1]). In [BCN1], a kinetic description of a gas
between two plates at different temperatures and no mass flux was studied in
the case of a small mean free path for the nonlinear stationary Boltzmann equa-
tion under diffuse reflection boundary conditions. Stationary, fully nonlinear
hydrodynamic limits, were treated in the papers [ELM1-2].

Solutions to half-space problems for the Boltzmann equation play an important
role as boundary layers in the study of hydrodynamic limits for such solutions
to the Boltzmann equation when the mean free path tends to zero. This has
been extensively studied in the linear context, using functional analytic and
energy methods ([BCN2], [GP] and others).

In a perspective of asymptotic analysis and numerical studies, a wide range of
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questions of the above types have been addressed for the BGK and Boltzmann
equations by the Kyoto group as well as by others (see the monograph [S] with
extensive references).

Further away from equilibrium, weak compactness arguments have been em-
ployed instead of contraction mappings, and in the stationary case usually in-
volving entropy dissipation control for the sharpest results. That was the case
in the spatially n-dimensional Povzner and one space-dimensional Boltzmann
papers [AN1], [AN2], and [AN3], to obtain stationary solutions via weak L'-
compactness under no other restrictions than Grad’s angular cut-off. The basic
compactness argument in those cases, is not fully available for the Boltzmann
equation itself in more than one space dimension. However, in the spatially
n-dimensional case the entropy dissipation estimate still allows different but
weaker control mechanisms , which also lead to existence results (see [AN4]).
There, in contrast to the earlier cases mentioned, complete results are so far
only obtained when the velocities smaller in norm than some n > 0, are sup-
pressed.

The present study is set in the close to equilibrium frame and gives a mathemat-
ically rigorous study of the stationary nonlinear Boltzmann equation between
two coaxial cylinders A and B, with maxwellian ingoing boundary values. The
problem is extensively treated from a numerical and asymptotic perspective in
[S], to which we also refer for a more complete discussion of some details. The
boundary values and the solutions are assumed to be axially and circumferen-
tially uniform in the space variables. Then, with (7,0, z) and (v, vy, v,) respec-
tively denoting the spatial cylindrical coordinates and the corresponding veloc-
ity coordinates, a distribution function may be written as f = f(r,v,, vy, v;),
and the Boltzmann equation becomes

af 1 1 -
L oNfF= =
v+ =Nf = Q. 1),
(1.1)
r € (ra,rg), (vy,vg,v,) € IR>.
The maxwellian boundary data under study are
flra,v) = (2m) " 2er(TH—omeon)’ D) -y g,
(1.2)
flre,v) = (2m)3 L TYB_3Cmpeitteam?™h) g
(1 + TB)2
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QN0 = [ | Bo= v w)(0)1(0) = 1) (0)dv.ds

The kernel B = |v — v,[°b(6), b € L1 (S?), is assumed to satisfy (3.19) below
and belong to the Grad class, that is with its terms suitably majorized by the
corresponding ones for the hard sphere model (cf [M2]). Consider functions
which are even in the axial velocity direction v,. Take the radii as r4 = 1,
rp > 1, and let €* denote the Knudsen number. The rotational velocities of the
inner and outer cylinders are ugqa = euga; and ugp = eugpy respectively. The
non-dimensional perturbed temperature and density are

2 2

€ (TB_l 2 )
= U — 7o + Ac
1+ €21ps 7“23 oA1 ’

2
™TB = € TB2, WB
where Tpo is given and A is a parameter.

The main results of this paper are Theorem 1.1 about existence, and a pos-
itivity Theorem 5.2.

Theorem 1.1 Assume that (uga1 — ugB17B)(3ugar + ugpire) > 0. There is a
negative value Ay;s of the parameter A, such that for A < Ap;y and 0 < € small

enough, two isolated L*-solutions fej, j=1,2 of (1.1-2) coezist, and satisfy
/M_lsupessre(u,m) | f(r,v) |? dv < +o0.

The two solutions have different outward radial bulk velocities of order €3. For
fized €, they converge to the same solution when A increases to Apyr. The
solutions have rigorous hydrodynamic limits when ¢ — 0.

Remark. This existence result is based on a priori estimates of L2-type, which
are uniform in e. The positivity of these solutions can be shown using an ex-
tension of the present set-up with a priori L%-estimates of the solutions for
sufficiently large ¢ > 2. That is the topic of an accompanying paper [ANG6],
which also takes up other aspects on the present problem. Our approach has
wider applicability. In particular, as discussed in Section 6 below, analogous
results hold for all cases of the two-roll problem treated in [S]. We also expect
the techniques developed here, to be useful in the study of related problems,
such as the Taylor-Couette set-up of [SD1], the Benard asymptotics of [SD2],
and the two-component gases of [ATT]. The existence problem far from equi-
librium for the two-roll system of this paper, is studied by weak type methods
in the paper [AN5].

Write R = frest = Pofrest + (I — Py) frest = R + R, where P, is the pro-
jection on the hydrodynamic part, and

J1
f= ML+ fro) withy = 3, M = (2m) Fexp(-2). (1)
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Here > 7' €/1)7 is the asymptotic expansion with certain boundary values equal
to the terms of corresponding order in the e-expansions of (1.2), and based
on a splitting into interior Hilbert behaviour, and various types of boundary
layers. The main part of the paper is devoted to a rigorous study of the rest
term R = fs using as ingoing boundary values what remains of (1.2), after
the asymptotic expansion. The rest term problem is solved by a contraction
mapping iteration.

Sections two and three are devoted to the asymptotic expansion, adapting the
presentation in [S] to the needs of the present paper. For the convenience of
the reader, the description of the asymptotic expansion for the two-roll system
is fairly self-contained and includes particular details that are relevant here and
in [ANG].

