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1 Introduction

Let ¥ be a smooth, closed surface in R®. The Willmore functional for this
surface is defined by

W(E) = /EHQdA, (1)

where H is the mean curvature of ¥ and dA is the induced area measure. We
refer to [17] for the general disscusion of this functional as well as description
of some stationary points. The variation of this intergal for a perturbation
¢ of the surface along the normal is (see [17])

W = /E 6 (AH +2H (H? — K)) dA, @)

where K is the Gaussian curvature of ¥. The Willmore flow for ¥ is defined
as an evolution of the surface when each point of it moves with the normal
velocity

v=AH+2H (H* - K). (3)



The mathematical properties of this type of surface evolution attracted much
attention during the last years. Recent mathematical results in this field
include [16], [8], [7], [10] and [12]. A numerical scheme to track the evolution
in R?® for axisymmetric surfaces was proposed in [11].

The purpose of this study is to develop a simple convolution-thresholding
scheme for tracking such evolutions of a two dimensional surfaces in R3.
Convolution-thresholding schemes have proved to be a useful tool for the
numerics of the surface evolution [5], [6], [14], [15], [4] and image processing
(3], [2], [13]. Furthermore, the convolution structure of the method allows a
numerically efficient implementation of the method.

This paper is organized as follows. In section 2 we consider the graph of a
smooth function and explicitly expressing its geometrical properties (i.e. H,
K and AH) by the derivatives of the function. We use these elementary
relations in the section 3, where the asymptotics for the convolution of an
indicator function of a subset of R® with a smooth, compactly supported
kernel. We show that the third term of this asymptotics is proportional
to AH + 2H (H? — K) and therefore can be efficiently used to construct a
convolution-thresholding schemes for the Willmore flow. Several numerical
examples of the flow are presented in the section 4.

2 Geometric properties of a smooth graph

Let us consider the graf ¥ of a smooth function f : R? — R such that
0f/0u; (0,0) = f; = 0 for i = 1,2. We express the mean curvature H, the
Gaussian curvature K, the Laplace-Beltrami operator of the mean curvature
AH of ¥ at the origin in terms of f and its derivatives.

Consider a mapping x : R* — R® by x (uy, ug) = (uy, ug, f (u1, uz)). Denote
x; = 0x/0u; for : = 1..2. The outer unit normal N of ¥ is given by
X1 X Xo

N= —— (4)

- |X1 X X2| '
The coefficients of the first fundamental form are g;; = (x;, x;) and the second

fundamental form have coefficients h;; = — (N;,x;), where N; = ON/0u,.
The mean curvature is

1 .
=32 o )
J
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where ¢¥ denotes the elements of the matrix inverse to g. Setting u; = uy = 0
we get

H =3 (51 (0,0)+ /2 (0,0). ©)

In order to calculate AH we introduce the Christoffel sybmols
1
Ffj = 2 Zghk (8g,~h/6uj + 8gjh/8ui — 8gij/8uh) . (7)
h

The covariant derivatives of H are
oH

ou. (8)
VZ'V]'H = Hij - Ffin (9)
k
The Laplacian of H can be written as
AH =Y ¢"V;V;H. (10)

1,
After substituting (4) - (9) into (10) we get the following equality at the
origin

AH = % (A(Af)—2H (12H? - 8K)), (11)

where K is the Gaussian curvature, namely

K = det (gijhij) = f11(0,0) f22 (0,0) — f% (0,0). (12)

3 Asymptotics of the convolution

In this section we consider a compact subset C of R* with a smooth boundary
0C. We study the geometric properties of 9C by considering the following
convolution

M = xc * ppa, (13)

where X is the characteristic function of C' , pa (z) = p (|z|* /t2*) / (¢*)
and p: (0,00) — [0,00) is smooth with a comact support (or exponentially
decreasing) normalized by [ g Pdr = 1.
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We pick a point p € 0C associate a unit normal N to it, and calculate M in
the point p + Nvt. Here v € R. Taking ¢ — 0 we expand M into a power
series in t.

In order to get the power series for (13) at O = p + Nwt it is convenient
to choose O as the origin and Oz-axis parallel to N. Then p = (0,0, vt)
and the boundary 0C can be represented as a graph of a smooth function
v : R*~! = R in some neibourhood S of O.

