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Abstract

In this article we shall investigate the minimal and the extremal solutions of quasilinear elliptic
equation with a positive nonlinear term in the right hand side. More precisely we shall study the
boundary value problem

Ly(u) = Af(u), inQ,
u =0, on 01,

where ) is a nonnegative parameter, Q is a domain of RY and L,(-)(p > 1) is the p-Laplace operator
defined by L,(-) = —div (|V - [P"?V")). We assume that f(t) is increasing on [0, co) and strictly convex
with f(0) > 0. Under some additional conditions, we first establish the existence of the minimal solution
uy and the extremal solution u* to this equation and study their behaviors in connection with the

linearized operator given by Lj(u)(:) = —div (|Vu|p72 (V- +(r—2) (‘VV“;YQ')

uy € C19(Q) is defined as the smallest solution among all possible solutions, and the extremal solution
is defined as an increasing limit of uy in Wy'?(Q) as X — A* (the extremal value). Though L/ (uy)(-) is,
roughly speaking, a degenerate elliptic operator, it is shown that L}, (ux)(-) has a compact inverse from
L*(Q) to itself if u, is minimal. Moreover the self-adjoint operator L}, (ux)(-) — Af (ux) on L?(f) has a
positive first eigenvalue if X is sufficiently small and a nonnegative first eigenvalue for any A € (0, \*).
Finally in §10 we give the characterizations of the extremal solution which are essentially depend upon
the value of p and the topology of  ( See Theorem 10.1 and subsequent Propositions). When 2 is a ball,
we investigate these problems rather precisely using the weighted Hardy type inequality with a sharp
missing term.

Vu)). The minimal solution

1 Introduction

Let N be a positive integer and let € be a bounded open set of RY whose
boundary 0 is of class C?. In connection with combustion theory and other
applications, we are interested in the study of positive solutions of the quasi-



linear elliptic boundary value problem

{ Ly(u) = Af(u) in Q,

1.1
u=20 on 02, (11)

where L,(-) is the p-Laplace operator defined by L,(-) = — div (|V - [P72V")).
Here p > 1, A is a nonnegative parameter and the nonlinearity f is, roughly
speaking, continuously differentiable, positive, increasing and strictly convex
on [0,+00). (See also the condition (2.2)). Typical examples are f(t) = €’
and (1+t)? for ¢ > p—1. When p = 2, it is known that there is a finite number
A* such that (1.1) has a classical positive solution u € C*(Q) if 0 < A < \*,
On the other hand no solution exists, even in the weak sense, for A > \*.
This value A* is often called the extremal value and solutions for this extremal
value are called extremal solutions. It has been a very interesting problem to
find and study the properties of these extremal solutions.

In this paper we shall study similar problems for the quasilinear operator
Ly(u)(p > 1). In §2 we explain our general setting and prepare results
concerned with p-Laplace operator, which are basic in the present paper.
The minimal solution uy € C*(Q) (0 < o < 1) is defined by Definition 2.2
as the smallest solution among all possible bounded solutions, and then the
extremal solution is introduced as an increasing limit of uy as A — A* ( the
extremal value ). For the precise definition, see Definitions 1.1 below ( See
also Definition 2.3.). Under some additional conditions, we first establish
the existence of the minimal solutions to (1.1) and study their behaviors in
connection with the linearized operator defined by

Li(u)(-) = —div <|Vu|p_2(V -+(p — 2)%Vu)) (1.2)

Since L,(u) is not always differentiable at any point v € W,?(Q) in the
sense of Frechet, we shall employ the directional derivatives at the minimal
solution uwy. More precisely we introduce in §3 a Hilbert space V) ,(£2) and
an admissible class of directions V) ,(Q) C V3 ,(Q) which depend essentially
upon uy. Then the operator L,(-) becomes differentiable at u in the direction
to Va,(Q) (See Proposition 3.1).

Although L (uy)(-) is, roughly speaking, a degenerate elliptic operator,
it will be shown in §4 that L/ (us)(-) has a compact inverse from L*(Q) to
itself. This crucial property is based on the compactness of the imbedding;
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Vip(Q) — L3(Q) for A € (0, \*) (See Proposition 4.2). It is also shown that
L (uy) — Af'(uy) is extended as a self-adjoint operator on L*(Q2) by virtue
of a coercive quadratic form on V) ,(Q) x V) () defined in §3. Then the
positivity of the first eigenvalue of Lj(ux) — Af'(uy) will be proved in case
that A is sufficiently small. From this fact we will study the behaviors of u)
and its left derivative vy near A = 0 in §§6 and 7. We shall also prove in §§8
and 9 the nonnegativity of the first eigenvalue of L, (uy) — Af’(u,) under the
assumption (AC) below on the first eigenfunction.

In order to describe the main results of this paper, here we prepare the
precise definition of the extremal value \*.

Definition 1.1 ( Extremal value \*) The extremal value \* is defined as
the supremum of u such that:

(a) For any A € (0, p] there ezists the minimal solution uy of (1.1).

(b) The following Hardy type inequality is valid :

/|Vu)\|p_2<|Vg0|2—|—(p—2)(vu)"v90 d:c>)\/f HAde (13)
Q

[Vu|?
for any ¢ € V) ,(Q). Here V) ,(Q2) is defined by
Viap(Q) = {p € M(Q) : |[¢]ly,, < +00,0 =0 on 00}, (1.4)
where

2

lells, = ( / |Vm<w>\p-2|w|2dx) (15)

and by M(Q2) we denote the set of all measurable functions on Q.

Remark 1.1 The validity of the Hardy type inequality (1.8) is equivalent to
the nonnegativity of the first eigenvalue of L,(ux) — Af'(uy) for A € (0,X*) as
usual. ( See Theorem 5.1 in §5 and Theorem 8.1 in §8.)

Combining all results among these sections, we first obtain

Theorem 1.1 Assume that 1 < p < 400 and f satisfies the conditions (2.1)
and (2.2). Then we have the followings:

(1) The extremal value \* is positive. Moreover the first eigenvalue of Ly, (uy)—
Af'(uy) is positive provided that X is suficiently small.
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(2) Let uy € C1(Q) be the minimal solution of (1.1) for A € (0, \*). We have
as A — X* a finite limit a.e.

u*(z) = /\h_)rf\l ux(z). (1.6)

Moreover u* € Wy?(Q) and u* is a weak solution of (1.1) with A = X*.

Remark 1.2 (1) This result will be proved in two theorems in §2 and §5 (See
also §8). More precisely the assertion (2) is proved in §2 as Theorems 2.1
admitting the assertion (1). The assertion (1) will be proved as Theorem 5.1
in §5 using the results in §4.

As for the smooth dependency of uy on A we shall show in §86 and 7 the
following;:

and satisfies the boundary value problem

Theorem 1.2 Assume that p € [2,00) and A € (0,X*). Then the following
statements are equivalent:

(1) The self-adjoint operator L} (uy) — Af'(uy) on L*(Q) has a positive first
etgenvalue.

(2) uy 1is left differentiable at A in V) ,(2). Moreover the left derivative vy €
Vap(Q2) satisfies the boundary value problem

Ly(ua)vx — Af'(un)oa = f(uy), nQ (1.7)

vy =0, on 0fS2. '
Remark 1.3 If the minimal solution uy is continuous on \ for each x € €2
and weakly continuous as a WO1 P(Q)-valued function, then uy becomes dif-
ferentiable and the derivative of uy satisfies (1.7) under the condition (1).

Later we shall give an example in which these assumptions are satisfied. See
Proposition 12.1 in §12.

Since Lj(uy) — Af'(uy) has a discrete spectrum, we can define the first eigen-
function as follows.

Definition 1.2 ( First eigenfunction ¢*) Let uy be the minimal solution
of (1.1) for X € (0,\*). By ¢* we denote the first eigenfunction of the self-
adjoint operator L (uy) — Af'(uy) on L*(Q), which is nonnegative and unique
up to a multiplication by constants.



We also define

Definition 1.3 ( Accessibility Condition ) The first eigenfunction ¢* is
said to satisfy the accessibility condition (AC) if for any € > 0 there exists a
nonnegative ¢ € V) ,(2) such that

Li(up)(p — &) + |o — ¢*| < emax(p*, dist(z,0Q)) in Q. (1.8)
Here V) ,(Q) is given by Definition (3.6) in §3.

In the next we establish the nonnegativity of the first eigenvalue of L (uy)—
Af'(uy) for any minimal solution u).

Theorem 1.3 Assume that 1 < p < 400 and f satisfies the conditions (2.1)
and (2.2). Let uy € CY(Q) be the minimal solution of (1.1) for some X > 0.
In addition we assume that the first eigenfunction ¢* satisfies the accessiblity
condition (AC). Then the first eigenvalue of Ly,(ux) — Af'(uy) is nonnegative.

Remark 1.4 (1) This will be established as Theorem 8.1 through a chain of
Propositions and the proof will be finished in §9.

(2) If Q is radially symmetric, then the minimal solution becomes radial.
In this case the accessiblity condition (AC) on the first eigenfunction ¢ is
satisfied. (See Proposition 12.2 in §12. ) In fact, assuming that Q is a unit
ball, ¢ can be constructed by truncating the eigenfunction ¢ smoothly in a
small neighborhood of the origin. Then, near the origin L;(u)\)go vanishes but
L;(uA)cﬁ)‘ is monnegative by virture of the positivity of the first eigenvalue of
L, (uy). Therefore it is not difficult to check (1.8).

In §10 we shall give characterizations of the extremal solutions which are
essentially depending upon the value of p and the topology of €2. First we
prove a non-existence of solutions for any A > A\*.

Theorem 1.4 Let u* = uy- be the singular (unbounded) extremal solution.
Assume that f(t) satisfies the growth condition (GC) in addition to (2.2).
Then there is no solution to (1.1) provided that A\ > A\*. Here the growth
condition (GC) is defined by Definition 10.1 in §10.

Then we shall give characterizations for the extremal solutions according to
the range of p in terms of propositions. Roughly speaking, if p > 2, then
it is necessary to satisfy the Hardy type inequality (1.3) with A = \* for
u* € Wol P(Q) to be the extremal. More precisely we have
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Proposition 1.1 Assume that p > 2. Let u* be the extremal solution. eigen-
functions * Then we have

. (Vu*, V)2 .
[ vt (9o + -2 Semf ) do > [ plu)dtan, (19)

for any ¢ € V- ,(£2).

Remark 1.5 If 1 < p < 2, then (1.9) is also necessary under additional
conditions (10.20). See Proposition 10.2.

Conversely assume that u € WO1 P(2) is unbounded and satisfies the Hardy
type inequality (1.3) for some A > 0 with u in place of uy. If 1 < p < 2,
then we can show A = A\* and v = uv* under additional conditions. Namely
we have

Proposition 1.2 Assume that 1 < p < 2 and the nonlinearlity f(t) satisfies
the growth condition (GC) in addition to (2.2). For A > 0, let uy be the
minimal solution or possibly the extremal solution. Let u € Wol’p(Q) be a
unbounded weak energy solution of (1.1) such that

/|vu|p—2(|w\2+(p—2)(v|“vv|f ) dz >>\/f Jo?dz,  (1.10)
Q

for any ¢ € V) ,(Q). Moreover, if 1 < p < 2, then we assume that
Vu| > |Vu,| a.e. 1n €. (1.11)
Then we have A = \* and u = u) = u*

Remark 1.6 Ifp > 2, we have somewhat weaker result. See Proposition 10.4.
For the precise definition of a weak energy solution, see Definition 2.1

When Q is a ball, in §12 we investigate these problems rather precisely by
using the weighted Hardy type inequality with a sharp missing term
established in §11. The extremal solutions are determined in most cases and
the continuity of the minimal solution uy on A is also shown in the case that
1 < p < 2. For the precise organization of this paper, see the table of contents
below.
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2 Preliminaries

Let  be a bounded domain of RY having C? class boundary. Let p satisfy
1 < p < +oo. Let f(t) satisfy the following conditions throughout this paper:

f(t) is increasing and strictly convex with f(0) > 0. '
Moreover, f(t) satisfies
!
lim inf f) >p— 1. (2.2)

t—00 f(t)



Now we consider the boundary value problem:

{ Ly(w)=Af(u)  inQ

2.3
u=20 on 02, (2:3)

where Ly(-) is the p-Laplace operator defined by Ly(-) = —div (|V - [P72V")).

First we define a weak solution of the problem (2.3). To do so we need
more notations. Let [ be an arbitrary nonnegative integer. By W(2) we
denote the space of all functions on €2, whose generalized derivatives 0"u of
order < [ satisfy

1/p
||w| i) = Z (/Q |07 u(x)|P da:) < 400. (2.4)

ly[<I

By W*(Q) we denote the completion of C$°(Q2) with respect to the norm
defined by (2.4). Conventionally we set LP(Q2) = W?(Q).

Definition 2.1 ( Weak energy solution of (2.3) in W,?(Q))
By 6(z) = dist(z,0N2) we denote the distance to the boundary from z. A
function u € Wol’p(Q) is called a weak energy solution of (2.3) if f(u) satisfies

dist(z,0Q) - f(u) € LY(Q) (2.5)

and u satisfies (2.8) in the following weak sense:
/(|Vu\p_2Vu Vo= Af(u)p)dz =0 (2.6)
Q
for all ¢ € CY(Q) with ¢ =0 on 9.

From the standard elliptic regularity theory it follows that bounded weak
solutions for this problem belong to Hélder space C'7(Q) for some o € (0, 1).
More precisely we have

Lemma 2.1 Let g be a continuous function on R. Let u € WyP(Q) N L®(Q)
be a weak solution of

Ly(u) = g(u) (2.7)
Then there exist C > 0 and o € (0,1) such that

{ |Vu(z)| < C, for any x € Q

Vu(@)— V)| < Clo— gl forany (ep) €Qx 0. D



For the proof see [10; Theorems 1,2] and [14; Theorem 5.1] for example. See
also [5] and [12].

We also recall the following elementary lemmas 2.2 and 10 for the sake of
self-containedness.

Lemma 2.2 (Weak comparison principle) Let p' = 1%‘ Assume that
f,g € LP(Q) satisfy 0 < f < g a.e.. Moreover assume that u,v € Wol’p(Q)
satisfy
bl =7 n (2.9)
Ly(v)=g in €.