Section four discusses some a priori estimates for the rest term. A dual prob-
lem is first considered in full physical space with a priori estimates derived
by multiplier techniques from Fourier-transformed, quite detailed information
about the hydrodynamic moments. This gives sufficient information to estimate
certain hydrodynamic moments of the original problem via a correspondingly
detailed, duality based analysis. The rest of the hydrodynamics study requires
a direct treatment, also building on a coupling with the asymptotic expansion.
The estimate for the nonhydrodynamic part in L? is less involved and based on
Green’s formula.

Section five deals with the rest term; a study of the contraction mapping, a
remark about the hydrodynamic limits, and a positivity discussion. This is
based on the technical results obtained in the earlier sections. The final sec-
tion contains existence results for other two-roll problems, where the approach
applies essentially without modifications.

2 The frame.

Write the solution of (1.1) as f = M (14 ®). Then the new unknown ®(r, v,, vy)
should be solution to

0% 1 1 -

LN = (L0 + (2,0 2.1
oo+ NG = S (L0 +J(@,9)), (21)
B(1,0) = exWi—(o—euwa)?) _ 1 4 50, (2.2)
b(rg,v) = 71 tuws e%(v2_1+1TB (v7 +(ve —eugp1)’+v2)) _ 1, v, <0.(2.3)

1+ B)%
Here J is the rescaled quadratic Boltzmann collision operator,
~ 1
@)= [ B 00 M) @090 + 20)6()
2 Jm3xs?
—®(v:)p(v) — @(v)¢(vs))dvsdw,

and L is this operator linearized around 1,

(L®)(v) := /1R$X$2 B(v — vy, w) M (v.)(2(v) + (v3) — ®(v.)
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—®(v))dv,dw = K(®) — 0.

Denote by ®4 and ®p the truncations up to order j; of ®(1,v),v, > 0 and
®(rg,v),v, < 0 respectively, e.g. for j; =4

2
u
D 4(v) = eugaivg + 62%(—1 + Ug)
3 4
U 1 U 1 1
8L Ly et g Ly s,
2
q)B(’U) = EUYPB1VY + 62( gr% u%Al — 57’32 — §U331 + 5”031”9 + ETBQ’U )
+3(A +u 7"1237_12_3 .2 1o, o 1 2
0B1v6( 2 Uoa1 — 5782 — Ugpy + gUgpi Vg + 5 TB2Y )
B
1 27 3 —1 9 3ry—1 ,
+64(ZU§B1TBZ + gugm + ?7—%2 - ZT%’Mzmuam - Z?UWHTBZ +
1 r2 —1 1 r —1
Augp1vg + Zugm(%ugm — TTB2)vy + ZTBZ(B,TugAl — 7By — U )V
B B

1 1 4 4
+§T]232’U4 + ﬁ’uaBl'U@)a U < 0.

Denote by (®4;)1<i<j resp. (®Bi)i<i<j, the first to j-th order terms of ® 4 resp.
®p, with respect to e.

Solutions ® will be determined as in (1.4), an approximate solution 1 plus a
rest term R = frest,

O(r,v) = P(r,v) + ejOR(r,'u),
where for j; =4
T

—TB T —TB

P(r,v) = e(@Hl(r,v) + Dy (

r—TB

—|—€3 (@Hg (‘l“, ’U) + q)wg(

r
+€4 (¢H4 (‘T‘, ’U) + ¢W4(

),

r—17TRB
A

+Pr4p(

with

/(I)Hl('av)(lavr;'UQ)M(’U)d’U :/

:/@m@@%Mm

. r—TB
lim
OB o

€

Dy ( V)=

,v)) + €2 (@HQ(T, v) + Pyyo(

)

T T —17rRB

et

—1
A ,’U) + (I>K33(

r—1
)

aU) + (PK3A(

)

V) + Preaal

(2.4)



lim  ®gia(—,v) =0,
Tt €
. r—7TB .
lim @KiB( 1 ,’U) = O, 3 S A S 4. (27)
B -0 €

Here (e®f1 + 2@ g0+ 3P g3+ €*®pr4) (1, v) denotes the truncation up to fourth
order of a formal expansion Zk21 " ® g (r,v). The sum (e®yy+e2dyyo) (=2, v)
consists of correction terms allowing the boundary conditions to be satisfied to
first and second orders. They correspond to a suction boundary layer at rg.
Supplementary boundary layers of Knudsen type, described by €3(® g3 A(Te;f, v)+
®x3p(~=2,v)) are required in order to have the boundary conditions satisfied
at third and fourth orders. Similar expansions hold for j; > 4 (cf [S]), and will
be used in Section 5 below for j; = 10. The boundary values up to order j in €
are satisfied by 1, whereas 9711, ...,47! (in particular 4%, 4 and 4'° in Section

5 below) may be taken as the plain Hilbert expansion.

3 The asymptotic expansion.

We shall here give a fairly detailed discussion of the asymptotic expansion for
ji = 4. Recall (see [D]) that L(vgv,B) = —vgv,, L(v,A) = v,.(v> — 5) for
some functions B(|v|) and A(|v|), with vgv, B(|v|) and v, A(|v|) bounded in the
(,)am-norm, and let

wy 1= /vzvgBMdv, wy = /vr(v2 —5)AMdv.

Let g(n,v) be the solution to the half-space problem

vrag =Lg, n>0, velR?,
ov,
g(0,v) =0, v, >0,
/g(n,u)wM(U)d’u =1, a.a.n>0. (3.1)
By [BCN2] there are constants A, D, and FE such that, (sub-)exponentially,
lim g(n,v) = A+ Dv? + Evg + vy. (3.2)
n—-+oo

Proposition 3.1
Assume that

(uoB1TB — uga1)(uweB1TB + 3ugar) > 0,

and set
rg+1 %
Apip = —<2w1 3 (A+5D)(rpugp1 — upa1)(rBusn1 + 3u(;A1)) .
B

For A > Ay, there is no solution ® in the family defined in (2.4-7).
For A = Ay, there is a unique solution ® in the family defined in (2.4-7).
For A < Ayy, there are two solutions ® in the family defined in (2.4-7).



