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Abstract

In this thesis, we discuss a number of different approaches to analysing time series

of multivariate financial returns with an emphasis on extreme movements.

In the first case, we use a non-stationary, unconditional and non-parametric

approach to model the volatility. The second method consists of modeling the

volatility using a stationary, conditional and parametric approach while in the third

case, we turn to a more direct extreme value analysis of the returns.

We exemplify the use of these three methodologies through a detailed analysis

of the returns of the daily foreign exchange noon buying rates in New York City

for the British Pound (GBP) and the German Mark (DEM) over the last 23 years

as well as daily closing prices of the Standard & Poors ����� Composite Stock Price

Index (S&P ����� ) and the Dow Jones Industrial Average Index (DJI) over the last 26

years.

Keywords: financial returns, non-stationarity, volatility, covariance, non-parametric

regression, Nadaraya-Watson kernel estimator, extremal dependence, GARCH,

declustering.
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Chapter 1

Introduction

Estimating dependence between risky asset returns (changes of prices) is a central

issue for many finance applications such as hedging, valuation of exotic options

written on more than one asset, and risk management in general. An insight into

the extremal dependence between assets is important in times of financial crises like

the 1997 Asian crisis1. So far, the risk associated with extreme price movement is

yet to be fully understood and measured.

The conventional dependence measure, Pearson correlation, though widely

used is appropriate only for linear association. Since it is calculated as an aver-

age of deviations from the mean, the weight given to extreme observations is the

same as for all of the other values in the sample. Hence differences in the de-

pendence characteristics for extreme realizations may go unnoticed, with possible

serious consequences for a financial institution relying on it as a unique measure

of dependence.

As an alternative to the traditional approach, it is possible to draw on statistical

developments in Extreme Value Theory (EVT). Most of the applications of EVT to

finance are univariate, but multivariate applications are also on the increase. Jansen

and de Vries [20] show that the crash of 19th October 1987 may not be an isolated

event. Loretan and Phillips [24] use EVT to study the existence of moments of

financial returns. Longin and Solnik [23] explore the use of Multivariate Extreme

1Academics and market participants often point to the perceived occurrence of contagion or use

terminology like the “Asian flu”. Others highlight joint shocks and macroeconomic fluctuations,

triggering simultaneous crises in several markets or countries.
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Value methods for stock market returns. St �� ric �� [37] finds a high level of depen-

dence between the extreme movements of most of the currencies in the EU while

Diebold, Schuerman and Stroughair [11] sketch a number of pitfalls associated

with the application of EVT techniques to financial data. They put emphasis on the

role of small samples and the dependency of financial data, especially as caused by

stochastic volatility2 .

Volatility of returns has been the subject of much research. While initially

financial models assumed a constant volatility (like the random walk models), later

research has shown that this is not a valid assumption. The rapid price evolution

on the financial markets is characterized by successive periods of high and low

volatility. In these instances, approaches based on constant volatility can result in

poor performance of the risk management plan.

Various classes of parametric stochastic volatility models have been proposed

and improved with time. While the models fit short financial time series quite well,

inconsistencies usually arise for longer time series. Due to their parametric nature,

misspecification danger is always there. A common feature of these models is that

they model the conditional variance while being usually stationary processes with

a constant unconditional variance3 .

An alternative to the fully parametric, stationary and conditional methodology

is the non-parametric, non-stationary and unconditional approach (see for instance

Drees and Starica [12]). In this case, the unconditional variance is allowed to vary

thereby reflecting the changing economic factors affecting the evolution of prices

with time. The unconditional variance is estimated using standard non-parametric

regression estimators applied to the square returns.

Looking at financial time series, we investigate whether it is only the individual

variances which vary with time or if the interaction between the time series also

changes with time. Our results seem to indicate that for the time series we have

studied, the interaction changes. This is in accordance with the evidence of time

2Stochastic volatility or simply volatility refers to the random changes of the variance as a function

of time.
3One may question whether stationarity is a reasonable assumption though, especially when

working with long financial time series.

2



varying covariances between financial returns, which has been documented in the

literature (see for instance Loretan and Phillips [24]).

Accounting for this changing relationship by estimating a time-varying covari-

ance provided a good description of the dynamics and no linear dependence was

observed in the resulting residuals. It also enabled us to remove the serial depen-

dence present in the returns and to get a more homoskedastic series that could be

modeled by standard Extreme Value methods. The residuals were independent in

the extremes and exhibited stationary extremal dependence. Our analysis seems to

show that most of the extreme value dependence was caused by a changing covari-

ance.

The remaining chapters are organized as follows:

Chapter 2 describes some of the properties exhibited by financial data and

which need to be taken into account when writing down models. In Chapter 3

we discuss some of the most important time series models employed in volatility

modelling as well as the non-parametric models that we focus on in this thesis.

Chapter 4 briefly describes univariate Extreme Value Theory and the spectral mea-

sure, which is used in the measurement of dependence in multivariate extreme

value theory.