Then u < v a.e. i ).

Proof of Lemma 2.2: We may assume that u and v are smooth. Then it
suffices to set in Definition 2.1 of weak energy solution ¢ = max(0,u — v)
and f(u) = 0. In fact we see ¢ = 0 from the monotonicity of the p-Laplace
operator. L]

Lemma 2.3 For any p € (1,+00) we have
(IXP2X = [YJ2Y) - (X = V) > GIX — YR(X|+ VP2 (2.10)
In particular if p > 2
(JXPP72X — [Y]P72Y) - (X = Y) > Cp| X — Y2 (2.11)

where X and Y are arbitrary points in RY and C), s a positive number inde-
pendent of each (X,Y).

The proof is omitted (See [4] for example). The next is known as strong
maximum principle. For the proof see [13; J. L. Vasquez].

Lemma 2.4 (Strong maximum principle) Let u € C1(Q) be such that
Ly(u) € L2 (), u >0, ae. in Q, —Ly(u) < B(u) a.e. in Quwith 3 : [0,00) —
R continuous, nondecreasing, 3(0) = 0 and either B(s) = 0 for some s > 0

or B(s) > 0 for all s > 0 but fol(ﬁ(s)s)_zl’ ds = 0.
Then if u does not vanish identically on €0, it is positive everywhere in 2.
Moreover, if u € CY(Q U {x¢}) for an o € ON) that satisfies an interior
sphere condition and u(zg) = 0, then

ou
7> 0, (2.12)

where v 1s an wnterior normal at x.



We can show that there exists a solution to (2.3) for sufficiently small A > 0.
In fact we can construct so-called supersolution and subsolution. Then from
the standard method of nonlinear iteration, we can show the existence of a
classical solution for a small A > 0. In this way we have

Lemma 2.5 Under these assumptions, there exist a supersolution and a sub-
solution for a sufficiently small A > 0. Moreover there erists at least one
classical solution u of (2.8) if A is sufficiently small.

By virtue of this, we are able to define the so-called minimal solution u.

Definition 2.2 (Minimal solution) The minimal solution uy € C(Q) is
defined as the smallest solution among all possible bounded solutions.

The existence of the minimal solution follows from a standard argument of
monotone iteration. (For the sake of self-containedness we give a short proof.)

Lemma 2.6 For a sufficiently small X > 0, there exists the minimal solution
uy € C1(Q) uniquely.

Proof of Lemma 2.6: From the previous lemma we have at least one
classical solution u for a small A > 0. If we have another classical solution v
for the same ), we set w = min(u,v) and let @ € W,”(Q) be a solution of
the boundary value problem below.

{ Ly(@) = Mf(w)  ing,

(2.13)
=20 on Of).

Since f(w) € L*®, we see & € C17(Q) for some o € (0,1). We claim that
@ < win Q. Since Ly(u) = Af(u) > Af(w) in © in the sense of distribution,
it follows from the weak comparison principle Lemma 2.2 that « < u. In a
similar way we have u < v and this proves the claim. Then we have

{ Ly(@) = Af(w) > Af(@) inQ (214

u=0 on 0f2.

This implies that @ is a supersolution of the equation Ly(u) = Af(u) with
Dirichlet boundary condition. Hence from a standard monotone iteration
argument we see the existence of classical solution w such that 0 < w < u <
min(u,v) in Q. Therefore as a decreasing limit, using an argument of weak
compactness in W,?(Q), there is a unique minimal solution. O

More precisely we have the following.
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Lemma 2.7 For a sufficiently small Ay > 0 there exists the minimal solutions
uy for any X\ € [0, \o] such that:

(1) uy € CH(Q) for some o € (0,1).

(2) For A >0, uy >0 1in Q and uy =0 on 0Q. If A =0, then uy = 0.

(8) uy is a strongly increasing and left continuous function on A for each
x € Q.

(4) The mapping ; [0, Ag] 2 A —> uy € Wol’p(B) is weakly left continuous.

Proof of Lemma 2.7: The assertions (1) and (2) follow from Lemma 2.1
and the classical maximum principle respectively. Let u = uy € C17(£2) be
the minimal solution. For any positive number m we set v = mu. Then

Ly,(v) = mP I\ f(v/m).

If 0 < m < 1, then Ly(v) > mP !A\f(v). Hence v is a supersolution. ( On
the other hand, if m > 1, v becomes a subsolution.) From the comparison
principle we see u) > %'U//\mpfl provided 0 < m < 1. Now we put m =

(1— e)ﬁ for ¢ € (0,1). Then we see for sufficiently small ¢ > 0
uy > (1 - 5)Iﬁu)\(1—a) > Up(1—g)-

This clearly implies the strict monotonicity of uy w.r.t. A. Let uy, be the
minimal solution for A = A\g. Since u) is increasing, the limit limy<y, x5, Ur =
Uy,—0 < uy, exists. Moreover we can show u) also converges weakly to some
element in WO1 P(Q). Hence uy,_¢ becomes a weak solution of (2.3). Then
it follows from the minimality that uy,_o = uy, in C7(Q) N W, ?(Q). This
proves the left continuity of uy at Ag. O

Remark 2.1 (1) When 1 < p < 2 and Q is a ball in RY, then under some
additional conditions, the family of minimal solutions are right continuous
as well. See Proposition12.1. Later in§6 we shall give a result on the (left)
differentiability of uy w.r.t. A.

(2) uy is smooth on on open set where |Vuy| does not vanish. Because u)
satisfies uniformly elliptic equation of the second order. See (9.1).

We define

Definition 2.3 ( Extremal solution) The solution for the extremal value
A* 1s called the extremal solution.
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In the rest of this subsection we shall establish the assertion (2).
in Theorem 1.1 admitting the assertion (1), namely

Theorem 2.1 Assume that \* > 0 and f satisfies the conditions (2.1) and
(2.2). Let uy € CY(Q) be the minimal solution of (1.1) for X € (0, \*).
Then we have as A — \* a finite limit a.e.

u*(z) = /\h_g\l ux(z). (2.15)

Moreover u* € WyP(Q) and u* is a weak solution of (2.3) with A = \*.

Proof of Theorem 2.1:
From the definition of V) ,(Q2), we see uy € V) ,(€2). By the assumption we
have

(p— 1)/ |Vuy P dz > )\/f'(uA)u?\da: (2.16)

Since wuy is a solution of (2.3), we have

/|Vu,\|pd:13—/f uy)uy de (2.17)

From the condition (2.2), for any € > 0 there is a positive number C. > 0
such that
(p—1+e)f(t)t < fl() +C. (2.18)
Hence
/f’(u)\)u?\ dx < /f uy)u; dz + C-. (2.19)
Q — 1 +e

Here C! is a positive number mdependent of each A < A\*. Then, for some
positive number C

/ |Vuy P dz = )\/ fuy)uydex < C  and /f'(u)\)ui dr < C, (2.20)
0 0 0

and so uy is uniformly bounded in W,?(Q) for A < A\*. Therefore {uy}
contains a weakly convergent subsequence in VVO1 P(Q). Since uy is increasing
in A, the limit v* = limy_, \» u) uniquely exists a.e. and clearly u* € VVO1 P(Q)
becomes a weak solution of (2.3). O

In this paper we shall consider unbounded solutions. To this end we intro-
duce a singular energy solution in the last of this section.
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Definition 2.4 ( Singular energy solution)
If a weak energy solution u is not bounded, u is said to be singular.

Remark 2.2 In §12 we give two examples of singular energy solutions as-
suming that Q = B={z € RY : |z| < 1} (a unit ball). See Lemma 12.2.

3 Differentiability of L,(u,)

In this section we shall study differentiability of L,(u) at u = u) assuming
A* >0 and A € (0, \*). First we introduce a linearized operator of L,(-).

Definition 3.1 For u € C'(Q) and p € C°(2) set
! S p—2 _ (V'LL, V(P)
L(u)p = —div <|Vu| (Vgp +(p—2) Va2 Vu))

If p > 2, this is a degenerate elliptic operator, and if 1 < p < 2, this is elliptic
but coefficients are unbounded in general. We introduce a dual form as usual:

Definition 3.2 Let p > 2. We set for any test functions ¢, € C§°(£2),
<L;(U)<Pa V) [Cx s (3.1)

= /Q VulP=?(Ve, Vip) + (p — Z)W(Vu, Vy)) dz.

By this dual form L/ (u)e (u € C'(Q)) is clearly defined as a distribution
on C§°(€2) provided p > 2. In order to define the linearized operator L, (u)
for every p > 1, we prepare admissible function spaces as follows. Assume
that uy is the minimal solution of (2.3) for A € (0, \*). Then uy € W,”(Q)
is positive and differentiable in 2. Moreover Vu) does not vanish near the
boundary.

Definition 3.3 Set

lells, = ( fo[Vus@)lr 1P ds) )
(907 ¢)VA,pXV/\,p - fQ |VU)\(£U)‘p_2(Vg0, V¢) d$7

and
Vap(Q) = {p € M(Q) : |[¢]ly,, < +00,¢0 =0 on 0Q}. (3.3)
Here by M(Q2) we denote the set of all measurable functions on Q.
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Remark 3.1 In this definition, the condition ¢ = 0 on 02 is taken in a
sense of trace. Since Vuy does not vanish near the boundary, ¢ € V) ,(Q) s
differentiable there in a weak sense. V) ,(2) becomes a Hilbert space for all
A€ (0,X") and p € (1,+00) with the inner-product (-, )v, ,xvi -

Now we define Lj(ux)p for ¢ € V),(€2) as an element in the dual space
I:V)‘ap(Q):I,'
Definition 3.4 For ¢, € V) ,,

(L)@, ¥)vy <1, = (3.4)

/Q (Ve @)2((V,V9) + (p - 2) (V“A’éﬁgﬁg’ YY) da

Putting ¢ = 1 we also have From the definition we easily see

Lemma 3.1 For any ¢, € V) ,(Q), it holds that

(L (1)@, )y il < Ch / VPVl [Velde  (35)
< Cillellv, 1] v,

(L (), @hvi x| > Co /Q Vur(2)"2 Vol da (3.6)
= Gallgl,

Here C; = max(p — 1,3 — p) and Cy = min(1,p — 1).
From (3.6) we see the coercivity of the operator L;,(uy) on V) ,(€2). In addition

Wwe see

Lemma 3.2 Let uy be the minimal solution of (2.3). Then the linearized
operator Ly,(ux) maps Vjp(€2) continuously into [V,\,p(Q)]/.

Remark 3.2 Later we see that Lj(uy) is surjective. When p > 2, C§°(Q) is
densely contained in Vy,(S2). Hence Ly,(ux)p for ¢ € V) ,(S2) coincides with
a distribution as usual. But in case that 1 < p < 2, C§°(QQ) is not generally
dense in V) ,(2), because [Vuy|[P~2 does not belong to L}, (Q) in general.

loc

By F), we denote the closed set of all points on which |Vuy(z)| vanishes.
Definition 3.5

F\,={z€Q:|Vuy(z)| = 0}. (3.7)

14



Later we see that F), is a discrete set. Namely

Lemma 3.3 For any A € (0,X*) and p € (1,400) F), is discrete.

Definition 3.6 By f/,\,p(Q) we donete a set of all functions v such that:

Y € C2(Q)NCHQ),
Y =0 on 09, (3.8)
V)| = 0 on some neighborhood of F ,

and by W ,(Q) we denote the completion of Vy,(Q) with respect to the norm
|- Iy, namely,

Wp(Q) = the completion w.r.t || - |lv,, of V(). (3.9)
Most of the followings are direct consequences from the definition:

Lemma 3.4 Assume that 0 < A < A*. Then the followings are valid:
If p > 2, then

Vip(Q) C WyP(Q) C V3,(Q). (3.10)
If1 <p<2, then
V() C Va,(Q) C WyP(9). (3.11)

Moreover for any p € (1,400),

VA,p(Q) C W)\,p(ﬂ) C V)\,p(Q). (3.12)
Proof of Lemma 3.4: First we assume that p > 2. It suffices to show the

inclusion Wy (Q) C Vy,(Q). For ¢ € W,?(Q) we have

— -2
eIl =/Q|VUA(£U)IP Vel dz < [l (3.13)

This proves the assertion.

We proceed to the case that 1 < p < 2. It suffices to show the last inclusion,
and this follows from the usual imbedding inequality. Since there is a positive
number C'(A) such that [Vuy| < C()), we immediately get

|Vuy[P~2 > C(A)P2, (3.14)
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Hence we have

lellwze < Cllgllyez < Cllellvs,» (3.15)

and this implies the desired inclusion. ]

Remark 3.3 Since uy is finite if A < X*, it follows from Lemma 4.1 in §4
that

/ A ()¢ dz < C / Vur (@) P2Vl
Q 0

where C' is a positive number independent of each ¢ € V) ,(Q2).

Corollary 3.1 Assume that 0 < X < X*. If p > 2, then

V(@) € Wo"(@)]' ¢ [C5 (@] (3.16)
If 1 <p<?2, then

[Wol’p(Q)]l C [VA,p(Q)}, C [WA,p(Q)],- (3.17)
Here by X' we denote the dual space of X.

Now we define the differentiability of the non-linear operator L,(-). We
have to note that Ly(-) and L,(uy) are defined on W,y ?(Q) and V3 ,(Q) re-
spectively. If the operator L,(-) is differentiable at the point u), then the
derivative coincides with the linearized operator L (uy) as usual.

Definition 3.7 (Differentiability in V) ,(2))

Let p € (1,+00) and let uy be the minimal solution for A € (0,\*). Let
S be a subset of V) p(2). Then Ly(-) is said to be differentiable at uy in the
direction to S in V) ,(Q2), if for any ¢ € S it holds that ast — 0

%(Lp(u)\ +tp) — Lp(un) — tL;,(uA)gO) =o(1), in [V)\,p(Q)}/. (3.18)

In addition if S is dense in V) ,(Q2) (if S = Vip(R2) ), then Ly(-) is said to
be differentiable at uy in Vy,(Q)a.e. ((in V) () ) respectively.

Remark 3.4 The condition (3.18) means that for any ¢ € S C V) ,(2) and
¥ € Vap(©)

= 0.

i 1
lim <¥ (Lp(u/\ +tp) — Ly(wn) — tL;)(UA)SO) ) ¢>Vk’7vak,p

t—0
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Lemma 3.5 Let u) be the minimal solution for A € (0,A*) and let ¢ be
any element of Vy,(2). Then it holds that Ly(uy + ty) € [V)\,p(Q)]I for a

suffictently small t > 0.