The proof below starts by assuming that the ), e*® . satisfies (2.1) for-
mally. The boundary condition (2.2) can be satisfied up to order two, but not
from third order. Instead, supplementary boundary layers at third and fourth
orders, @K;»,A(Te%l, v) and ¢K4A(T6;41, v) are introduced so that

T—l
(e@p + 62<I>H2)(r,v) + € ((I)Hg(’l“ v) + Praal

7"—1

,0))
,0)) (3:3)

satisfies (2.1) and (2.2) up to fourth order. But (3.3) cannot satisfy the bound-

+e* (@ pa(r,v) + Drean(

ary conditions (2.3) even at first order. So (®w (%, v))k>1 and
(®xrB(~72,))k>3 are introduced in order that
2 r—r
—TB
Zek((I)Hk(’raIU) +®Wk( 7”))
k‘:l
r—r rT—r
+Z ((I>Hk r,v) + Sy (——,0) + Ppp(— ) (34)

satisfies (2.1) and (2.3) up to fourth order.

rrB

Proof of Proposition 3.1. Denote by Y = , and let the expansions

€*® g1 (r,v) and (@ pp(ra,v —|—<I>W/c I=IB 'y)) formally satisfy (2.1).
k>1 k>1 €
Then,

Loy = LOpo + J(®y1,Py1) = LOys + 2J (D1, Paro)
=LOgs+2J(®H1,Pn3) + J(PH2, PH2) =0,
v 0Ppr 4 1

and

Loy = Loy + J(Pwi,2®11(rs,.) + Pw1)
= L®ys + 2J (B (rB,.) + Pwi, Pwo) + 2J(Bw1, @ua(rp,.) + Y&y (rp,.))
= LOws + 20 (Pws, Pui(rp,.) + Pw) + J(Pwa, Pwa + 2@pa(rs, .)
-I-QYCI)’HI(’I"B, )) + 2J((I)W1, (I)Hg(’I‘B, ) + Y@IHQ(’I‘B, )

y? 0By

+7‘I"1'11(7“Ba ) =y =0, (3.6)
k—5
0Bwrs 1 v
— 4+ — —DY(—)'N(®Ppr_a_; . DPywk—a—i
Uy +TBZ;( )(TB) (®uk-1-i(rB,.) + Pwk—a-i)
= LOwy + ZJ(Q‘I’Hj(TBa-)+¢Wja@ch—j)a k> 5. (3.7)
7j=1



Taking the conditions (2.5) into account, equations (3.5) are equivalent to

D1 (r,v) = by (r)vg,
1
B0 = ap + dov® + bovg + —b%’ug,
DPys =asg+ d3U + bsvg + c3v, + bldg’l)gv + b1b2U9 + 6[)1’00,
By = a4 + dgw® + byvg + cavr + (brds + bada)vgv® + (bibs + §b% bla2)
1 1 1 1
+b1czvpvg + §b§b2v2 + Edgv4 + ﬂb%vg + Eb%dgvg'uQ,
for some functions a;(r), bi(r), ¢i(r), di(r), 1 < i < 4. Equations (3.6) have

solutions if and only if the following compatibility conditions hold,

/ (522 4 L@y ) (1,02 — 5,09, ) M)y =0, i 1.

They provide first-order differential equations for the functions a;(r), b;(r), ¢;(r)
and d;(r), i > 1. In particular,
(rb1)' =0, (10dy + b2)' =0,
1 1
(7"2031)2)' = ’U)17"2(b11 - —bl)l + (221)1 - wg)’f‘(bll - —bl),
T T

1 1
(ag + 5dy + Eb%)’ = ;b%, (3.8)
2
(a3 + 5ds + bybe) = ;blbg, (3.9)
(rez)' =0,
1 35 7
(ag + 5dy + bibs + —b% b1a2 + d% + ib%dQ)’

7

2 1
= ;(blbg + §b§ blaQ) gb‘f + ;bﬁdQ, (3.10)

(req) = 0.

Together with the boundary conditions (2.3) at first and second orders, this
implies that

UgA1 1 1

bl("') = r az(’l“) = _§U§A1_25 bZ(T) =0,
1 1 us

da(r) = Eugm(l - ,r_g)a e3(r) = —,

for some constant ug # 0. Moreover,
10U3dg + AQ = 0, (rb3)' + A2 = 0,

where A; denotes an expression containing coefficients up to i-th order only.
Taking the condition (2.6) into account, equations (3.7) are equivalent to

1
Ow1(Y,v) = 21(Y)vg, ®wo =2 + 20> + 2019 + (b1(rp)z1 + iz%)vg,



Dyyg = 3 + y30° + 2309 + t3v, + (b1(TB)Y2 + 2192 + 21d2(75))vev?
+(b1(rB)z2 + 2122 + z1ba(rB) + YV (rB)21)vs

1 1 1
+(§b%(7"B)Z1 + §bl(TB)z% + EZ?)Uga

By = T4 + ysv? + 2409 + tav, + AvvB(v) + ...,

for some functions z;(Y), y;(Y), z:(Y), t;(Y), 1 <14 < 4. Equations (3.8) have
solutions if and only if the following compatibility conditions hold

OBy, 1523 Y
-3 i i 2
/ (UTT + s ZZ_;(—l) (E) N(®gk-—a—i(rs,.) + ‘1’ka44) (v
—5,v9)M (v)dv =0, k> 5, (3.11)
and
i 153y
/ (UTT + E iz:%(—l) (5) N(®pp—s—i(rs,.) +
q)kaélfi) (l,UT)M(’U)d’U = 0, k > 5. (312)

Equations (3.11) provide second-order differential equations for y; (resp.z;),
i > 1, depending on t;,¢;, j < i+ 1 (resp.j < i+ 2). In particular,

n U3
3B
w121 5 21 ,
1
(LL'Q + b5ys + by (’/‘B)Zl + 52%)’ =0, (313)