In Chapters 5 and 6, we apply the non-parametric approach described in Chap-

ter 3 to the analysis of two sets of bivariate data. The first set consists of daily

foreign exchange noon buying rates in New York City for the British Pound (GBP)

and the German Mark (DEM). Both cover the period January 11, 1979 to January

25, 2002. They were obtained from the Federal Reserve Statistical Release [16] and

were all expressed in terms of US dollars. The second set consists of daily closing

prices of the Standard & Poors ����� Composite Stock Price Index (S&P ����� ) and the

Dow Jones Industrial Average Index (DJI), ranging each from January 03, 1977 to

March 06, 2003. Both are stock market indexes for the US and were downloaded

from yahoo finance.

In Chapter 7, we use a conditional stationary parametric framework to ana-

lyze the two data sets while in Chapter 8, we investigate the extremal dependence

directly on the returns. Finally, we conclude in Chapter 9.
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Chapter 2

Stylized Features of Financial
Data

We begin with presenting a picture of the empirically observed features of finan-

cial data, commonly known as “stylized facts”.

For notational convenience, we make the following definitions.

If ( �
	 ) denotes the exchange rates or the stock’s closing values, the daily loga-

rithmic price differences (log-returns or returns for short) are defined as

� 	
������ �
	�
	���� � ���� � 	����� � 	������
By Taylor’s formula

�� ��	� 	���� ���������� �
	 � �
	����� 	���� �! �
	 � �
	����� 	���� �
.

In other words, the log-returns are close to the net return series "#	!$ � ��	 � �
	�����
	���� .

Subsequently, we will concentrate on the study of � 	 .
Shares, stock indices or foreign exchange rates all tend to exhibit similar prop-

erties after the transformation above. Appropriate models for financial log-returns

data have conventionally tried to take into account these properties, commonly

known as “stylized facts”.
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1. Fat tails

Fat tails mean that the distribution of the returns has tails which are regularly

varying1 . Hence they are, in particular, much heavier than the tails of a

normal distribution.

The most celebrated model in mathematical finance is the Black and Scholes

(1973) model which assumes normally distributed log returns. The assump-

tion of normally distributed returns has, however, long been a disputed topic.

If models for returns do not have enough probability mass in the tails, it can

e.g., result in seriously mispriced hedge strategies which do not uncover all

of the risk concerned with holding a specific portfolio, since the possibility

of very large returns will not be taken into account.
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Figure 2.1: Left: Tail estimation for the GBP log-returns data based on the MLE

of the shape parameter % �&�('*) of the GPD (Generalized Pareto Distribution)

(see Appendix B), as a function of the number of k upper order statistics (lower

horizontal axis) or equivalently of the threshold u (upper horizontal axis). The

upper and lower lines constitute asymptotic +��-, confidence bands. Right: QQ-

plot of the GBP log-returns data against the normal distribution whose mean and

variance were estimated from the returns.

The left plot of Figure 2.1 with positive values of % (see Section 4.1 for its

1In other words, there is .0/21 such that354 6 /87*9�:;7=<�>�?�@A7-BDC�7E/F1
where ?�@A7-B is a slowly varying function, i.e., ?G@AHI7-BKJL?�@A7�BKM;N for all HO/21 as 7-M2P .
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implication) and the shape of the QQ-plot, curving down at the left and up at

the right, are both an illustration of the heavy tail feature.

01/11/1979 10/11/1979 07/11/1980 04/11/1981 01/11/1982 10/11/1982

-0.
03

-0.
02

-0.
01

0.0
0

0.0
1

0.0
2

0.0
3

High volatility

Low Volatility

Figure 2.2: DEM returns from � �('=���('=� +-Q�+ to � � '=���('=� +�R�S where regions of high

and low volatility are highlighted.

2. Volatility changes with time.

This is illustrated by the plot of the returns in Figure 2.2. The regions of high

and low volatility are highlighted by the rectangles. It can also be observed

that the large price changes come in bulks, or that high threshold exceedances

appear in clusters. Proposing statistical models which describe this feature

has been the aim of much research activity. For models used in the econo-

metrics literature see the surveys by Bollerslev, Chou, and Kroner [3] or by

Taylor [40].

3. Quasi long range dependence

While financial returns hardly show any serial correlation, this does not im-

ply that they are independent especially if we study appropriate functions

of the returns. One such function is the square. However, in some cases,

like the foreign exchange rates, the T th moment might not exist (see e.g.,

Guillaume et al. [18]). Then the correlation of the squares is not defined.

Another option is to look at the absolute value of the returns. This function

compares the returns size-wise and a strong autocorrelation suggests serial

dependence.

We illustrate the above using the log-returns obtained from the GBP and

7



DEM foreign exchange data sets.
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Figure 2.3: Left four plots: SACFs (Top Left/Bottom Right) and SCCFs (Top

Right/Bottom Left) for the GBP and DEM log-returns. Right four plots: SACFs

(Top Left/Bottom Right) and SCCFs (Top Right/Bottom Left) for the absolute GBP

and DEM log-returns. Note: No confidence intervals are displayed since the de-

pendency structure in the data is unknown.