Proof of Lemma 3.5: First we recall that uy € W,?(Q) for any A € (0, \*).
Take a ¢ € V) ,(2). By Definition 3.4, it suffices to show

‘ /Q|V(ux+ts&)l”‘2(v(w+tgo),v¢) dz| < +o0. (3.19)

Let us set F;, = {z € Q : dist(z, F\,) < n}. For a small n > 0 we can assume
V¢ =0 in F,. Then we have for some constant C' > 0 depending on 7

C™' <|Vuy| <C  in FS;( the complement of F). (3.20)

Therefore |V (uy + ty)| does not vanish in F;’ provided that ¢ is small. Since
V¢ vanishes in F;, there is a positive number C’ such that we have for a
sufficiently small ¢

|(Lp(ur + t0), )y @) v (@) < C' /Q IVurP2[(Vuy, Vi) dz - (3.21)

p
< Clluallv, @191, = Clluallas g 1911,@

Hence Ly(uy + ty) can be extended to be a continuous linear functional on

Viap(€2). ]

After all we can show a basic result on the differentiability of L,(-).

Proposition 3.1 Let uy be the minimal solution for /\~€ (0,A*). Forp €
(1,400), Ly(+) is differentiable at uy in the direction to Vy ,(2).

Proof of Proposition 3.1: For any ¢ € V) ,(Q) and 4 € V) ,(Q), we have

%<LP(U,\ + t(P)) - Lp(U)\) — tL;(U)\)(p, 1/}>V/\,,va)\’p (322)

1

t
= [ (Tt 50) = L))o, g, s, ds
0

1
_ / (L (wr + o) — () s )y xvs, dp
0

17



Since supp|Vp| N Fy, = ¢, we are able to assume that for some n > 0
supp| V| C (Frp)y = {7 € Q : dist(z, Fp) > n}.
Then we have for a sufficiently small ¢

(L (ux +to)p, Vv <1, (3.23)

<c / 1V (ur + ) P2 V| [V da
(FA,p)%

< C'llellvy,@1¢lv, @

Therefore the assertion follows from Lebesgue’s convergence theorem. ]

Remark 3.5 From this Ly(-) ts differentiable at least in the direction to
Vap(Q). But in certain cases Vi ,(Q) becomes dense in Vy,(Q). For ex-
ample, if F\, consists of finitely many points, then clearly f/,\,p(Q) becomes
dense in V) ,(Q). In fact, ¢ € V) ,(2) can be approzimated by a sequence of
reqularlized step functions of f/,\,p(Q).

In order to give a nontrivial example in which V) ,(Q2) becomes dense in
Vi p(€2), we introduce a modified relative 2 capacity as follows:

Definition 3.8 Let p € (1,+00) and let uy be the minimal solution of (2.3).
Let us set for any compact set F' in €2

Cap(F, [Vuy[P~?) (3.24)

= inf [/ IVur[P~2|Vpl*dz : ¢ € CP(Q),0 > 1 on F|.
0

Then we can show

Proposition 3.2 If Cap(F),, |Vuy[P72) = 0, then C(Q) is densely con-
tained in V) ,(Q). In particular, W) ,(Q2) = V) ,(Q).

From this we have

Corollary 3.2 If Cap(F\,, |Vus|P™2) = 0, then L,(-) is differentiable at uy
in Vip(Q) a.e..

Proof of Proposition 3.2: Assume that W) ,(); the completion of V ,(Q)
does not coincide with V) ,(2), that is, W) ,(22) C V3 ,(2). Then we have a
@ € V) p(€2) such that ¢ is not identically zero and

[ 1902, Vo de =0, for any p € Wiy (9.
Q
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Moreover for some ball B such as BN F), = ¢ we have
/ |Vuy[P~2|Vp|* dz > 0.
B

Since L*((2) is dense in V) ,(€2), we may assume that ¢ € L*°(2). Now put
Y = @f? with f € C®(Q2) vanishing on F),. Since 1 € W) (), we have

[ 19T, V(o) de = 0 (3.25)
0
Note that
IV(ef)]? = (Ve,V(ef?) = |V f]*. (3.26)
Then
/ Va2V (o) 2 d = / Vs |72V f 0% da. (3.27)
Q Q

Since Cap(F)p, |Vur|P~2) = 0, for any € > 0 there is some g € C{°(f2) such
that g > 1 on a neighborhood of F), and [, |Vu,|[P"?|Vg|*dz < e. Putting
f=1— g we have

[ 9wV ds < esup o (3.28)
Q el

Since we can assume f =1 on B,
/ V2| Vol dz = 0.
B

Therefore ¢ = 0 in V), ,(€2), and this is a contradiction. O

In the case that p > 2, we have W, ?(Q) C V3,(Q). But we can not take
W,?(Q) as S in Definition 3.7. Because Ly(uy + t@) with ¢ € W,P(Q) does
not belong to [V3,(Q)] but to [Wy?(Q)] in general. But L, (uy) is continuous

from W,?(Q) to its dual [W,*(Q)]', hence we can give an alternative definition
of differentiability of Ly(-) in [Wy?(Q)] as follows.

Definition 3.9 (Differentiability in W,”(Q))

Assume p € [2,+00). Let uy be the minimal solution for A € (0, X*). L,(+)
is said to be differentiable at uy in Wol’p(Q), if for any ¢ € Wol’p(Q) it holds
that ast — 0

/

Lyl +19) = L) — tLpfu)e) = o)), in [WEP(@)].  (3.29)
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Remark 3.6 The condition (3.29) means that for any ¢ € W,?(Q)

: 1
%1_%1 <Z(Lp(u)\ +tp) — Lp(un) — tL;(UA)W)7¢>[W(}”’]'xW01”’ = 0.

Then we have

Proposition 3.3 Let uy be the minimal solution for A € (0,A*). Ifp €
[2,400), then Ly(-) is differentiable at uy in the direction to WyP(Q).

Proof of Proposition 3.3: For any ¢ € W,”(Q) and ¢ € W,”(Q) we have
in a similar way as before

1
Eyr +19)) = Lywn) = 1Ly, W)garpge (3:30)

1
= [ (s + t00) = Ly (w) s g
It is easy to see that
(L (ur + 10) 0, ) gyt oyt (3.31)
<C [ [V + o) Vel Vol ds
< Clluy + ty| |€;012,p(9) = |W01”’(Q)||w| |W01”’(Q)

Hence it follows from Lebesgue’s convergence theorem that

i 1
lim <¥(Lp(u)\ + t(p) - Lp(u)\) - L;,(U)\)QD), d)>[W01”’]'xW01’p = 0.

t—0

4 The linearized operator L (u,)

In this section we shall collect fundamental results concerned with the lin-
earized operator L;(uy), which are rather basic in the present paper.

Let uy be the minimal solution of (2.3). Then uy, € C'?(Q) for some
o € (0,1) satisfies in the distribution sense that

{ Ly(wy) = — div(|VurP2Vuy) = Af(uy)  in Q (4.1)

uy =0 on 0f2,
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and also

/Q|Vux|p:)\/9f(u,\)m dz. (4.2)

Then we can show

Lemma 4.1 Let ¢ be any number in (0, \*). Then for any A € (0, \* — ¢)
and p € (1,00), the following inequalities are valid for any ¢ € CH(Q) :

/|Vu)\\p_1|V<p|dx > C’e)\/ || dx (4.3)
Q 0

/|Vu>\\2(p_1)|Vg0|2da: > C’E)\Z/ ©* dx (4.4)
0 Q

/ Vun 2 Vo2 > C.A2 / o dz (4.5)
Q 0

Here C. s a positive number independent of each ¢ and A.

Proof of Lemma 4.1: From (4.1) we have for any ¢ € C§°(12)

/|Vu>\|p_2(Vu>\,V<p) der = )\/f(uA)goda: (4.6)
0 0

Noting that f(uy) > 0 and ¢ can be expressed as ¢ = ¢, — p_ for p, =
max(¢p, 0), we have

[ 19wl Vel do > [ fun)lelda (A7)
Q Q

Since u,, is a classical solution and C§°(f2) is dense in C}((2), the assertion
follows. The second inequality can be obtained from the first one by replacing
¢ for ¢? and by using Schwartz inequality. Now we note that for some positive
number C, [, |Vuy|P|p|*dz < C [, ||* dz. Then the last one is also obtained
by Schwartz inequality and the equality (4.3) with replacing ¢ by ¢?. O

Let us recall Fy, = {z € Q: |Vu,| = 0}. Then we see

Corollary 4.1 F), is a discrete set in Q (i.e., Fyp has no interior point. )

Proof of Corollary 4.1: Assume that F) , contains an open ball B.Then for
any ¢ € Cj(B) we get [5 f(ur)pdz = 0, but this contradicts to the positivity
of f(u)\) L]
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Corollary 4.2 Let uy be the minimal solution for A € (0, \*]. Then L;(u)
is a continuous, one to one mapping from V), onto the dual space [V),] .
Hence L;(uy) is invertible.

Proof Corollary 4.2: It follows from Lemma 3.1 and (4.5) that L} (u,) is
one to one. In fact, if L}(ux)¢ = 0 for some ¢ € V3,(Q2), then C [, ¢*dz <
Jo IVurP?|Vp?dz = 0 for some C' > 0. Hence ¢ = 0. Since L](uy) is
symmetric in V), ,(€2), we see the surjectivity. Therefore it is invertible. [

Since L?(Q2) C [Vi,), from this we immediately have the following:

Corollary 4.3 V) ,(Q) is dense in L*(Q).

Definition 4.1 ¢ € L*(Q) is said to belong to D(L}(uy)) if and only if ¢ €
Vip(Q) and we have for some f € L*(Q)

(L (1), )y vy, = /Q fods (Y € Vi, (Q). (4.8)

Here we note that since Ly(uy) is invertible in V) ,(Q2), f is uniquely deter-
mined.

By virtue of the nondegenerate (coercive ) quadratic form (L (uy)e, ¢>V)(’va)\,p7

the operator L/ (uy) is naturally extended to an operator on L*(Q) with its
domain being D(L;(uy)), which is still denoted by L} (uy) for the sake of
simplicity. Namely,

Definition 4.2 For ¢ € D(L,(uy)) we define L;,(ux)p by
Ly(ur)e = f.
Then we can show

Proposition 4.1 The extended operator Li(uy) : D(L;(uy)) — L*(Q) is
one to one and surjective. Moreover D(L,(uy)) is dense in V) ,(2) and L, (uy)
is a self-adjoint operator on L*(12).

Proof of Proposition 4.1: Assume that L} (uy)e = 0 for some ¢ € V) ,(€2).
Then (L, (uy)e, go)kavam = 0. Hence ¢ = 0. We show the suejectivity in the
next. For f € L?(Q) we consider a functional F(p) = [, feodz on V) ,(Q).
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From (4.5) F(y) is continuous on V} ,(2). Therefore by Riesz’s representa-
tion theorem there is a ¢ € V),(€2) such that F(p) = (L,(ua)p, ¥)v; xa,-
SincelLy,(uy) is symmetric, L;(ux)yy = f holds. From the surjectivity of
Li,(uy), we see that D(L,(uy)) is densely contained in V) ,(£2). Since the
rest of proof is rather standard, we omit the detail. Il

Definition 4.3 By Iy _,;» we denote the imbedding operator from V) ,(§2)into
L*(Q) defined by

Iyore i € Vip(Q) — p € L3(Q) (4.9)

Then we can show

Proposition 4.2 Iy_,;» is compact, namely, the space V) ,(2) is compactly
imbedded into L?(Q2).

Since L*(Q) C [V,(Q)]', one can restrict the operator (L] (uy))™" on L*(Q)
to obtain a continuous operator (L (ux))™|,.: L*(Q) — Vi,(). Then it
holds that

Corollary 4.4 The operator My, = Iy_2 o (L;,(u)\))_1|L2 is compact from
L*(Q) into L*(R2).

Proof Corollary 4.4: When p € (1, 2], we have |Vu,|P~2 > C > 0 for some
constant C. Therefore in this case, the imbedding operator Iy _ 2 is clearly
compact. Because Vj ,(Q) is imbedded into W,*(Q) and W,*(R) is compact
in L?(£2) by virtue of Sobolev imbedding theorem. Therefore we assume p > 2
from now on. Auxilially we define

Definition 4.4
L2(Q; |Vuy|P2) = {p € M(Q): / |Vuy[P~2p? de < +oo} (4.10)
Q

Then we see

Lemma 4.2 V), ,(Q) is compactly imbedded into L?(2;|Vuy|P~?).

Proof of Lemma4.2: Let us set 6(z) = |[Vuy| and F = {z € Q: §(z) = 0}
for simplicity. By F}, we denote a tubular neighborhood of F' given by

F,={z € Q:dist(z,F) <n} foranyn>0 (4.11)
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For any n > 0 and ¢ € V) ,(Q),

/F O*|Vu|P~? dz < sup 5p_2/F ¢?dz < C sup 5p_2||<p|\%/&p(ﬂ). (4.12)

zeF, z€F,

n n

Since the imbedding Vy,(FY) — L*(FY) is clearly compact, where F is the
complement of F;, the assertion follows from this inequality. ]

Proof of Proposition4.2: We make use of a uniformly locally finite open
cover of F' by balls {B;} and a partition of unity {¢,} such that

Fy C UL By, diam(B;) =n, 0<¢; € G°(By),

o0

supp ¢ C Fy, [Vp| < O, ij =1on £
J
Then we have

).

n

<cy [ ri<cy [ #rUT0)
j n j i

<C) (
i o

< C’supép(/ 2|Vl d:1:+77_2/ §P~2p? da;)
P, Q Q

Here C is a positive number independent of n > 0. Then for any € > 0 there
are some 1 > 0 and C, > 0 such that

/ o dz §5/5p_2|ch|2d:B+Cg/5p_2902d$
F 0 0

n

wzd:v:/F(Zdew (4.13)

52(1’_1)\V<p|2<p§ dz + / 52(p_1)|V<pj|2<p2 da:)
jo

<ellellfy @) + Cellellz2.6m2):

Since the second norm in the right hand side is compact with respect to the
first one, the assertion follows. ]

In the subsequent we give an isoperimetric inequality which may be of
independent interest. Though it is rather standard, we give a short proof for
the sake of self-containedness.
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Lemma 4.3 For any open subset M C Q of C1'! class we have
/ (Vuy[PH dHN " (2) > Cmeas[M]. (4.14)
oM

Here HN=(z) is th N — 1-dimensional Hausdorff measure.