10
woyll + —yh+ Ay =0, wizl — 2+ Ay =0,
rB B
ts =0,
(z3 + 5ys + bi(rp)2z2 + 2122 + 21b2(rB) + Yb’l("'B)Zl)l =
1
B
10
wag + _’yé =+ A2 = O,
B

u !
wif = 22+ (alrp) + 21)(eslrp) + 1) + 42 =0,

1
til + E(tg + 63(’)“3)) + Cé(’f‘B) =0,
(.7,‘4 + 5y4)' + A3 =0. (3.15)

First the equations ¢t = 0 and tj + ét;’, = 0 together with the conditions
lim_yt3 = 0, lim_o, ¢4 = 0, imply that 3 = t4 = 0. Then as will be seen
in Lemmas 3.1-2, the introduction of Knudsen boundary layers at third and
fourth orders will fix the values of z;(0), y;(0) and z;(0), ¢ = 3,4, in terms of
ci(rp). Taking the fifth order coefficient c5(rg) + t5 = 0, and lim_,,y; = 0
(resp. lim_, z; = 0), this defines y; (resp. z;) in term of ¢;(rp). Equations



(3.13)-(3.15) provide first-order linear differential equations for x; + 5y;, ¢ > 2.
Together with the conditions lim_, z; = 0, this will fix the value of ¢;(rg),
1 = 3,4, hence define z; and y;. That will be done in Lemmas 3.1 and 3.2. O

Lemma 3.1 Setn = :;41’ u= T_e#. There are unique Knudsen boundary lay-
ers Prsa(n,v) and Pr3p(p,v), and boundary values @ g3(1,v) and Py3(0,v)
such that

1910 =
Ur 61:'7314 =L®k34, 1n1>0, vE R3’
Pr34(0,v) = P a3(v) — @m3(1,v), v, >0,
ngl}»loo @rsa(n,v) =0, (3.16)
and
0P ~
Up BK?)B = L®k3g, p<0, ve R?”
u
®3p(0,v) = ®p3(v) — @u3(rp,v) — Pws(0,v), v, <0,
lim <I>K33(,u,v) =0. (317)
pU—>—00

The boundary layers fiz the possible values of a3(1), d3(1), us, b3(1) and z3(0),
y3(0), 23(0), hence complete the definitions of ®gs and Pys.

Proof of Lemma 3.1. The function

Pr3a(n,v) == ®xsa(n, v) —us(g — A — Dv* — Bvg —v,),
with g, A, D and FE defined in (3.1-2) and ug still unknown, should satisfy

0YK34A
on
PYi34(0,0) = usA — az(1) + (uzD — ds(1))v?

1
+(usE — EU’SAI —b3(1))vg, wvr >0,

= Lksa, n>0, ve R,

Ur

nggloo Yrsa(n,v) = 0.

Hence,
az(1) =ugd, d3(1) =usD, bs(l) =usE — %ugAI’ Yr3a =0,
so that
Bx3a =usz(g — A — Dv? — Evg —v,).
Analogously, the function
u3

Yi3B(p,v) = Px3p(p,v) — E(g(—u, —v) — A — Dv? + Evg + vy),

10



should satisfy

9 .
’UTM = L¢K3B> #< 0, ve -ZR37
op
us3 us3 2
Yr3p(0,v) = A — EA —az(rp) — z3(0) — (ED +d3(rp) +y3(0))v
rZ —1 7 u
+(ue31(73 uda — ~TBy — Udp1) + 2 E — by(rp) — 23(0))vg, vy <0,
T 2 TR

lim ¢K33(/J,,’U) =0.
U——00
Hence,

23(0) = A — 2 A —ay(rp), y3(0) = ——D — ds(rp),

B B

2

e —1 7 U

23(0) = —ugp1(—L5—uja — 3782 T up1) + —E —bs(rg), s =0,
TR TB
and
U
Drsp(p,v) = i(g(—u, —v) — A — Dv? 4+ Evg +v,,).

Moreover, by integration of (3.14) and (3.9) on (—oc,0) and (1,7pg) respectively,

z3(0) + 5y3(0) (ugB1TB + 3uga17B)(UgBITB — UhA1),

__w
B 2r%us
1
23(0) + 5y3(0) = A — uz(A +5D)(— +1).
B
And so, uz must solve the equation
g +1

B
ugp17B) = 0. (3.18)

w
ug(A + 5D) — Aug + ﬁ(?)UQAl + U/931’I"B)(UQA1 —
B

A study of the positive roots u3 to (3.18) leads to the three cases described in
Proposition 3.1 for A with respect to Ay . O
Remark. The above proof requires

A+5D #0, (3.19)

a condition satisfied for hard spheres, and assumed to hold for the kernels B in
this paper, together with the Grad class condition.

Lemma 3.2 Setn = r—;}, B = T;#. There are unique Knudsen boundary lay-
ers ®raa(n,v) and ®rap(p,v), and boundary values ®pa(l,v) and Pyw4(0,v)
such that

v 0Pgaa
T 6’]7
Draa(0,v) = Paa(v) — Pra(l,v), v >0,

lim @44 =0,
n—+oo

= L®gaa+2J(®g1(1), Pr34)), 7>0, ve R,

11



and
v 0P KB
T alj,
Dxap(0,v) = Ppa(v) — Pua(re,v) — Pwa(0,v), v, <O,

lim ®qp = 0.
U—>—00

= L®xup +2J (2m1(rg) + ®w1(0),®x3p), u <0, v R?,

Proof of Lemma 3.2. Analogously to [BCN2], there are unique solutions a and

0 to

=La+2J(®u1(1),®k34), n>0, vE R,

oo

T 87]
1

0,v) = —ugAl(u;;Dvng + (usE + —ugm)vg + ugvpvg), v >0,

v
of 1

and

0 ~ -
’Ura—lg = L,B+ 2J((I)H1(7"B, _’U) + (I)WI(O, _U)a(I)KSB(_n, —’U)), n> 0’ v E R3,

B(0,v) = ®pa(—v) = (Pra(rp, —v) — aa(rp) — da(rp)v* — ba(rp)vy — :f_;vr)

—(@w4(0,—v) — 24(0) — y4(0)v” — 24(0)vg), v, >0,
/vrﬂ(n,v)M(v)de =0.
Moreover,

a € KerL, € KerL™",

. _ 2 . _ 2
nlg_noo a(n,v) = oo + doot” + boovy, ngllloo B(1,v) = Too + Soo¥” + toovs,

for some constants aoo, doos boo, Toor Sco and to. The function

PYrcaa(n,v) == Praa(n,v) — us(g — A — Dv* — Evg — v,)
_(a — Qoo — doo'U2 - boo'Ue)

should satisfy

0 ~
0 2 Fean, >0, ve IR,
on
1
VYraa(0,v) = —ud 41 + too + usA — ag(1) + (doo + uaD — dy(1))v?