0C = {(z,y,7(x,y)) : (z,y) € S CR*} (14)
Furthermore,
v(@,y) = vt+[f(z,9) (15)
v(0,0) = wt, hence f(0,0) =0 (16)
Vv (0,0) = V£(0,0) = 0. (17)

The expression for M at O now can be written as follows

M(0) = / X (@) pu () do =

2 4 02 1 ,2) /412
_ / p(@®+12+2%)/ )dacdydz:
c $3/4
]_ —-1/2
= —+/ I(t,x,y)dmdy—#()(e’t ! )
2" Jeo
where
9(t,z,y)
T(t,z,y) =/ p((*+y*+27)) dz (18)
0
with

v t1/4$,t1/4y
g(t, @, y) = ( i )- (19)

We expand this integral into a power series in ¢ at the point ¢y = 0. First we
observe that ¢(0,z,y) = 0 and calculate some derivatives of ¢(t,z,y) with
respect to t at t = 0:

0 1 1

S 0.2,9) = 5y (0,0 + 2y 12(0,0) + 52° £12(0,0) (20)
0? 1
8—; 0,z,y) = gyg f222(0,0) +zy? f122(0,0)



1
+ 2%y f112(0,0) + 3333 f111(0,0) (21)
839 _ 1y 3 3 9 o
£ (0,z,y) = 6v+ 1Y f2202(0,0) + 2 y° f1222(0,0) + 3Ty f1122(0,0)
1
+ 2%y f1112(0,0) + 2354 f1111(0,0). (22)
Then we substitute these expressions into the expansion
I(t,z,y)= (23)
&g
0
)

99

ot
1 ) 3
+= (2 o +y°) a—i(ﬂ, z,y) +p(a® +y

1
0,z,y) 7 + =p(z® + y*) =5 (0,2,y) (0,2,y) /2 + (24)

2 2

p(z” +y°) 5 e
3

T ol (25

integrate over z and y and get

1/4 3/4
M(0) = % . ;N?’ (fi1 + fa2) + t647r [128 Ny v+ (26)
- N5 (f22 + fll) (5 f222 + 12 f122 - 2f22 f11 + 5 f112) — (27)
— 2 (fa222 +2 fr12e + fu11)] + O (t5/4) , (28)

where all derivatives of f are calculated at the origin and N; = [;* 7p (r?) dr
. Recalling (6),(12) and (11) we arrive at

1 t1/4’/TN3
~+
2 2

3/4
! 16” [32N0 + N5 (AH + 2H (H? — K))] + O (t7/*) . (30)

M(0) = H+ (29)

+

Consider now p,,1/4 with @ > 0 and calculate M, = x¢ * p /4 to get

at1/47rN3

1
M, (0) = §+ 5 H+ (31)
347 [32N
+ o [T N (AH 428 (H2 = K)) | + 0 (£/4)(32)
and

a(2aM —2M,+1 —a)
7 (1 —a?)
= % (4Nyv — a®N5/8 (AH +2H (H* — K))) + O (£7/*) . (34)

= (33)
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Now if C is given, we calculate M and M, at each point and set C} =
{x e R®:2aM — 2M, +1—a > 0}. According to the above asymptotics,
0C, = {p + vtN : p € 9C}, where

. G2N5
32N,

v (AH +2H (H* - K)) + O (¢'/%). (35)

4 Numerical implemantation and examples

Suppose the initial surface ¥, is the boundary of a smooth compact set
C = Cy C R3. Denote the Willmore flow of the ¥4 by X (¢) Using the above
asymptotics we construct surfaces for time moments ¢; = 1At, 1 = 1,2, ... as
follows.

1. Convolution i.e. construction of functions

M, (2) = Xc; * Payanss (x) for k=1,2 with a; =1 and a, < 1. (36)

2. Thresholding i.e. localisation of the next position of the surface

Cis1 = {2 € R® : 200 M, (x) — 2My, () + a1 —ax =0} . (37)

In our implementation we use a modification of so called Marching Cubes
algorithm for extracting an isosurface. A similar algorithm was proposed in
[9] and first applied for the mean curvature flow calculations in [14]. The
algorithm creates an adaptive spatial discretization of C. In doing so, we
significantly reduce the number of grid points. Besides that, the accurate
piecewise polynomial approximation of the 0C' can be arranged.

We use Fourier series to calculate the convolutions M,,. Numerical aspects
of similar computations in the case of the mean curvature evolution ave been
presented by Ruuth in [14] and [4].

In order to compute Fourier coefficients of x¢ given on a non uniform grid the
unequally spaced approximate fast Fourier transform algorithm [1] is used.

The numerical cost of this transform algorithm combined with the Marching
Cubes procedure is [14] O (m"N, + N} log(Ny)), where m is a constant
depending on a desired accuracy in the calculation of the Fourier coefficients
(in case m = 23 the accuracy is comparable with the machine truncation
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Figure 1: The evolution of a piramide: timestep is 1078, step numbers 0, 10,
110 and 610.

error), Ny is a number of the Fourier modes along each axis and N, is the
number of nodes in the grid.

The framework of the convolution thresholding method allows to consider
not only initially smooth surfaces but also singular ones.

Gradient flows for more complicated functionals depending for instance on
the area of the surface and the volume of C' can be also treated within the
same scope of ideas.

An evolution of an initially non-smooth surfaces is depicted on the Fig. 1, 2.



Figure 2: The evolution of a non-convex surface: timestep is 1078, step
numbers 0, 80, 480 and 1080.
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