Proof of Lemma 4.3: Let M be an open subset in Q with a C*! boundary
such that the closure of M is contained in 2. We construct approximative

characteristic function ¢.’s of M for sufficiently small € > 0 as follows. Let
us set M. = {x € M;dist(z,0M) < ¢} and

1 r € M\ M,
w:(z) = dist(z,0M) /e x € M, (4.15)
0 z e M =Q\ M.

Since ¢’s belong to the space C&’I(Q), we have

/|VUA|p_1|Vg0€|dac > c/ .| do (4.16)
Q Q

Then we have, letting e — 0, lim._g [, |¢z| dz = meas[M]. Since M, is C*!
manifolds for sufficiently small ¢ > 0, we also have

limsup/ (Vuy [PV .| d (4.17)
0

e—0

1 3
:limsup—/ dt/ (Vuy [P~ dHYN Y (z)
0 oM,

e—=0 €
:/6M|Vu,\|p_1dHN_1($)

Here HV=!(z) is th N — 1-dimensional Hausdorff measure. Then we have

the desired inequality for any smooth open subset M C €). Since F), is

approximated by a sequence of M; of class CU1 the assertion holds. ]
Then we immediately have

Corollary 4.5 If F), is smooth, then meas[F),] =0 .

Proof: If F), is of class C"!, then the assertion follows from the previous
inequality. [l
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5 Positivity of Lj(uy) — Af'(uy) for a small A

Since L (u,) has a compact inverse from L*(Q) to itself, the operator L (uy)—
Af'(uy) has discrete spectrums. In particular, there exist the first eigenvalue
and the corresponding first eigenfunction ¢* (Recall Definition 1.2.). In case
that p = 2 this operator has a positive first eigenvalue as long as a bounded
minimal solution exists. In this section we shall establish somewhat weaker
result that the operator Lj,(ux) — Af'(u») has a positive first eigenvalue pro-
vided that A is sufficiently small. This fact is closely connected with the
validity of the Hardy type inequalities. By virtue of the Hermite form on
Vap(2) x Vi,(R2) given by Definition 3.4 and by the imbedding theorem,
there exists a unique self-adjoint operator on L%(Q) with its domain being
D(L,(uy)), which we again denote by L;(ux) — Af'(uy) for simplicity.

Theorem 5.1 If A is sufficiently small, then the self-adjoint operator L, (uy)—
Af'(uy) on L*(Q) has a positive first eigenvalue.
In other words, there is a positive number y > 0 such that we have

Vuy, V)
P2 24 (p gy V2 VO d>/\/ o' d /2(1
17 (1R + -2 52 Flyde + | ¢ do,
(5.1)

for any ¢ € V) ().

Remark 5.1 In the Hardy type z'nequalz'ty (5.1), we can replace by the last
term by fQ Yp?dx, where ' > 0. Because uy is bounded if X is small.

Proof of Theorem 5.1: We choose and fix a small ¢y > 0. Let us set

Uy = /\ﬁw,\. (5.2)
Then wy, € C17(Q) satisfies
Ly(wy) = f(uy), in Q, (5.3)
wy = 0, on 0f).

Hence for any A € [0, €] there is a positive number C' such that

||U))\||LOO(Q) + ||V’U])\HL00(Q) <(C <4 (5.4)
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Therefore there is a subsequence, which is denoted by {w)} again, such that
limy_,owy = wy € VVO1 P(Q) exists (a.e.) and wy becomes a unique solution
of limiting equation:

{ Lp(wO) = f(0)7 in Q’ (5.5)

wy = 0 on 0.
Definition 5.1 Let us set

lellzio = ([ [Fur@pvetas) (5.6
and
Z0p(Q) = {9 € M(Q): [|¢l|z, < +00,0 =0 0n 90}, (5.7)
Here by M(Q2) we denote the set of all measurable functions on Q.

Then Z) ,(£2) becomes a Hilbert space as before. It follows from the same
argument in Corollary 4.2 in §4 that the linearized operators Lj,(wy) (0 < A <
A*) 1 Zyp(2) = [Z),(2)] are invertible. Moreover the imbedding operators
0 € Z)p() = ¢ € L*(2) are compact (See Proposition 4.2). Hence the
first eigenvalues of the self-adjoint operators L7 (wy) on L*(Q2) are positive.
Namely A € [0, \*) we see

(L (wx) @, ©) 1z, (@1 x 20 (@) = Cx /Q ©*dz  for all p € Z),(Q), (5.8)

where C), is a positive number independent of each ¢.
Now we assume that there is a sequence A; such that A\; = 0 as (7 — o0)
and for each A; there is a non-trivial ¢; € V), ,(€2) satisfying

(Ly(un;) = Ajf'(ur))p; =0 59)
||¢j|\vkj,,,(9) =1 (1=1,2,3,...).
Put
v =AY, (5.10)
then we have
{ (Ly(wy;) — A}'_lf'(u,\j?)% =0 (5.11)
H%‘szj,,,(n) =1 (1=1,2,3,...)
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Then

1

<L;(’wxj)80j,€0j>[ZAj,p(Q)]IxZAj,p(Q) = )\J’-’Tl /Q f’(u,\j)cpf- dz (5.12)
For some positive numbers C; and Cy we have

CilleillZ,, ) < (LW 85 )iz, o @) 2, (@)

(5.13)
Cy o ['(un,) @5 dz < ||<Pj||zzxj,,,(n)
Therefore we see
m (L (w3,) @5 05) 23, @1 23,0 = 0 (5.14)
Since ||ojl|z, @) = 1(j = 1,2,3,...) holds, this is a contradiction. O

6 Differentiability of the minimal solution on A

When u) is left differentiable with respect to A, by vy we denote the left
derivative of u), namely

Definition 6.1 ( A left derivative of uy ) Let us set

vy = lim .
U= A< A — M

We shall establish the following;:

(6.1)

Theorem 6.1 Assume that p € [2,00) and assume that V) ,(Q) is dense in
Vap(Q) for a fized X € (0,X*). Then the followings are equivalent:

(1) The self-adjoint operator L} (uy) — Af'(uy) on L*(Q) has a positive first
etgenvalue.

(2) uy is left differentiable at A in V) ,(Q2). Moreover the left derivative vy €
Vap(Q2) satisfies the boundary value problem

Li(uy)ox — Af'(un)ox = f(uy), in Q (6.2)

vy =0, on 0f). '
Remark 6.1 If the minimal solution uy is weakly continuous on A\ as a
I/VO1 P(Q)-valued function, then uy becomes differentiable and the derivative

of uy satisfies (6.2) under the condition (1).
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Proof of Theorem 6.1: Assume that 0 < u < A < A*. Then we see

Ly(un) — Lp(up) = Af(ur) — pf (up)
= (A= p)f(un) + p(f (ur) = f(up))
= (A = ) f(un) + wf(§) (ur — wu),
where ¢ is a quantity satisfying u, < § < u). We set
Uy — Uy

Uy = Y — p > 0. (6.3)

Proof of the implication (1) — (2).

First step: Assume that ||v,,||y,, @) < C < +oo for some positive num-
ber C. It follows from the compactness of the imbedding operator Iy _ - :
Vip() — L*(Q) that there are some vy, € V),(2) and a subsequence of
{vur}, which is again denoted by {v,} for simplicity, such that as p —
Alp <)

v — Uy weakly in V), ,(€2), (6.4)
VA — Uy strongly in L?(Q). '
Note that
0 d
Ly(wy) — Ly(uy) = / Lo s — ) de (6.5)

_ / 0 L (X (1)) (ur — ) dt

-1
where X (t) = uy + t(uy — u,,). Thus we get for any o € V3 ,(Q)
0
L7 (X (), dt, > 6.6
</_1 X0 ) o (6:6)
= (f(ur) + 1f' (€)vur, V) a @ xva @)
where ¢ is a quantity satisfying v, < £ < uy. We can show

Lemma 6.1 Assume the same assumptions in Theorem 6.1 and (6.4). Then
vy € Vi p(QQ) satisfies

{ Li(ua)vx = Af'(un)or = f(uy), i Q

(6.7)
vy =0, on 0f).
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Proof of Lemma: In (6.6), it is easy to see that

;111—r>r/l\<f(U/\) + :uf,(g)vﬂa)\’ ¢>[V>\,p(9)]'xv>\,p(ﬂ) (68)
= (f(wn) + Af'(un)on, V), @) xva,9)
;ltl—% <L;,(U/\)'Up,)n ¢>[Vx,p(n)]'xvx,p(n) = (L;(UA)UM ¢>[Vx,p(ﬂ)]'xvx,p(ﬂ)- (6.9)

We also note that
0
( / 1 Ly(X(8))vpp dt, ) v @) xva () (6.10)
0
= / / IVX()P*(Vupn, Vi) dz dt
—-1J0Q

0
+(p—2) /_ 1 /Q VX0 HVX (), Vo) (VX (L), Vi) de dt

Therefore if p = 2 then the assertion is clear. Hence we assume that p > 2
from now on. Here we employ the following elementary inequalities: For any
e > 0 there is a positive number C. such that for any ¢,n,a,b € RY and any
t €0,1]

ICEIPH(C (), a)(C (1), b) = ICIP(C, a) (¢, )] (6.11)
< (eI + Cel¢ = nlP=?)al[b],

where ((t) = ( + t(¢ — n). Thus it suffices to control error terms of the next
type;

= /Q IV (up — )P V| |V do. (6.12)
Noting that ¢ € V3,(Q) C Wy (Q) we have
1
1= [ 190 = w) P90 da (6.13)

1 ) ’ - ) )1—11)
§—)\_u</ﬂ|v¢| d:z:) (/Q|V(u,\ u,)|P dx

C
_ - _ p—1
S A\ — MHQJ)HW(}’IJ(Q)HU)\ UH”WOLP(Q)
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Here
p
||U,\ - uM' ‘Wol’p(ﬂ) (614)

< C'/Q(|Vu)\|p_2Vu>\ — |V, |P*Vuy,, V(uy — u,)) dz
—C [ () = () 0~ 1) do
=C(\—p) /Q fup) (un — uy) de + C’,u/ﬂ(u,\ —w,)*f(uy) de.

Hence we get

C
1< 52 Wl = wltt (6.15)

1-1
<C(\— M)1—5||¢||W01,p(9)(/va,\f(u,\) dx + )\/QUZ,AJU(U’\) dw)

2 1

—2 2—-2 1-2
<C'(A- M)l ”‘|¢||W(}ﬂp(9)(||vu,>\| L2(pﬂ) + Hvu,/\HLl(pQ))
=O((A—p)' 7).
Since V3,,() is densely contained in W, ?(Q) C Vy,(Q), vy satisfies the de-
sired equation in the weak sense. This proves the lemma. [

Second step: Assume that {v,} is unbounded in V) ,(©2). Then there are
sequences {p;} and {v,,x} such that p; — X and |[vy,a|[v,, @) — +oo as
7 — 4+00. In other words

A — Wy
[lux = wp I )

— 0, asj— 4oo. (6.16)

Now we set

U\ — Uy,

0\ ;o (iallva, @ = 1) (6.17)

ua = w v @

Since {§; 1} is bounded in V) ,(£2), we are able to assume that for some 9§, €
Vap(€)

{ dix — 6\ weakly in V) ,(€2) as j — 400 (6.18)

dj» — 0y strongly in L?(£2)
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As before we see that ¢; ) satisfies for any 9 € VA,p(Q)

</0 Ly (X;(£)) 8.0 dt,¢> (6.19)

-1 VA ()] %V 5(€2)

A — W
= <f(U)\)|| ||] +/*Ljfl(§)5],)\7¢> )
U — Up; [[V3,,() [Vap () x V()
where X;(t) = uy, + t(uy — u,,) and & is a quantity satisfying u,, < & < u,.
Then we can show

Lemma 6.2 Assume the same assumptions in Theorem 6.1 and (6.18). Then
ox € Vi p(Q) does not vanish identically and satisfies

{ Lo (un)by = Af'(wr)dy =0, in Q, (620
0y =0, on 0S2.

Admitting this for the moment we finish the proof of the implication (1)
—(2). From this §) becomes a non trivial first eigenfunction corresponding
to the eigenvalue 0. But this contradicts to (1). O
Proof of Lemma 6.2: As before we immediately see that

1im<f<uA> Aty +ujf'<5>5j,A,¢> (6.21)

sy [Jux — | v, @) Vap ()] x V()
= (A (ur)0n, V)@ x V30 (Q)

and

Hm (L, (wr) 850, ) v, @) x i) = (Lp(wa)n, V) s @)1 x Va0 @)-

B

Therefore it suffices to show that

: -2

Jim [ 19 =) 985Vl de =0, (6.22)
and this follows from the inequality (6.14). In fact, from the definition of §;

7= [ 1V =, PE98, Vol do (6.23

Q
1
< 1 y4 - . p_ll
= Tor =Ty | 37ll8 = sl
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and from the inequality (6.14)

[lux = |5 g 1n = 115 ) (6.24)

(A —
'uj /f’LL)\ ])\da?—I-C,UJ/ /\f U)\

= ux = uyllvy @
< C < 4o0.

Here we used the strong convergence of {d;,} in L?(Q2). Then there is a
constant C' > 0 such that

1—-2
J < Clluy — “MHVA;(Q)' (6.25)
Since
s = s 12,y < Hlall o 10 = s Bpaoggy 0 2 G 00, (6.26)

the assertion (6.22) is proved.
Now J) becomes a nonnegative weak solution of (6.20), so it is sufficient
to show that ) is not trivial. But we have for some number C > 0

|<Lp(u)\) - Lp(uuj)v ux — u,Uj>| (6'27)
> c/ (V| + [Var)? 2V (ur — w2 de
Q

> Clluy — uyl[f;, )

Hence
|<Lp(u>\) - Lp(“uj)a 5j,>\>| > C,H“A - quHVA,p(Q)- (6.28)
On the other hand from (6.14)
we get
|<Lp(u>\) - Lp(“uj)a 5j,>\>| (6.29)

< (o<1> [ riialas+ox [ 85w d:c) 1 — 150

Since f is strictly convex and increasing, we get
0<C< / 63 dx (6.30)
Q
This clearly implies the assertion. [
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The proof of implication (2) — (1) Let vy € V) ,(Q2) be a unique solution
of the boundary value problem

{ Ly(ur)ox — Af'(wa)va = f(uy), in €,

(6.31)
vy =0, on 0f).