8
+(boo + usE — bg(1))vg, v, <O,

lim gqg4 = 0.
H—>—00
Hence,

1
a4(1) = gugAl + ax + ’U,4A, d4(1) =dy + U4D, b4(1) = by + ’U,4E,

Yiran =0,

12



so that
Dran = — Qoo — doov® — boovg + us(g — A — Dv? — Evg — vy).

Analogously, the function

u
Yrap(u,v) == @rap(p,v) — é(g(—u, —v) — A — Dv? + Evg — v,)

—(B(—pt, =) — Too — 500> + toovp)
should satisfy

v OYKaB
.
ou

u
YraB(0,v) =reo + éA —ay4(rp) — z4(0)

= Lpxap, p<0, veR’,

+(S00 + :f—4D —dy(rpg) — y4(0))'u2 — (too + :—4E + by(rp) + 24(0))vg, v, <O,
B B

Lim vYgap(p,v) = 0.

—y—00
Hence,
D
24(0) = Too — aa(rB) + us—, ya(0) = 800 — dua(rB) + us—,
B B
E
24(0) = too — bu(rp) + s Yrap =0,
so that

‘I)K4B(,U/7'U) = ,3(—/1, _’U) —Too — Soo'U2 + tooy
u
+T—4(g(—u, —v) — A — Dv? + Euy).
B

Moreover, by integration of (3.15) and (3.10) on (—o0,0) and (1,7p) respec-
tively,

(564 + 5y4)(0) = Ag, (0,4 + 5d4)(7‘B) = U,4(A + 5D) + Ag,

where A3 and A3 are given in terms of up to third order coefficients. This fixes
the value of w4, hence uniquely defines ®x44 and ®Px4p. O

4 On the control of f, and f

As orthonormal basis for the kernel of L in L%, (R®) we take 9y = 1,1pp =
Ve, Vr = Uy, = Uy, P4 = %(02 —3). Recall that in this paper all functions

are even in v,. For functions f € L2, ((ra,75) x IR?) we shall use the earlier
splitting from the introduction into f = fj, + fL = Rof + (I — Py)f, where

V6 V6

firy0) = folr) = <= falr) + fo(r)vg + fr(r)or + ?Gf4(7“)v2,

13



/M(v)(l,v,vQ)fL(T,’u)dv =0,
/ Mo f(r,v)dv = fo(r), / M f (r,v)dv = fa(r),
/ Mo f (1, 0)dv = fo(r), / My f(r,0)dv = £, (r).

(The t,-moment of f| vanishes since f is even in v,.) Define I := ve*, and

Df := v, % + LNf with N given by (1.3). For 1 < ¢ < +o0, denote by || . [|,
the usual Lebesgue norm and set

L9 = {f;] f lg= (/M(v)(/ | f(z,0) |9 dm)zdvf < +o0}.

Due to the symmetries in the present setup, the position space may be changed
from IR? with measure dz, to IRt with measure rdr. The relevant boundary
space then becomes

sl £ = ([

v, >0

([ 1 1 M) fm0) P o) < oo}

oM () | f(ra,v) [ dfu)% +

We shall also use

W ([ra,rg] x R®) = W™ :=
{f measurable on [r4, 5] x IR? ;ﬁ%f € I:q,l?*%Df € Lyt fe Lt}

Lemma 4.1 For radial functions u in IR?, define

TB
IIUIIZAB:=/ |u|Trdr, || Veu ||g;:/

o0
| Vau T dz = c/ | Opu |9 rdr.
TA IR? 0

It holds that

lullgaB< Cll Vot llg; 1< g<oo.

Proof of Lemma 4.1. The case ¢ = 2 follows from [M2 (V.1.49)], and the case
g = 1 is immediate (cf [Ma p.97]). Interpolation then gives the inequality for
1 < ¢ < 2. From here the case g > 2 follows by a duality argument. O

Define
fOirj(T) = /MU;’Ung_(T,’U)d’U, ’L-l—_] > 2a

and fpi,jo(r) correspondingly, when there is an extra factor | v |2 in the inte-
grand.

14



Lemma 4.2 Given fo, fo, fr, f4 € LY (ra,7B), let h be a solution in Lg toc(IRT
IR?), 1 < q < 00, to the (dual) equation
1 = + 3
—Dh——4 f”, relRT, velR’, (4.1)

with fi| = fotho + fowe + fripr + farhs extended by zero outside [ra,rp]. Then

h'r('rA) = har('rA) = th(TA) - 05
1
| D2hy o< c| fiil2, || hor llgaB< ce* | fiilgs |l hr2 llgaB< ce* | fi| Iq -

If fo =0, then h, = 0.

Proof of Lemma 4.2 The proof extensively uses a representation of h = H +
R + p(D) from [M2 p.55-59], where the hydrodynamic moments m; are ex-
plicitly given. In the present setting we employ that representation w1th lin-
earized collision operator L, and in particular (%) including a scaling e~ *, giving
| By [2< ce™ | fj |2 with ¢ independent of e. Also notice that RO is orthogonal
to vgv,. We may now use the inequality

—/hf}thvdw >c|o2hy |3,
and Green’s formula on (4.1) to conclude that
| ﬁ%hL |g§ cet | /th”Md’UdlL' I<c] f|| |§ :

It follows from the previous lemma that

1 1
| 16, lleas< C | Vahy) lq -
The h-expansion satisfies
A a1 é . 0
Vo) = —(I = Py)e T ROIXL
j=0

where - = F denotes the Fourier transform with respect to the z-variable. Now
% is a Fourier multiplier in L?,1 < ¢ < oo by Mikhlin’s theorem [Mi]. The
5 (0)

representation of m gives

I 72k < Cet 1l £ llg -

This proves
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RS llgan< Ce* |l i llq -

Multiplying the equation for H with Mwvy and Integrating, gives an equation
implying that Hgp, = %%. But cgr = 0 since Hy, € Lfoc That concludes
the proof of the estimate for hg,.. The estimate in the lemma for h,y is simi-
larly proved. Using the equations for h;, hg,, hro in f/iloc(O,r 4), it follows that
hy(ra) = hgr(ra) = hp2(ra) = 0. From here, if fo = 0, then (rh,)" = 0, hence

rhy = r4hy(r4) = 0. The proof of the lemma is complete. O

Lemma 4.3 Let 2 < g < 400, and let F be a solution in W?™ to

DF = é(iF +eud(Fvg) +9), Flao+ = fo, (4.2)

for g =g1. The following estimates hold for small enough € > 0;
| 52FL o< of| 77 2g |2 +€ | By 2 +€* [ 72 fy |), (4.3)
| 3F |so< (| 73 g oo e @ | B5F |+ | 52 fy |o). (4.4)

Proof of Lemma 4.3. The estimate (4~3) for g = g, and u = 0 follows from
Green’s formula. The inclusion of euJ(F,vy) to g, adds € | F'| |2 which for €
small enough, is incorporated in the left hand side, and a term ce | Fj| |o.

We now turn to the estimate (4.4), again for ¢ = g, . Employing [M2 p.101], F
can for u = 0 be written as

F= U€§U5§F+21F+ZQQ+Z3WE’)’+F, (4.5)
where
| I/2U K — U K,F loo< cse . | D2 F lg>
K K’

|1/2U — U F|q< cgel 0 |1/2F|2,

—-

| ZﬁZlF lg< C‘S ‘ ’ﬁF lgs | ’7§Z29 lg< | ’77%9 lgs
| ﬂ§Z3W€’7+F |oo§ c | fb |~ . (46)

Using (4.5), (4.6) with ¢ small enough gives (4.4). For e small enough, the
addition of euJ(F,vy) to g does not change the result. O

=

Lemma 4.4 Let 2 < q < 400, and let F be a solution in W~ to (4.2) for
g = g1 The hydrodynamic part F|| of F' can be split as F|| = Fy| + “*v,, where
F, = <. For small enough € >0

| By le< e( | Fulg+ 1531, ), (47)

1 _
| Fr llg< e(e® || Fo llg + | Fi g +— | /gvevrB(l'vl)Mdv [[1)-
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Proof of Lemma 4.4. By interpolation, it is enough to prove the lemma when
q is an even integer. With F' a solution to (4.2), multiplying that equation with
M and integrating over IR, leads to

(rF.) =0,

ie. Fp(r) = % for some constant c,. In the same way a multiplication with
vgM and integration over IR> leads to

Co
Fa”‘(r) = T_QT’

for some constant cg.

Multiplying equation (4.2) with Mw,v9B(|v|) and integrating on IR3, it follows
that

wiFy  Fyopy  Fepp—3Fp 1 (cor | o
( PR - ) 72 _re4(r2+67“uw1
-I-e/j(FJ_,uvg)vgvTB(WDMdv—I—/gvgv,«B(hJDMdv). (4.8)

Integrate (4.8) on (r1,72) for any (r1,72) C (r4,75). Then integrate the new
equality with respect to both variables (ri,r2), on (ri,r) € (ra, 43"B) x
(TA%r8 rp) and on (r1,79) € (ra, 2ALTE) x (T4%37B rp). This provides a 2 x 2
invertible linear system in the variables (%, %) in terms of integrals of Fy g,

Fy | and g, giving

1 _
[ |<ele I Fo g+ | Fuly+ || [ guveBol)Mdo 1)

| cor < c(e" || Fy llg +e | Fulg + | /gvevrB(lvl)Mdv lg)-

The estimate for F, follows from here. To the solution F of (4.2) with boundary
value fp, add a sum S = Cyrvg + Co1pg + Cyupy. Choose the constants so that
the three zero-conditions at rp,

o+ 21+ £:2)0m) = (o + fup) ) =
(VBfs —2fo + Cifpo5 +2f,2)(rB) = 0, (4.9)

hold for f = F + S. Here C; is defined in (4.15) below. Notice that f, = F;,
fiL = F) and that (4.8) together with the estimate for ¢, are satisfied also
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with f replacing F. Lemma 4.2 with fj| = fpip gives (r?hg,)’ = r%fs and
| hor lgaB< Ce* || fo |lg- Using (4.8) for f, it follows that

( 2h, (w;f9 n fﬂﬁ‘_@)q—l)' — T_(wl_f@ + fﬂh‘_@)q

r w1 r r

2

T wifo | for2Byg— wifo | for2B\q—

o ors (T 4 HEEYI (g = Doy (T 4 TN (fa By

1 . _
+—4(7 + ewuc, + 67“/J(fL,UUG)UWTB(WDMdU

€

tr / gupv-B(|]) Mdo)). (4.10)

In undifferentiated form, the left hand side vanishes at r4 since hy,.(r4) = 0,
and also at rp because of (4.9). Using Holder’s inequality and the c¢,-estimate,
it follows for § > 0 that

1 1, 1
lwifo+ forep < e(5 | 2 1o +0 1l folla +5 1773914 )

and so

o lla= 5170l + 15 2g g ). (411)