Assume that Lj,(ux) — Af'(uy) has zero eigenvalue and let ¢ € V) ,(€2) be a
corresponding eigenfunction. We can assume ¢ > 0 in 2. Then

(), 9) = (L (n)or = Af (un)on, ¢) (6.32)
= (vx, Ly(un)p — Af'(un) @)
=0
Since f(u)) is positive, we reach to a contradiction. [

From this we can show a somewhat weak result in the case that 1 < p < 2:

Corollary 6.1 Assume that the same assumptions as in the previous theo-
rem 6.1. Moreover assume that 1 < p < 2 and there is a positive number
no < min(A, A* — X) such that for any p € (A — ng, A + ng) we have

1 _
|Vur(z) — Vu,(z)| < §|Vu)\(:z;)| in ). (6.33)
Then the same conclusion holds.

Remark 6.2 The assumption on Vuy means not only the invariance of the
set F, , with respect to p € (A—mno, A+10) but also that of the vanishing order
of |Vu,| on F,,. Later we shall give an example in which these assumptions
are satisfied. See Lemma 12.1 in §12.

Proof of Corollary: Again we put ( = Vuy, n = Vu, and ((t) = Vu, +
tV(u, — uy) with ¢ € [-1,0]. Then we prepare the elementary inequality.

Lemma 6.3 Assume the same assumptions as in the corollary. Then for any
a,be RN

1CE)PHC®), ) (C(2), B)=ICIP~H(¢, a) (¢, b)] (6.34)
<(2=p)2* 7P It]I¢ — mllal B]
Proof of Lemma: For ¢ € [—1.0]

1
|Vuy + t(Vuy — Vu,)| > |[Vuy| — |Vuy — Vu,| > §|Vu>\|. (6.35)
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Hence we see 3|¢| <[¢(t)| < 3|¢|. The required inequality easily follows from
the integral representation of the left-hand side. ]

End of the proof of Corollary: We put

J= / Va3V (u — )| Vo [V de, o € Thp(Q).  (6.36)
Q
From Lemma 6.3 it suffices to show
lim J=0. (6.37)

P A<

Since v,  is bounded in Vi (), for some positive number C
J? < 0/ \Vu,\|p_2|Vvu,,\|2da:-/|Vu>\|p_3|V(u)\—uu)||V@b|da:. (6.38)
0 0

Noting that V4 vanishes in a neighborhood of F) ,,
we can apply Lebesgue’s convergence theorem to obtain for any ¢ € V) ,(€2)

(L (ur)vx, V), @ xva, @ = (Fun) + AF (un)on, V)@, @ (6.39)

So we see that vy is a weak solution. The rest of the proof will be done in
the same line as before. ]

Remark 6.3 In §2 we showed uy > %u/\mp—l provided 0 < m < 1. From this
we see )\zﬁuu < ,uzﬁu)\ provided 0 < u < A < A*. Then we immediately have
1

p—

Hence if u* = uy 1s singular, then vy = limy_ - vy s also singular. Later
we shall give an example of a singular vy in a ball. See Lemma 12.4 in §12.

TUA < vy, if vyexists. (6.40)

7 Behaviors of u), and vy near A =0

In this subsection we shall discuss about the behaviors of u) and v, near
A = 0. We recall that vy ( the left derivative of u) ) satisfies

{ Li(ur)va — Af'(un)vr = f(uy), inQ (7.1)
vy =0, on 0f).
Let wgy be the unique solution of
Ly(wg) = f(0) inQ; wy=0 on o (7.2)
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From the maximum principle we see wy > 0 in €2, and its normal derivative
% # 0 on 0f2. Then we can show

Lemma 7.1 Let uy € C*(Q) be the minimal solution for A € [0, \*). Then
for any eg € (0, X*) there is a positive number C shct that for any A € [0, g¢]:
(1) [q|Vur|?dz < CAT for any q > 0.
(2) [Vup| < CXFT.
(3) ArTwy < uy < AT,

Here C' is independent of each x € €.
Proof of Lemma 7.1: Let w) be the same function as in the proof of The-
orem 5.1, that is, wy = A7 Tuy. We recall that x|z () + [|[Vwa|| ooy <
+oo (0 < X <gp). Then we see

ur||ze@) < CAPT, |[Vuy||peoo) < CAPT. (7.3)

This proves the assertion (1) and (2). Since L,(wy) = f(uyr) > f(0) > 0, wy
becomes subsolution of the same equation. Therefore we see for some number
C>0

ATy < uy < CAFT, (7.4)
Thus we see the assertion (3). O

In order to describe the behavior of vy, we consider the next boundary
value problem:

(7.5)

Ly(w\)gr = f(0)  inQ,
¢)\ =0 on 0f).

Then we see ¥y, € V) ,(2) and % # 0 near the boundary. From the definition
of vy and w), we have

AL (wy)oy = Aoy f'(wy) + f(un) > £(0) > 0. (7.6)
Hence
L (wy)vy > F(O)AT5T. (7.7)

Therefore A\ 711, becomes a subsolution of (7.1), and so we see

vy > ATr ey (near the boundary). (7.8)

More precisely we have
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Lemma 7.2 Let vy € V) ,(Q) satisfy (7.1) for X € [0,X*). Then for any
g0 € (0, X*) there is a positive number C' shct that we have :
If p > 2, then for any A € [0, &g],
(1) [qurdz > =1
(2) [, |Voy|dz > CA™51.
If 1 < p <2, then for any A € [0, &),
(3) [ vadz < CAFL.
(4) [, |Vor2de < CA%
Here C' 1is independent of each x € ().

Proof of Lemma 7.2: First we assume that p > 2. The assertion (1)
follows from (7.8). Using u, as a test function we have

/Q (f (ua) + Aoxf'(un) ) ua = (L (ur)vr, Ua) vy, Q) x Vi, () (7.9)
< C’/ IVu [P~ Vo, | dz < C")\/ (V| dx
Q Q

and

fQ (f(w) + Avaf'(ur)Jur dz > f(0) / updz > CA#= (7.10)

Q

Then we see
/ V| dz > CA™5 1. (7.11)
Q

This proves the assertion(2).
Now we assume that 1 < p < 2. Using vy as a test function, we have

/Q (f (un) + Aoaf'(un))va = (L, (wr)va, UA) WA () xVaH(Q) (7.12)
> C/ Vup|P=2| Vo2 dz > C' AT / Vo2 da.
Q Q
On the other hand we see by the Poincaré inequality

/Q (f(w)) + Auoaf'(up))vrdz < C’/()\v,\ + 1)vy dz (7.13)

0
< C")\/ |Vv)\|2da:+0/v)\dx.
0 0
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Hence, we can choose gy so that for all A € [0,¢(] we have

)\ﬁ%f/ Vouy |2 dz < C’/fu)\da:. (7.14)
Q Q

Here we note the following elementary inequalities:

(/ |vm\2dx) (/ 0y | 2 2d:p> C’/|Vm\2da:. (7.15)
Q
/’U)\diB < C’(/ |op| 72 da:) : (7.16)
Q Q

Then we get the assersion (4)

</ |Vm|2dm> < OXit. (7.17)
Q

Combining this with (7.15) and (7.16) the assertion (3) is proved. O

8 Nonnegativity of L,(ux) — Af'(uy)

In §5 we have showed the positivity of the first eigenvalue of Lj,(ux) — Af'(ux)
for a sufficiently small A > 0. In this section we shall prove that the operator
Li,(ux) — Af'(ux) has a nonnegative first eigenvalue for any A > 0 under the
accessibility condition (AC). This fact is equivalent to the validity of the
Hardy type inequalities. We recall the definition of the first eigenfunction ¢*
in Definition 1.2.

Theorem 8.1 Let uy be the minimal solution for X € (0,\*) and let $*
be the first eigenfunction of the self-adjoint operator Lj(ux) — Af'(ur) on
L*(Q). Assume that ¢ satisfies the accessibility condition (AC) defined by
Definition 1.35.

Then the first eigenvalue of Lj(uy) — Af'(uy) is nonnegative.
In other words, we have

(Vuy, Vop)*

for any ¢ € V) ,(Q).

38



Remark 8.1 (1) The proof of this will be done in a chain of Propositions
and will be finished in §9 finally.

(2) In case that Q is radially symmetric, the minimal solution becomes radial
by the minimality. Then F), consists of a single point, and so V)\,p(Q) 18
dense in V) ,(S2). See Remark 3.5 in §3. Moreover the first eigenfunction na
also becomes radial from the uniqueness up to a multiplication by constants,
hence the accessibility condition (AC) is easily verified in such a case. See
Proposition 12.2 in §12.

We start with defining auxiliary function spaces.

Definition 8.1 By C°([0,T],V,,(Q)) for T > 0 we denote a space of all

functions (z) such that i (z) € V),() for each t € [0,T] and continuous
int as V() -valued functions, where the norm is given by

Y : = sup ||Y:()|lp . 8.2
|19l coqo.r1,7,p0) tG(O’T)H (I, (8-2)

We also define C°([0,T], Va,(Q)), C°([0, T], Wi ,()) and C°([0, T], W,*(Q))

mn a stmilar way.

For 1, € C°([0, T, V3,(R)), let us set

9t(373 ¢t) = _%(Lp(u)\ - Wt) - Lp(UA))- (8-3)

Then it follows from Lemma 3.5 that g:(z;¢;) € [Vi,(2)]', if ¢ is sufficiently
small. We consider the equation for each ¢ > 0

{ Ly, (un)pe(z) = ge(z;¢1), T € Q,

8.4
;=0 on 0. (8.4)

From Corollary 4.2 we have a unique solution ¢; € V) ,(€2) for each small
t > 0. Moreover we have

Proposition 8.1 Assume 1); € C’O([O,T],f/)\,p(Q)). Then for a sufficiently
small number Ty > 0 there exists a unique @; € C°([0, Ty], Vo ,(Q)) such that

{ L;(U/\)Spt(x) = gt($;¢t)7 in €2 X [07T0L

8.5
©o = Yo, in (L. (8:5)
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Moreover there 1s a positive number C such that

e — wollv, @) < Cllve — Yollv,, ) + oD Yol v, ) (8.6)
|1 = ollv, @) < Cller — wollv, @ + o(1)|[wollv, @ (8.7)

where o(1) denotes a quantity which goes to 0 ast — 0.
Proof Proposition 8.1: Since L, (uy) is invertible, we have

ei(e) = [Ly(wn)] " gilzs vn) € CO([0, T, Vap(€2))- (8-8)

In fact g;(-; ¢;) vanishes on some neighborhood D of F} ,, hence (g, §>V1,prx,p
= 0 for any £ € V),(D). From the coercivity of L, (uy) we see Vi; = 0
in D. Moreover ¢; is smooth as a solution of uniformly elliptic equation.
Therefore we see ¢; € f/,\,p(Q). In the next we prove that ¢y = 1)9. From the
differentiability of Ly(uy) at uy in V3 ,(Q), we claim that

9e(z; 1) — Ly(una)to, in [Vap(Q)] ast —0. (8.9)

If v, is independent of ¢, this holds by definition. For a general v, the
assertion follows from the estimate below: For any & € V), ,(Q)

[{Lp(ux = tahe) — Lp(un — t3h0), ) @) xva, (@)
<t [ [VE1V (0= )+ 9 (un = 1) P2) V(61 = ) do
< t|ve — dollv, @ l€llvi, ) as t — +0.
Here we used the fact Vi, vanishes near F), uniformly in ¢ € [0,7]. Then,

|| Lp(ua = t40) — Lp(ux — to)l|ws 1 < tl[9e = Yollvs -
Hence
|1g¢(; 2be) — Ly (ua)vol v, )y (8.10)
< %HLp(UA — teh) — Lp(ux — tdho)l v + [19¢(;5 %0) — L, (un)bollwa, 1
< l9e = Yollv, @ + o(W[Pollva,@)-
This proves the claim (8.9). Noting that

ot — o = (Ly(wn)) " (g — Lp(ua)o)  in Vap(9), (8.11)

40



we have
lim |01 = tbol v, @) = 0- (8.12)

Hence we see ¢y = ¢y. The inequality (8.6) immediately follows from (8.9),
(8.10) and (8.11). From (8.11) we also have

g5 %be) — Ly, (ua)vol Iy, < Cller — eollv,@ (8.13)

and then, for a sufficiently small ¢ > 0

|9 = olIF @)
< C/Q(W(UA — 1) [P+ [V (un — t3h0)[P72) [V (40 — tbo) [* dz

< CtY(Lp(up — tahy) — Lyp(ux — t30), 1 — o) v, @) xVi,p@)]
= C|(ge(w;%1) — 9¢(z; %0), Yt — o) v, () x V2 (@)]
< C(ller = ol @ + o(Wleol v, @) |1¥e — Yol v, @)

where C' is a positive number. Thus we have the desired inequality (8.7). [

Conversely we consider the boundary value problem

{ Ly(n(@)) = Ly(w) = tLj(u)p in €, 8.14)
m =20 on 012,

where ¢ € V,\m(Q) is given and ¢ is a small nonnegative parameter.