From here the estimate for Cy, hence Fjy, can be obtained as follows. Using h of
Lemma 4.2, this time with fj = Fptpg and (r?hg,)" = r2Fy, together with (4.8)
for F', again gives a version of (4.10). Integrating this from 74 to r and then
integrating over an interval in r, gives an estimate for Cg implying

1 1, 1
1Co|<C(5 1 fulg+5 177391y ). (4.12)

The estimate for (vV6f, — 2f,) starts from Lemma 4.2 with T = Jfotbo + faiha

which gives || hyo |lgap< Ce? _|| fotvo + fawpa ||lg and (rhys) = V6rfy — 2rfo.
Multiply equation (4.2) with A(|v|)v, M respectively with v, M and integrate.
It follows that

P
(k4f4 + frz,a) = (fmi - fem) +
6i4(f7~2 + eu/'urf_le(fJ_,vg) + /gvrfi(|v|)Mdv), (4.13)
and
fo+\[f4+fr '_f"z Ir2 (4.14)
where ky = [v2ps AMdv. Set
C) = @ (4.15)
k4

18



Then (4.13-14) give
(VBfi—2f0+ Crfyag+2) ==~ (Cufyaz = Cufuz — 2fyn +24r2)
+%(fr2 + eu/wAMj(fL,vg) + /gv,.A(|fu|)Mdfu>. (4.16)

Similarly to the fy-estimate above, it follows that

I VBF 240 < (5 | F1 by 6| fovn+ Fawn |y 5 |7 2al, )-(427)

g—1
We next multiply (4.14) with q( fo + @ fa+ fﬂ) and integrate on
(r,rB), then on (r4,rp) to obtain

1 1
I ol e(5 11 lo 461 foto+ fu lg +5 17 Fg g ). (419)

The estimates for Fy, Fy, Cy, and C4 can now be computed similarly to Fy and
Cy. Using h of Lemma 4.2, this time with fj| = Fotho + Futps and (rheo) =
V6rFy — 2rFy, together with (4.16) for F, as previously gives an estimate for
\/604 - 2005
1 1 __1
| VBCu — 200 [ C(5 | fulo+5 17739, ). (4.19)

An estimate for Cy alone will use the same h,o-equation, but this time with
fi = Futps, and start from

(rhﬂ(fo * \/g& + f72)>l = (fot \/ng; + fr2)V6rFy + Mrhﬁ.

After suitable integrations with respect to rdr, and invoking the previous esti-
mates for f, we obtain the following estimate for Cy,

1 1 .1
(Gl C(5 11 la+5 17739 y). (4.20)
The estimate for Fy| follows from (4.11), (4.12) and (4.17-20),

~_1
| Fryla< e 1773 1+ 1 F1lq )-

The proof of the lemma, is complete. [J
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Lemma 4.5 Letu € R, g = g, ﬁ_%g e L, fo€ LT, 2 < q < oo be given.
For small enough € > 0, there exists a unique solution F € W9~ to

1 . .
DF = 6—4(LF+ eud (F,vp) +9), Fraa+ = fo- (4.21)

Proof of Lemma 4.5. By [M2 p68-69] there is a unique solution F € W?~ for
u = 0. Adding E—Zj(F — frior,vg)  to the right hand side of (4.2) for u = 0,
the equation is still solvable. This follows by an iteration scheme ’'with the
previous iterate in the J-term’. The scheme is contractive for small e by the
estimates in Lemmas 4.3-4. Notice that for € fixed, the component f, = < of
the iterates only is bounded. That requires a sub-sequence extraction to get
convergence also for those components of the iterates. Hence the uniqueness
is not immediate, but it follows from the previous estimates directly applied
to the homogeneous equation. Next, adding $3J(frtpr,v9) = SJ(%4hr) is a
compact perturbation, so the index is conserved. Again the previous estimates
applied to the homogeneous equation imply uniqueness. We have thus proved
the lemma for v # 0 and ¢ = 2. Using [M2 p100], finally the result for a general
q follows from the result for ¢ = 2. That completes the proof of the lemma. [

5 The rest term.

In this section we discuss the rest term, when (ug41—ugp17B) (3uga1+ugp17B) >
0 and A < Ay;s. Denote by 1) the asymptotic expansion for j; = 10 (cf the end
of Section 2),

10
p(r,v) =Y €.
i=1
The aim is to prove that there exists a rest term R, such that

f=M(1+v+R)

is a solution to (1.1-2) with M~'f € L. Such a function R would then be a
solution to

1/ ~ -
DR= 5 (LR +2J(R, %) + S J(R, R) + l), (5.1)
where
1/~ .
L= = (Lw+ T, 1) — D))
We assume that the boundary value f; is satisfied by M(1 + %) up to order
seven in €, so that the boundary values for R are of order two. We remark

that constants that need not be precised in the asymptotics, will be ’compen-
sated to correct value’ by the rest term, as can be seen from the uniqueness
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arguments for the rest term below. Notice that 4’ can be constructed so that
DY €' = (I — Py)D Y I, €'4", hence correspondingly for 1.

Let the sequence (R™),cm be defined by R® = 0, and
1 /- . oL
DR = 6_4 (LRn—I—l + 2J(Rn+1, Zl 61’(/)1) + gn>’ (52)
1=

R"(1,v) = Ra(v), v, >0, R""(rp,v) = Rp(v), v, <0. (5.3)

In (5.2-3)
~ 10 . . ~
g :=2J(R",> 'y') + EI(RY, RY) +1,
i=6
2.2 .2 LU
SR (v) 1= U1~ T 1% — ] — Zezwz(rA,'u), vy > 0,
i=1
() = L o)
(1 + TB)5

10
—Zeid)i(rg,'u), v < 0.
i=1

The lemmas 4.3-5 also hold for this boundary value problem with analogous
proofs, and the solutions are well defined when € is small. We observe that

9" =91,
/g"Mdv = /lMd’U =0, BT(T/R"'UTMdU) :r/lMd'u =0. (5.4)

We now discuss existence based on the rest term iteration scheme (5.2-3).

Theorem 5.1 For ¢ > 0 small enough, there is a unique sequence (R™) of
solutions to (5.2-3) in the set X = {R;| 72 R o< K, | 73R |o< K}, for some
constant K > 0. The sequence converges to an isolated solution of
1 /- ~ 6 =
DR = (LR +2J(R, ) + S J(R, R) + l), (5.5)
R(1,v) = Ra(v), vy >0, R(rp,v) = Rp(v), v, <0. (5.6)

Proof of Theorem 5.1. In the case n = 0 and ¢° = I, notice that [ in (5.2) is
of order five, and the boundary values in (5.3) are of order two in e. It follows
from Lemmas 4.3-4 for ¢° =1 =1, that uniformly with respect to 0 < € < ¢,

| 2R |o< Ce*, |92 R' |< C. (5.7)

For n € IN in the equation (5.2) for (R™*! — R"), the term [ has disappeared,

g" = ¢'/, and the ingoing boundary values are zero. Writing R = R!' +

21



]"-:l(Rj+1 — RY) and using Lemmas 4.3-4, it follows that

n
| ER" |y + | 73R (o< €Y (Ce) < K,
0

for all n € IN. And so, for € small enough, (ﬂ%Rn) converges in L? and L™ to
some 73 R with

DR = é(iR +2J(R, %) + 8 J(R, R) + 1), (5.8)
R(1,v) = Ra(v), vy >0, R(rp,v) = Rp(v), v, <0. (5.9)

The contraction mapping argument guarantees that these solutions are isolated.
O

It follows from the previous proof that the hydrodynamic moments converge to
solutions of the corresponding leading orders limiting fluid (Hilbert) equations,
when € tends to zero.

Suppose f satisfies (5.10), (5.11) below. Proving that f~ = 0 will imply that f
is a non-negative solution to (1.1-2). Using an L9-version of Lemmas 4.3 with
q large, we may extend the present contraction mapping set-up, and prove that
any solution of this paper coincides with such a non-negative solution. That is
left for an accompanying paper [ANG6] in preparation about the problem (1.1-2),
and where j) may be taken as four.

Theorem 5.2 Let Q be a bounded set in IR?, and f, a nonnegative function
defined on the ingoing boundary oQt. If a function f such that M~'f €
L>®(Q x IR3) satisfies

v-Vef = QU 1) - MLM™'f7), (z,0) € Qx R, (5.10)
f = fba aQ+a (511)

then f~ =0 and f = fT solves the boundary value problem

UVIf:Q(f,f), QXR?’a
f=1r 00T

Proof of Theorem 5.2 The function F' = M ~!f satisfies

v e F =JFT,F")~L(F~), F=M"f, o0
Define J* and J~ by J(p,0) = JtT(p, ) — J (¢, ), where

T+ (0, 0) (v) = / o — oy 1P b(O) M., dusdo,

T~ (0,0) () = () / 0 — vy P b(8) Mapudvadio.
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Also, F~ satisfies

—0 VoF ™ = xp-po(JT(FT, FT) — L(F7)), (5.12)
F =0, 09%.

Multiplying (5.12) by —M F~, integrating on 2 x IR? and using that
—/MF_XF_;éOL(F_)de - —/MF‘L(F‘)dv > C/MV | (I—P)F~ | dv,

implies that
1

—/ |u-n|M(F—)2+c/ My | (I— P)F- |?
2 Joq- QxR3

< —/MF‘XF_#)JJF(FJ’,F*) <0.
It follows that with 02~ the outgoing boundary,
F - =00n0Q, L(F )=0.
And so, F~ satisfies
F =0, 00 UdN"T, v-y.F <O0.

This implies that F~ is identically zero. [J

6 Comments and remarks.

As mentioned in the introduction, the approach holds without change for the
other cases of asymptotic expansion in the two-roll setup that are discussed in
[S]. The following example illustrates the treatment in the upcoming types of
situations.

Consider the equation (1.1) under the scaling

af 1 1 -
w2 Iy = 20U, (6.1
roor €
r € (ra,rB), (vr,v4,v;) € IR3,
: s 2 r3—1
for m = 3 and without the coupling wp = H:Tsz<§—?9u§f“ —Tp2 + Ae)

between the boundary parameters in (1.2). Assume the cylinders rotate in
the same direction and that 1 < Pspo/[(r% — 1)usg,] < (uga1/ugpirs)?. This
guarantees an asymptotic expansion with positive (as well as one with negative)
second order radial velocity u, g9, and one with third order radial velocity. For
the positive one, take the asymptotic expansion 1) of Section 5 up to order nine,
and the rest term R of order five in e. The rest term analysis proceeds as in
Section 5 and gives the following result.
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Theorem 6.1 For 0 < € small enough, there is an isolated L'-solution f. of
the equation (6.1) for m = 3 with boundary conditions (1.2) and with positive
second order radial velocity u,ga, for which

/M_lsupessre(m,m) | fe(ryv) |? dv < +oo.

The hydrodynamic moments converge to solutions of the corresponding leading
order (second order in € for the radial velocity) limiting fluid equations, when €
tends to zero.

Also for the negative second order radial velocity u, o, a second isolated solu-
tion can be obtained in the same way.

For the case of third order radial velocity, again take the asymptotic expansion
1) in Section 5 up to order nine, and the rest term R of order five in €. The rest
term analysis proceeds as before.

Theorem 6.2 For 0 < € small enough, there is an isolated L'-solution f. of
the equation (6.1) for m = 3 with boundary conditions (1.2) and third order
radial velocity u,gs3 for which

/M_lsupessre(m,m) | fe(ryv) |? dv < +oo.

The hydrodynamic moments converge to solutions of the corresponding leading
order (third order in € for the radial velocity moment) limiting fluid equations,
when € tends to zero.

Theorem 6.1-2 in particular demonstrate that three separate solutions to (1.1-2)
coexist for these parameter values.
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