From the theory of monotone operator we see that there is a unique solution
m € WyP(Q) for each t > 0. Here we note that Ly(uy) € [Wy?(Q)] and
L}, (uy)p is smooth. Since 1y = uy for ¢ = 0, we can put n(z) = uy — ty(z)
formally. From Lemma 2.1 we see n; and ¢; € C19(Q) for some o € (0, 1].
Then we can show the following;:

Proposition 8.2 Let ¢ € VM,(Q) satisfy [Vo| = 0 on F, = {x € Q :
dist(z, F)p) < €} for some € > 0. Then there 1s a unique solution n; of
(8.14) for a small T > 0 such that iy = uy — t3y for ¢ € C°([0,T], V> ,(Q))
and

{ V| =0 on F. (8.15)

limy o ||t — &llv, @) = 0
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Proof of Proposition 8.2: Without the loss of generality we assume that
F. is smooth. Since ¢ € C*(Q2) and ¢ is a constant on F;, we see 0% = 0
on JF; for any multi-index o # 0. First we claim that Vi, = 0 on F.. We
consider the boundary value problem

{ Ly(n}) = Ly(wy)  in F;

8.16
nt = uy on OF.. (8.16)

This clearly has the unique solution 7} = uy. In the complement of F., the
problem

{ Ly(nf) = Lp(ur) — tLy(wn)p  in (F)° (8.17)

77;? = u) on OF..

has a unique solution in I/VO1 P(Q) as well. Note that both uy and n? become
smooth in a small neighborhood of JF, and the right hand side also equals
a smooth function L,(uy) there. Hence it is easy to see that these solutions
satisfy the compatibility conditions on OF;, that is,

B d771 B an
1_ .2 Tip=221t _ 2\p—2~""1t 8.18
m=np, VP = VT (8.18)
where n is a unit outer normal to 0F.. Then the function n; defined by
1 .
n; in F,
’)7t = t2 . ¢ c (819)
n; in (FY)

becomes a weak solution of (8.14) in Wy?(Q). From the uniqueness of the
solution of boundary value problem in W,?(Q) it follows that V; vanishes
on F.. This proves the claim. In the next we claim that v; € V) ,(€). This
follows from the next estimate:

Il o0 = [ 19021 do
< c/ (19 (wr — t40)] + [Vun])” 2 Vi de
Q

1
< C;|<Lp(UA — ty) — Ly(un), ¥r)|
< CNLL(un)e, )| = Cllellv, @ el lva, ©)-

So that we have

[t |vs ) < Cllellvy, @) (8.20)
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The last statement also follows from (8.7) in Proposition 8.1 by putting ¢; =
- L]

Since the right hand side of (8.14) is positive for a sufficiently small ¢ > 0,
it follows from Lemma 2.4 that Vi, = V(uy — t3;) does not vanish near
the boundary 0€). Note that 7; satisfies the elliptic equation with smooth
coefficients:

9;mOkn Ly(uy) —tLy(un)p .
—(Am+(P—2) rvtnjztaﬁjm) =2 |V77t|p_p2 inQ, (8.21)

Here p is a small positive number and 0, = {z € Q : dist(z,0Q) < p}. There-
fore n; and v; are smooth as well as u) near the boundary 052 for a sufficiently
small ¢ > 0. Moreover we can show the following strong convergence.

Proposition 8.3 Assume that ¢ € V,\,p(Q). Let n; be a unique solution
(8.14) for a small T > 0 such that n; = uy — tby for ¥y € CO([0, T], V().
Then there is a small number p > 0 such that

%1_{% || — <P\|01(Q_p)=o- (8.22)
Here || - ||c1qy) i defined by

luller @) = sup (Ju(z)] + [Vu(z)]). (8.23)

z€Q,

This will be proved in the next section. Admitting this for the present we
establish Theorem 8.1 in the rest of this section.

Proof of Theorem 8.1: Assume that the self-adjoint operator L;(uy) —
Af'(uy) on L?(€2) has a negative first eigenvalue p and a corresponding first
eigenfunction ¢* € V) ,(Q) which is positive except on F),. Namely

Li(un)@* = Af'(un) @t = @, (1< 0,0 € V),(Q)). (8.24)

From the accessibility condition (AC) we claim that

Lemma 8.1 There exist positive numbers p and Cy, a negative number v, a
positive ¢ € V) ,(2) and a nonnegative & € V) ,(Q2) N C§°(2) such that

{ L (un)p — Af(w)p < v(p+€) i Q,

| | (8.25)
V| >Cy inQ,={z € Q:dist(z,00) < p}.
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Proof: It follows from the accessiblity condition (AC) that a nonnegative
o € D(L;(uy)) is approximated by elements in V) ,(€2) in the following way:
For any e > 0 there exists a nonnegative ¢ € V) ,(2) such that

L (un) (e — &) + | — ¢*| < emax(p?, dist(z,09)) in Q. (8.26)

Note that V3 ,(©2) C D(L,(un)) C Vap() C L3(R). ( See also Corollary 4.3 in
§4.). Note that u, is of class C? in the complement of any neighborhood of F), ,
as a solution of uniformly elliptic equation. Moreover |Vu)| does not vanish
near 09). Therefore |V > 0 near 992, and so we have Cj-dist(z,09Q)) < ¢
near 02 for some constant C > 0. Now we show that |V¢| does not vanish
in Q, if € and p are sufficiently small. In fact we immediately see from (8.26)
N = —p+ ¢ < eCy'p* + ¢, hence (1 — eCy)p* < ¢. Then we have

dp d
0<(1- 600_1)di1/ < d—f near the boundary 02, (8.27)
where 0 < € < Cy and v is an interior normal to 0f2.
Temporally we assume ¢* > 0 in Q. Then we have C - dist(z, 0Q)) < @

in the whole Q for some constant C; > 0. From (8.24) and (8.26) we see

L,(ur)e — Af'(up)p (8.28)
= (Ly(un) = Af'(up) (@ — %) + pep?
< emax(p*, dist(z,00)) + e
< (p+ e max(1, 7))
Therefore the claim is clear for a small € > 0.

In the next we remove the assumption of positivity on ¢*. Choose and fix
a nonnegative £ € V) ,(2) N C§°(2) which will be specified later. Then

(Lp(un)=Af"(un)) (¢ +€) (8.29)
= up* + (L (wn) — Af'(uwn))é
< g = Af'(0)€ + Ll (up)€
< =A@+ &) + L (un)§,
where A = min(—u, A\f'(0)) > 0. Note that for any & € V) (), Li(up)§ is

smooth in  and vanishes on some neighborhood of F) . For any € € (0, A)
we choose a nonnegative £ € V) ,(Q2) NC§°() so that we have L (uy)é < ep?.
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Since |V¢?*| > 0 near the boundary, this is possible. After all we have

"y — "(u AN € — A\
{ g(of—i(— 2>>0Afi<nAg>2?<w HO< (M@ HD ga

Hence by replacing ¢* by ¢* + ¢ if necessary, the same conclusion (8.25)
holds. ]

Proposition 8.4 Assume that ¢ € V)\,p(ﬂ) is positive in Q and satisfies
(8.25) with a negative number v. Then there are a small T > 0 and an
ne = uy — ty for ¢y € C°([0,T1, YN/A,p(Q)) such that:

(1) n; satisfies (8.14) for any t € [0,T], that is

Lyp(ne(z)) = Lp(us) — tLy(ur)e  in Q,
nt =0 on 0f2.

(2) 1 € CY(Q) for some o € (0,1] satisfies

{ limy o |2 — ¢llvs ) = 0,

. (8.31)
limy— (|11 — ol o1 ) =o- for some p >0

(8) m < uy holds in Q for any t € [0,T]. Moreover there exists a set having
positive measure on which ny < uy holds.

(4) For each t € [0,T] there are some point z; € Q and a positive number ry
such that Ly(n:) < Af(n:) in By, (z:) in the distribution sense, that is,

(Lp(1), E)[Cralrx 0o < A /Q f(m)é de, (8.32)

for any & € C§°(B,,(z:)) satisfying € > 0.

Proof Proposition 8.4: The assertions (1) and (2) follow from Proposi-
tion 8.2 and Proposition 8.3 respectively. If T is sufficiently small, then /;
is nonnegative for any ¢ € [0,7]. Hence the assertion (3) holds. We proceed
to the proof of (4). Assume that for some ¢ € [0,T], Ly(n:) > Af(m) in Q.
Then n; becomes a supersolution. Since 0 is a subsolution, it follows from the
standard argument of monotone iteration that we get at least one solution w
satisfying 0 < w < n; < uy, in €2. But this contradicts to the minimality of
u)y. L]
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End of proof of Theorem 8.1: From Lemma 8.1 and (4) in Proposition 8.4,
for each ¢ € [0,T] there exist some point z; € Q and a positive number r;
such that we have

Lo~ Af(m)p < (@ +8) i Q, -

Lyp(uy) —tLy(ur)e < Af(un —t3hy)  in By, (z4). .
We note that for any ¢t € [0, T

Fux —taby) = fun) + £f (ur)ihe = o(t)[e]. (8.34)

Hence we have

0 < Af'(wp) (@ — W) + (@M + &) +o(1) ey  in B, (z). (8.35)

Here we remark that (8.33) and this inequality have to be valid in the sence of
pointwise, since each term is continuous. Since {2 is bounded, we can assume
that limy_, 1o z; = 2° € Q by choosing subsequence. Letting ¢t — 40, we get
the inequality 0 < v(p* + £)(z). If 2° € Q, then (* + £)(z°) > 0, hence
this immediately leads us to a contradiction. So we proceed to the case that
20 € 0. Let us prepare the following:

Lemma 8.2 Assume that z; € Q — 2° € 0Q ast — +0. Then
lim <P($t) - ¢t(flft)
=40 ()

If we admit this, dividing the both side of (8.35) and letting ¢ — +0 we have
0 < v, and again we reach to a contradiction. This proves Theorem 8.1. [

= 0. (8.36)

Proof of Lemma 8.2: Since 05 is of class C?, we see that ¢ and v, are of
class C%(0Q)NC>(Q,). Using a suitable diffeomorphism, we can suppose that
2% =0, and Q is a half space RY = {z = (z/,zy) e RY : 2’ e RV"! 2y > 0}.
Since ¢ vanishes on a plane {z = (z/,zx) € RY : 2’ € RV 2y = 0}, we
have for zy < p

N 1
oz, Tn) = / Osp(z', 8) ds = ZL’N/ dsp(x, try) dt. (8.37)
0 0

In a similar way
1
Ui(z) = zn / Osp(', tzy) dt. (8.38)
0
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Hence

o) = i(a) _ Jy (Oup = Ostb) (&', txe)v) dt
p(z:) Iy Osp(a t(z)n)dt

There is a positive number C such that |0s¢| > C for any z € Q,. Since
converges o in C1(Q), the right hand side of (8.39) goesto 0 ast — 0. [

(8.39)

9 Proof of Proposition 8.3

In this section we establish Proposition 8.3 which was stated in §8.

Proof of Proposition 8.3: First note that

L(u) = ~[Vul?(Au+ (p -2 |'V ; 0%u). (9.1)

As was already seen just after the proof of Proposition 8.2, we can choose
T > 0 and p > 0 so small that Vi, = Vuy — tViy, Vuy and Vi), do not
vanish in Q, = {z € Q : dist(z,00) < p} for any ¢t € [0,7]. Then 7
and u) are smooth in €2, as solutions of uniformly elliptic equations with
regular coefficients, and so 1, also can be assumed to be smooth in €2, for
any t € [0,T]. Let us set

Ly(m)
— Aip(z, )05 m, = =L : 9.2
%: J ( ) kIt |V77t‘p_2 ( )
Here
0;n:0
Ajr(z,t) = jx + (p— 2) rgtnj? t (9.3)
By the definition of n; we have
L (U)\) —tL (U)\)QO . —
=) Aji(@, t)0hm = — |lep—p2 € C™®(Q,)NC%Q,).  (9.4)
gk
Then ; satisfies
Y Ajr(z, )07 = Gry(z) € C®(Q,) N C*(Q,). (9.5)

Ik
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where

Y
Gz ZAJ;c (2, £) 02 up + Lp(uw)vnjf_g(m)(p (9.6)
In a similar way we have
tz Bji(z, t)(?ikw = Gi(z) € C>=(Q,) N C*(Q,), (9.7)
where
Gri(z) = >k Bik(z, t)agz,ku)\ + %7
(9.8)

ux—1p) Ok (uy—t
Bjk(z,t) =65+ (p — 2) (rv(fx) ;2;)?2 2,

From a mean value theorem for smooth functions and the differentiability of
L,(-) at uy in the direction to ¢, there is a positive number C' such that for
any t € [0,7] and any z € Q,

|G i(2) — Gru(e)| < CHV (¢ = @)| + o). (9.9)
Here by o(t) we denote a quantity satisfying ﬁtt) —0ast— 0. Set
= 1 — . (9.10)
Then W; satisfies
> Ajp0% Wy = H(z), (9.11)
gk
where
H(z) =) (Bjx — Ajr)07 10 + Gril2) ; Grile) (9.12)
ik
It is easy to see that H(z) € C®(Q,) satisfies the estimate
[H(z)| < Ci([VY = V| +0(1)) = CL(IVIW + o(1)), (9.13)

where C] is a positive number depending on [V|,|Vy| and |[V2p|.

From (9.13) and L? energy estimate for uniformly elliptic equation (9.11)

we get for 0 < p/ < p
IWillw22(,) < C([H(2)||z20,) + [Willwr2q,) (9.14)

N <
< CllWillv, (@) + o(1)]-
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Here we used

{|H<w>||m ) < CUIWillwre,) + (1)), (9.15)

[[Willwr2,) < C'IWillv, @)

for some constants C' and C’' > 0. (Note that Vuy does not vanish near 02.)
Hence we have from (8.31)

11m||Wt||sz , :0 (916)

t—0

Now we differentiate the both side of (9.11) with respect to z,, to obtain

> Ajp0340n Wi = 0 H(z) — Y 0 Ajr02 Wi (9.17)
J.k J.k

Then 0,,H(z) and 0, A;j satisfy

{namH(a:mLz ) < C(|[Willwezgq,) + o(1)),

(9.18)
|| Zj,k amA],kanWtHLz S CHWL‘HWZ? pl 7

where C is a positive number depending on |[V%yp|, |[V@,| for 0 < a < 3, and
V| = (Zhl |07 | ) Since m is any number, we have for 0 < p” < p’

[Willws20,) < CUIVH @) |20y + [[Wellw2(0,) (9.19)
< O[[Willys @) + 0o(1)] — 0 as t — +0

Here the positive number C' depends on p' and p”. Therefore we can show
inductively that for any positive integer n and any p’' € (0, p),

||Wt||Wn,2(Qp,) < C(n,p, p/)HWt”V)\’p(Q) +0(1)] = 0 as t — +0. (9.20)

Here C(n, p, p') is a positive number depending only on 7, p and p'. After all,
by Sobolev imbedding theorem we have

Lim [ — ]| o1 @,)=0- (9.21)

This proves the assertion. ]

10 The extremal solution and its characterization

In this section we shall study the behaviors of u) and the operator L;(u)
near A\ = \*. As was seen before in Theorem 2.1 in §2, the extremal solution
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1 . . . . .
u* € WyP(Q) always exists in our framework as a monotonically increasing
limit of a sequence of classical solutions. Namely, u* = limy_, y« u) satisfies

{ Ly(u*) = X*f(u*) inQ

(10.1)
u* =0 on Of).

But u* can be classical or singular (that is to say, unbounded). In case that
p = 2, it is known that there is no solution even in the weak sense for any
A > A*. We start to prove the counterpart to this fact.

Definition 10.1 ( Growth Condition ) For p > 1, a function f(t) €
CY([0,0)) is said to satisfy the growth condition (GC) if f is increasing,
strictly convex with f(0) > 0 and
r)

flty=r
Remark 10.1 (1) If 1 < p <2, (10.2) is automatically satisfied for increas-
ing convex functions with f(0) > 0.
(2) For example, €' and (1 +t)%q > p— 1 satisfy (GC).
(3) If f is C? function, (10.2) follows from;

is nondecreasing on [0, 00). (10.2)

d/ f't)
%<f(t);ﬁ) >0 for allt € [0, 00), (10.3)
or
FUOF(E) > i%i FU?  forallt € 0,00). (10.4)

If u} is singular, we can show the following. The idea of the proof is essentially
due to [1: H. Brezis, Th. Cazenave, Y. Martel and A. Ramiandrisoa), see
also [2].

Theorem 10.1 Let u* be the singular extremal solution. Assume that the
nonlinearlity f(t) satisfies the growth condition (GC) in addition to (2.2).
Then there is no solution to (2.3) provided that A > \*.

We prepare two lemmas.

Lemma 10.1 Let u € W,?(Q) be the energy solution of (2.3) . Let ¥ €
C%*(R) be concave, with ¥’ bounded and ¥(0) = 0. Then v = U(u) satisfies

Ly(v) > AW (w) P20 (u) f (u) (10.5)
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wn the sense that
(Lp(0)s P aopswiei) 2 A /Q [0 (u) P28 (u) f (u)p da (10.6)

for any p € C}(Q).
Proof of Lemma 10.1: By a direct calculation we see

Ly(v) = W' (u) P (w) Lp(u) = (p = 1) () P75 (u)[Vul”  (10.7)
> [ () [P0 (u) Ly (u)
= Af ()| () "7 (w).

This proves the assertion. ]

For a given ¢ € (0,1) we set

f=0—-¢f. (10.8)
Set for all u > 0

() = /O Tdsnd h(w) = /0 t_ds (10.9)

then h(u) = (1 — 6)_ﬁh(u).
Lemma 10.2 Assume that f satisfies (GC). Let us set for all u >0
U(u) = h~Y(h(u)). (10.10)

Then
(1) ¥(0) =0 and 0 < ¥(u) < u for all u > 0.

(2) If h(+o0) < 400 and f # f, then ¥(+00) < +00.
(8) ¥ is increasing, concave, and V' <1 for all u > 0.

Proof: The assertions (1) and (2) are clear. We have

U'(u) = (]”(;11(71(;;))>T (10.11)

and
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Set ®(u) = %\Iﬂ(u) — % Then it suffices to show ® < 0, and this is
equivalent to the inequality:

(1— s)ﬁ fl(qj(u)_2 < fl(zi)_z for all u > 0. (10.13)
@) fwE
But this holds from the fact ¥(u) < w. O

Proof of Theorem 10.1: Assume that there is an energy solution u of (2.3)
for some A > \*. We set v = U(u) = h~(h(u)) for € € (0, min(1, A — X\*)).
Then v satisfies

{ Ly(v) > A1 —¢)f(v) inQ, (10.14)

v=20 on 0,

hence v is a supersolution. Since 0 is a subsolution, by a standard monotone
iteration argument, we see the existence of a classical solution for any u < A.
This contradicts to the minimality of «*, which is unbounded. ]

If p > 2, we can show the necessity of the Hardy type inequality for the
extremal u*.

Proposition 10.1 Assume that p > 2. Let u* be the extremal solution.
Then we have

Vu*, Vip)?
*|p—2 2 -9 ( ) Y
192 (196l + (-2 S

for any ¢ € Vy,(Q).

de >\ | f(u")¢?dz, (10.15)

Proof of Proposition 10.1: For any p < A < A* it follows from Lemma
and Theorem 2.1 that

[lux — uMH%/OL”(Q) < C/Q(|VUA|p_2VUA - |Vuu|p_2Vuu, V(ur — ) de

= C’/Q (M (w)) — pf(u,)) (uy — u,) dz < 40)\*'/(2f(u*)u* dx < +o0.

Here C' is a positive number independent of p and A. Since u) converges u*
as A — A* monotonically, by Lebesgue’s convergence theorem we see that

lim uy = u* in WyP(Q). (10.16)
AP A*
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In particular we get

Vur [P~ = [Vu*[P~2  in L'(Q). (10.17)

hm
)\*

Hence we immediately have for any ¢ € V), ,(Q2)

(Lp(u)ps @)walrxva, = MLy ()@, 9w s, (10.18)
Since wy is (strictly) increasing, by Fatou’s lemma we have
V[ F)etde < tim A [ Pt ds < E)e e,
(10.19)
Thus the desired Hardy type inequality follows. ]

Remark 10.2 When 1 < p < 2, we can not show the strong convergence
of |Vuy|P=2 in L1(Q) because of the negativity of ezponent. But |Vu,| (A €
(0, A*]) vanishes only on each discrete set F», (A € (0,\*]). Hence if |Vu,|
with A being sufficiently close to \* is positive except for an arbitrary small
neighborhood of Fy: ,, then |Vuy|[P~2 converges |Vu*|P~2 in L} (Q\ Fyp) as

loc
A — X*. Therefore we can show the following result in a similar way.

Proposition 10.2 Assume that 1 < p < 2. Let u* be the extremal solution.
Assume that there is a positive number ey such that Vi ,(Q) is dense in Vy ,(Q)
for any A € (A* — e, X¥).

Moreover assume that for any k > 0 there is a positive number 6 such that
for any A € (A* — 6, \¥]

Fyp C (Fxep) = {z € Q:dist(z, F\-p) < K}. (10.20)
Then we have
9w (vl + o -
0

for any ¢ € Vi« ,(2).

de > X | f'(u*)p®dz, (10.21)
0

Proof of Proposition 10.2: From the remark just before this, we see

im [V, |7 2= |Vu* P % in L, (Q\ Fyp). (10.22)
_> *

Therefore for any ¢ € V,\J,(Q) the Hardy type inequality (10.21) holds by the
same argument as before. Since V) ,(2) is dense in V) ,(2), by an approxi-
mating argument this is valid for any ¢ € V. ,(Q2). ]
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Remark 10.3 (1) If u* is classical, the Hardy type inequality (10.21) holds
under the assumption that the first eigenfunction of Ly,(u*) — Af'(u*) satisfies
the accessibility condition (AC). The proof is same as that of Theorem 8.1.
(2) If Q is a ball, then one can show F), = {0} for all A > 0. Hence the
Hardy type inequality (10.21) holds in this case. See the example in §12.

Conversely we have

Proposition 10.3 Assume that 1 < p < 2 and the nonlinearlity f(t) satisfies
the growth condition (GC) in addition to (2.2). For A > 0, let uy be the
mantmal solution or possibly the extremal solution. Let u € Wol’p(Q) be a
unbounded weak energy solution of (2.8) such that

/|vu|P—2(|w|2+(p— )(V|uvv|f ) dz >/\/f o?dz,  (10.23)
Q

for any ¢ € V) ,(Q). Moreover, if 1 < p < 2, then we assume that
Vu| > |Vu,| a.e. in €. (10.24)
Then we have A = A* and u = u*

Proof of Proposition 10.3: By Theorem 10.1, in order to see A = A* it
suffices to show A > A\*. Assume that A < A*. Then it follows from the strict
convexity of f that

/Q (|Vu|p_2Vu — |Vu)\|p_2Vu)\, V(u— u)\)) dx (10.25)
p—2 w— us) 2 B (Vu, V(u —uy))? -
S A (O R R e L

Note that the right hand side is finite from a Holder inequality. Set Vu = rw;
and Vuy = pwy for wy,ws € S¥~1 and set A = ‘;’. From the assumption we
see A € [0,1] if 1 < p < 2. Now we claim on the contrary that

(w1 — Ap_lwg,wl - ACU2) (1026)
> w1 — Aws|? + (p — 2) (w1, w1 — Aws)?,

for any wy,ws € S¥~1 and A € [0, 1]. Then we have, for 8 = (wy,ws)

A(A=B) (AP 1) + (2 p)(AB— 1) > 0 (10.27)
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Since || < 1 and 1 < p < 2, it suffices to show
A(A-1D) (A2 - 1)+ (2—-p)(A—1)*>0. (10.28)

Now we can assume that 1 < p < 2. Since 0 < A < 1, this follows from the
inequality below.

AT A+ (2-p)(A-1) <. (10.29)

Therefore the claim is proved and we see A = A*. The uniqueness of energy
solutions satisfying the Hardy inequality (10.23) is also clear from the same
argument. l

Remark 10.4 When the domain Q is a ball B, then the condition (10.24)
18 satisfied. See Lemmal2.1 in §12. Therefore if Q2 = B, the Hardy type in
equality 10.23 does not hold for a non-minimal classical solution of (2.3) with
0 <A< X forany 1 < p < 2. From this fact one can show that the minimal
solution uy is also right continuous on A provided that 1 < p < 2 and Q) s a
ball. For the detailed see Proposition 12.1 in §12.

If p > 2, we can show the following instead, which seems rather weak but
will be useful in §12 to determine the extremal in the case that €2 is a ball.

Proposition 10.4 Assume that p > 2 and the nonlinearlity f(t) satisfies the
growth condition (GC) in addition to (2.2). For A > 0, let uy be the minimal
solution, or possibly the extremal solution. Let u € Wol P(Q) be a unbounded
weak energy solution of (2.8) such that for any ¢ € C§ ()

_ Vu, Vp)?
Vul~2( |Vl —2(’—d>)\—1/’ 2dz.
L 19up2 (1P + -2 S ) do 2 Ap = 1) [ fu)etds
(10.30)
Moreover we assume one of the followings:
1. Vu=aVuy for somea >0 a.e. in 2,
5 . (10.31)
2. |Vuy|* < (Vu, Vuy) a.e. in Q.

Then we have A = \* and v = u*
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Proof of Proposition 10.4: The proof is done in the same line of the
previous one. Assume that A < A*. Then we have

(p—1) /Q (|Vu|p_2Vu — |Vu P2 Vuy, V(u — uA)) dz (10.32)
p—2 2 (Vu, V(u — U/\))2
< /Q\Vu| (IV(u—un)]*+ (p—2) VuP ) dz.

Note that the right hand side is finite from a Holder inequality. Set Vu = rw;
and Vuy = pwy for wi,wy € SV! and set A = f. Now we claim on the
contrary that

(p — 1) (wi—AP 'y, wi — Awy) (10.33)
> |wy — Awy|* + (p — 2) (w1, w1 — Aws)?,
for any wi,wy € SV and A € [0, +00). This is equivalent to
(p—1)(1 = AP ((wy,ws) — A) > (p — 2)A((w1, wa)? — 1). (10.34)

Therefore the claim is proved and we see A = A*. The uniqueness of the
energy solution satisfying the Hardy inequality (10.31) is also clear from the
same argument. [

Remark 10.5 When the domain ) is a ball B, then the condition (10.81) is
satisfied. See Lemmal2.1 in §12.

If p = 2 we encounter the result in [2] due to H. Brezis and J.L. Vazquez,
namely

Corollary 10.1 Assume that p = 2 and that v is a singular enerqy solution
of (2.3) for some A > 0. Then the following two statements are equivalent
with each other.

(1) A= X and v =u*

(2) It holds that

/ Vol2de > A / F(ur) o dz, (10.35)
Q Q

for any ¢ € Vyo(Q) = W, 2(Q).
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11  Weighted Hardy’s inequality in a ball
In the next we state the results concerned with the weighted Hardy inequal-
ities.

Theorem 11.1 Suppose that a positive integer N and a real number o satisfy
N + a > 2.Then it holds that for any u € H}(Q)

/|vu|2\x\adx > H(N,V,a)/ 2|2 de (11.1)
Q Q

w_N % 2 o
+)\1<|Q|) /Q|u| 2] da.

Here
N -2+ a)2
2 )

wn 1S a volume of N-dimenstonal unit ball, and A\ s the first eigenvalue of
of the Dirichlet problem given by:

H(N,V,a) = ( (11.2)

A1 = inf [/ IVav|?dz ;v € Wom(B%),/ v?dx = 1], (11.3)
B? B}

where by B? and V3 we denote the two dimensional unit ball and the gradient.

Remark 11.1 When a = 0, this result was initially established in [2;H.
Brezis and J.L. Vizquez]. They also investigated in [2] fundamental prop-
erties of blow-up solutions of some nonlinear elliptic problems.

First we prepare an elementary lemma.

Lemma 11.1 Let Q be a domain of RY. Assume that u € C(2) and f €
C%*(Q). Then it holds that

/Q|V(uf)|2d:z::/Q|Vu|2fdx—%/ﬂu2(A(f2)—2|Vf|2)dx. (11.4)

Proof of Lemma 11.1: Integration by parts leads us to obtain (11.4). O

Using these formula we can easily show the assertion.
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Proof of Theorem 11.1: From this the proof of Theorem 11.1 is reduced
to the case a = 0, which was established in [2]. In fact, for f = |z|2, we have

/ Vulle|* do (11.5)

2N — 4
‘” /|u| 2o 2da:—|—/ V(ulz|?)] da.

Here we note that the proof of Lemma 11.1 still works for this weight f, since
N + a > 2. Then we can apply the inequality (11.1) with a parameter a
being 0, and we obtain

/Q|V(u|:1:|%)|2 dz (11.6)

N —2)? ~
> g/ |u|2|:c|°‘_2da:+)\1<w—N> / ul2lz|* de
4 0 1Y 0

The desired inequality follows from this and (11.5).
For the sake of the self-containedness, we give a proof of Theorem 11.1 in
the case a = 0. By the spherically symmetric decreasing rearragement, it

suffices to show the inequality in the case that Q = B; a unit ball in RY and
u € C}(B) is radiall symmetric. Set u = r~"v for u € C}(B) and B = &2

2

/ \Vul*dz — H(N, V,0) 2 dz
B

B |2|?

1 1
= NwN(/ o' PrN "t dr — H(N,V,O)/ w’r 3 dr)
0 0

1 1
= NwN< W' [*r dr) > /\1NwN/ vr dr
0 0

:A1/u2d$
B

This proves the assertion. ]

12 Examples in a unit ball of RY

In this subsection we shall apply our results to some examples. By B we
denote a unit ball in RN. Let uy € Wy?(B) N Cy”(B) for some o € (0,1)
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be the minimal solution. Since B and the operator L(-) itself are radially
symmetric, we see u) is also radial by the minimality. Then u) satisfies in a
weak sense

Ly(u) = =N, (rN=Y0,upP720,uy) = Mf(wy), r € (0,1),
(12.1)
U)\(l) = 0.
From the symmetricity it also holds that
Orux(0) = 0. (12.2)
By integrating (12.1) from 0 to r we get
—/\/ f(u N dr = vV 0un P20, u,. (12.3)
Noting that d,uy < 0 (r > 0) we get
1
O P~t = )\7“/ Fur(rt))tN 1 dt. (12.4)
0

From this formula we have

Lemma 12.1 Let uy € WyP(B)NCy”(B) and u* € WyP(B) be the minimal
solution and the extremal solution respectively. Then Fy, = Fy-, = {0} and
|0yuy| 1s increasing w.r.t. X € [0, \*]. In particular we have for any A € [0, \*]

Bun| < |0pu*| (0 <r<1). (12.5)

Proof of Lemma 12.1: Since f(-) is convex and u) is monotone increasing
w.r.t.\, we see |0,uy| is also increasing w.r.t. A. The rest of assertions are
also clear. [

Proposition 12.1 Assume that 1 < p < 2. Then, uy is strictly increasing
and continuous on A € [0, X*) for each x € B. Moreover the mapping ;A —»
uy € WyP(B) is weakly continuous.

Proof of Proposition 12.1: Since u) is left continuous for each z € B and
weakly left continuous as a T/VO1 P(B)-valued function, it suffices to show the
right continuity. Note that wy,+9 = limy_5,+0 u) uniquely exists in I/VO1 P(B)
as a decreasing limit and becomes a weak energy solution of (2.3) by a similar
argument as in the proof of Lemma 2.6. We claim u),1o = u), in WO1 P(B).
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Since Fy, = {0}, Vo,(B) is dense in V) ,(B). Hence by the same argument
in the proof of Proposition10.2, the Hardy type inequality

Vuy, 10, V)2
[ 192 (196 + 0~ T 40> [ ) as
Q

| Vturg+o|?
holds for any ¢ € V), ,(B.)(Since |0,uy,| < |Orupy 40| holds, the left hand side
is finite for any ¢ € V), p(B)). Then by the same argument in Proposition10.3
in W, ?(B). This proves the claim. O

In the next we consider the linearized operator at u). Since wu) is radial,
we get for any ¢ € V), ,(B)

WE S€€ U),+0 = U),

Iyn)e = —div (|8 P2(Ve + (0 -2 2 ) (12.6)

d 2
—2 2
(L ()0, @) Waylitay = /B (1vr (19l + (0 = 2)| 29| ) ) do (127
In particular if ¢ € V), ,(B) is also radial, then
Li(un)p = —(p— D)r' N0, (r" 7 0,unlP*0,0) (12.8)

(L (wr)o, @)y, = (p— 1) /B Qa0 de.  (12.9)

Proposition 12.2 Let p* € V) ,(B) be the first eigenfunction of the self-
adjoint operator L (uy) — Af'(uy). Then ¢* is radial and satisfies the acces-
sibility condition (AC).

Proof: Since the first eigenfunction $* € V) ,(B) is unique up to a multipli-
cation by constants, ¢* becomes radial as well as uy. From (12.4) we have
|0run(r)| = O(rﬁ). Here by O(r) we denote the quantity such that 2

;
remains bounded as r — +0. Since $* € V) ,(B), we see
/ 2[5V da < +oo. (12.10)
B

From now we assume that N > 2, because ¢*(r) becomes continuous by
Holder inequality provided that N = 1. Then it follows from the imbedding
theorem for weighted Sobolev spaces that for some positive number C(N, p)

o) - 5
(/ @@ dw) < C(N,p)(/ |a:|1ﬁ\V<,25)‘|2d:c) , (12.11)
B B
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where ¢(p) > 2 is given by the relation

2N (p-1)
N(p-1)-p’ N>2,p>2
q(p) = =, N>21<p<?2 (12.12)

g ( any positive number ), N =2

For the proof of this, see [6; Thoerem 1]. Since ¢* satisfies L;(u,\)c,?))‘ =

(Af'(up) + u)@* for some constant p, it follows from a Moser’s iteration
argument that @1)‘ is bounded in B. Then by integrating this from 0 to r we
get 9,0 = O(r#—1). Hence L'(uy)p*(r) is continuous in [0, 1] and

PNr) = O(r 7 T) £ @M0) s — +0. (12.13)

Since A f'(ux(0)) 4+ g > Af'(ur) + p, Af'(ur(0)) + 1 has to be positive from
the positivity of Lf(uy). Hence L'(uy)¢*(r) becomes nonnegative near the
origin.

Then for any positive number ¢ it is possible to truncate ¢* smoothly in a
neighborhood of the origin so that we obtain ¢ € Vj ,(B) satisfying |¢—@*| <
e max(p*, dist(z, 0B)) and L (ur)p < Ly (ur)¢* + e max(¢?, dist(z, 0B)).

[

In the rest of this section we adopt as the nonlinearity f(u) the following
fq and fe;

fw) = Ot @=pm D (12.14)
fe(u) = e
Set
1
AP 9) = ()" V=F5), a>p—1, (12.15)
Av(p) = p* 1 (N — p).
We define the function U, , as follows:
U —rQ _1 - _P
[ G=ri-t @=gtn 1216
p(r) = —plogr.

Under these notations, we have the following.

Lemma 12.2 Under these notations, U, € WyP(B) if N > p and U,, €
Wol’p(B) if N > p(1+ Q). Moreover they become singular energy solutions to
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the boundary value problems below respectively:

L = Y inB
p(Up) = An(p)e™ in (12.17)
U,=0 on 0B,
Ly(Upg) = AN (P, @) (Upg + 1)?  inB (12.18)
Upy =0 on 0B.

As ¢ — +00 one can check that

(F2Una), & A, 0), aUpa(r)) — (£ Tp(1)), An(0), Up(r))  (1219)

for any r € (0,1). Therefore the boundary value problem (12.17) is considered
as a formal limit of (12.18).

For these singular solutions, we can show the validity of weighed Hardy’s
inequalities introduced in the previous section.

Lemma 12.3 (1) If N > pg%‘;’ holds, then for any radial ¢ € C§°(B)

<L;/0(Up)90a(P>[Cg°(B)]’ng°(B) > )\J\r(jo)/BeUpcp2 dz, (12.20)
or equivalently we have
/ 0, 0|*r* P dx > M/ ©’r P dx (12.21)
B p—1 B
(2) Assume that
1 2
quQl(N —4qQ) < Z(N — Qg - 1)) . (12.22)

Then, for any radial ¢ € C3°(B)

<L;(Up,q)g0, @){Cgo(B)]lxcgo(B) Z q/\N(p, q) /B(l + Uqu)Q—ISOz dZC, (12.23)

or equivalently we have
/ 10,2~ @=2@QFD gg > 9@ (N —qQ) / P~ P=D@HD=2 g2 (12.24)
B p— B

Here Q = L5 andr = |z|.
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Proof of Lemma 12.3: The condition N > pg%i’ is equivalent to Z (Ij)v__lp ) <

(?)2; the best constant of weighted Hardy’s inequality for « = 2 — p.

Hence the assertion (1) holds. In a similar way we see that I?TQl(N —qQ) <
2

H(N = Q(g— 1)) is equivalent to 22 (N — qQ) < (252 — )%, the

best constant of Hardy’s inequality for & = (2 — p)(Q + 1). This proves the

assertion. ]

Remark 12.1 1. In the assertion (2), Uy, is an energy solution if and only
if N—p > pQ holds. If N —p > pQ, then N > qQ) clearly holds. Therefore
there is a range of q such that Uy, ¢ WO1 P(B) but weighted Hardy’s inequality
holds.

2. The both inequality (12.21) and (12.24) are valid for any ¢ € C§°(B)
replacing |0,p| by |V|. In fact if 1 < p < 2, then it suffices to note |0,p| <
|IVp|. When p > 2, this follows from the one dimensional Hardy inequality
as well.

Assume that U, is the singular extremal solution of (12.1) for f = f.. Since
Fyp = {0} holds, V) ,(Q) is densely contained in V) ,(Q) for any A € (0, \*).
To see this fact it suffices to approximate an element in V) ,(£2) by a step
function near the origin. Then it follows from Propositions 10.1 and 10.2
that the inequality of Hardy type has to be valid. Therefore the condition
N > pé%i’ is necessary for U, to be the singular extremal. If we restrict
ourselves to the case that 1 < p < 2, then we can show the converse.
Proposition 12.3 (Ezponential case I) Assume that 1 < p < 2. Then U, is
the singular extremal solution of (12.1) with f = f., if and only if N > p;%‘;’.

Proof of Proposition 12.3: This follows from Proposition 10.3, Lemma
12.1 and Lemma 12.3. ]

In a similar way we have

Proposition 12.4 (Exzponential case II) Assume that p > 2. Then U, is the
singular extremal solution of (12.1) with f = f., if N > bp.

Proof of Proposition 12.4: By the weighted Hardy inequality with the
best constant, we see

N — 2
/ IVo|*r? P dz > %/ ©*r P dz, (12.25)
B B
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for any ¢ € C}(B). Since 5p < N, we see % > p(N — p). Then we have

/|VUp|p_2|ch|2da: ZAN(p)/ eVr? da. (12.26)
B B

Therefore the assumption (10.30) in Proposition 10.4 is satisfied for u = U,
and for a radial ¢. There is the minimal (or possibly the extremal ) solution u)
which is radial and 0 < uy < U, in B. From the integral representation (12.3),
we also see 0,uy < 0, and 9,U, < 0 as well. Hence from Proposition 10.4 we
see A* = An(p) and U, = uy. O

Proposition 12.5 (Polynomial case 1) Assume that 1 < p < 2. Then Up,
is the singular extremal solution of (12.1) with f = f,, if and only if

1 2
v > PL+aQ) +2VpgQ (12.27)
p—1
Proof of Proposition 12.5: It suffices to note that
qQ 1 2
E(N—QQ) < Z(N—Q(q— 1))" and N —p > pQ

simply imply

N> P +49Q) +2Vpg@

p— p _ 1 .

Also note that as ¢ — +o0 this condition becomes N > pf%i’. ]

In a similar way we have

Proposition 12.6 (Polynomial case II) Assume that p > 2. Then U,  is
the singular extremal solution of (12.1) with f = f,, if N > Q3¢ — 1 +
2\/q(g —1)).

Proof of Proposition 12.6: By the weighted Hardy inequality with the
best constant, we have

2
/ |8Tcp|2r_(p_2)(Q+1) dx > (VN -Qg-1)) / <p2r_(p_2)(Q+1)_2 dr (12.28)
B B

4
for any ¢ € C}(B). Here Q = =77 and 7 = [z|. From the assumption we
see w > qQ(N — qQ). Then we have
[ VUl e > ) [ U+ )7 e (1229)
B B
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Therefore the assumption (10.30) in Proposition 10.4 is satisfied for u = U,
and for a radial ¢. The rest of thr proof is completely same as that in
Exponential case. Also note that N > p(Q + 1) is satisfied and as ¢ — 400
the condition becomes N > 5p. l

Remark 12.2 (1) In case that p > 2, it is unknown if U, ; 5p > N > pg%i’

(Upg; Q(Bg—1424/q(g — 1)) > N > p(Hq?_?”qu) becomes the extremal or
not.

(2) Assume that 1 < p<2. If N > pp+3 then the linealized operator

L (Uy) = An(p)e® (12.30)
= (v Y o - 2) T L) o~ p)r?)

rdr

has a positive first eigenvalue pu(Ay(p)).
If N = pp 3 then the linearized operator does not have a first eigenfunction

m Wo P(B). Howefuer, the weighted Hardy inequality in the previous section
gives a positive value for p(An(p)) defined as

pANg) = lim pu(d) = PP (p - 1),

N(p)

where M1 is defined by (11.3) and () is the first eigenvalue for Lj,(uy)—Ae™.
From Theorem 11.1 we see p(An()) < MpP 2(p —1). Since uy < U, and
|0,up|P~2 is decreasing w.r.t. X,

/ |(9,«U)\|p_2|v<p|2d$—)\/ e p? dx
B B

15 decreasing w.r.t. X\, and so the reverse inequality also holds.
(4) When1 <p<2and N > p(H‘JQ)H”pq , one can show similar results for
the linearized operator of Ly(-) at qu

Lastly we study the behavior of vy as A — A* assuming that 1 < p < 2. For
the sake of simplicity we treat the exponential case only. We recall that v

satisfies for A < Ay(p) = A*

[ [0 DB o) = DO

UA(l)
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Assuming N > pg%i’ and replacing (uy, A) by the extremal pair (U, An(p)),

we study the equation

—pP2(p — 1)(0%0 + =29 5) = r2(An(p)o + 1), r € (0,1)
] r (12.32)
7(1) = 0.
By setting u = ppi\év(;p_)l) =2 (]Jov__lp ), this has a unique solution in V) () ,(B)
given by
1 ( N—p, 1 2
7= 1 — VD) —4ﬂ). 12.33
) (12:35)

Here we note that (N — p)? — 4u = (N — p) (N — pi%‘;’) > 0.
Therefore we have the following:

Lemma 12.4 Assume that 1 <p <2 and N > pﬁ%‘;’. Then

/\li)n; vA=170 in Vym)p(B)- (12.34)
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