The sample autocorrelation (SACF) UWVYX Z of the returns (Top Left/Bottom

Right of Left plots in Figure 2.3) is negligible at almost all lags, while the

SACF U VYX\[ Z�[ of the absolute values
� � 	 � (Top Left/Bottom Right of Right plots

in Figure 2.3) are different from zero for a large number of lags. They instead

stay almost constant and positive for large lags, seemingly implying a long

range dependence (LRD) effect2 in the volatility.

2A stationary process
6^]

is long range dependent if_`aLb-c=d egf @ih�B d :jP (2.1)
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Note that no confidence intervals are drawn for the correlations since they

depend on specifying the type of dependency present in the data. Interpreting

the LRD effect is therefore difficult. The behaviour displayed in Figure 2.3

could be evidence of stationary long memory or it could instead be a sign

of non-stationarity in the second moment structure (refer to Mikosch and

St �� ric �� ([27], [28])).

Having highlighted some of the common features of financial returns, we pro-

ceed in the next chapter to introduce some of the models proposed in the literature

in order to capture these “stylized facts”.

where e f @ih�B is the sample ACF of
6

at lag h.
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Chapter 3

Volatility Modelling

In this chapter, we turn towards volatility estimation and discuss two approaches.

The first is parametric and considers volatility as an unobservable variable to be

specified by some stochastic process. The other approach is non-parametric and

measures volatility directly from the data, using a transformation of the returns.

Within the first category of models, we look at those for conditional heteroskedas-

ticity and distinguish between the ARCH (autoregressive conditionally heteroskedas-

tic) and SV (stochastic volatility) models.

3.1 Models for Conditional Heteroskedasticity

3.1.1 ARCH Models and Stochastic Volatility Models

The ARCH and the standard Stochastic Volatility (SV) Models share the mul-

tiplicative structure

� 	 �lk2�nm 	po
where m 	 ��q 	sr!	po tvuxw^o
with r 	 being an i.i.d. sequence, independent of the volatility process qG	 for fixed

t with y2z{r!	�| � � and }2z{r!	�| �~� . q 	 and m 	 are assumed to be strictly stationary.

11



For general ARCH (p) models, q�	 is given by

q��	 �l)
��� �� � � � )
� m��	�� � o t�ujw^o

with fixed non-negative constants ) � .

The most well-known discrete time SV model is the log-normal SV model by

Taylor [39], which is given by q�	
���g�-�O�K�*	D' S � o
where � 	 is a stochastic process, independent of rv	 and� 	 ��)
����) � � 	���� �n� 	po
where the �-	 ’s are independent identically distributed normal random variables.

For the ARCH processes, m 	 satisfies� y2z m 	 � r!	����go�r�	�� � o������L| � � . (constant conditional mean).� }8z m 	 � r�	����go�r�	�� � o������L| ��q �	 . (time-varying conditional variance).

The corresponding set of properties hold for the SV processes but the condi-

tioning variable is q�	 instead of r 	���� o�r 	�� � o������ .
ARCH models are particularly simple to estimate while SV models are easier

to analyse from a theoretical point of view. A thorough treatment of SV models

can be found in Ghysels, Harvey and Renault [17] or Shephard [35], where the

statistical aspects of both ARCH and SV models are discussed.

The ARCH models, developed by Engle [13], were conceived especially for

modeling time series that exhibit a changing volatility (for a comprehensive review

of the theory of ARCH processes and their applications to financial data, see for

instance Bollerslev et al. [3]). The considerable interest shown in them is due to

their descriptive successes and the availability of maximum likelihood estimates.

The ARCH models have excess kurtosis (Taylor [39]). Furthermore, they show

some persistence in the squared autocorrelations depending on the size of p. In

12



empirical applications of the ARCH (p) model large p’s are usually needed. In an

attempt to overcome this problem, the Generalized ARCH model, GARCH � p o q uw � , was introduced independently by Bollerslev [2] and Taylor [39] and has be-

come widely used in practice. It shares the same multiplicative structure as the

ARCH model above but with q 	 obeying the following relation

q��	 ��)O��� �� � � � )
� m��	�� � � ��� � �W� � q��	�� � o t�ujw^o (3.1)

with fixed non-negative constants ) � and � � and where q 	 and m 	 are assumed to

be strictly stationary.

On the other hand, ARCH and GARCH do not model what is known as lever-

age, which is the fact that volatility is negatively correlated with changes in stock

returns in the sense that a dip in stock returns tends to give rise to volatility and vice

versa. To address this feature, Nelson [31] introduced the Exponential GARCH

(EGARCH) model

�����q��	 ��)�	����� � � � �
� ����m�	�� � � o � �� ¡� o

where

����m 	 � ��¢�£ ] �¥¤�� � m 	 � � y � m 	 �¦� �
The above-mentioned models are only a few of the ARCH type models which

have been considered in the econometrics literature (see Bollerslev, Engle and Nel-

son [4] for more).

In many financial applications, the GARCH (1,1) model, the simplest GARCH

(p,q) model, is sufficient to capture the variance dynamics in the data. This can

be determined by looking at the structure of the fitted residuals. The latter often

behave very much like an i.i.d. sample, as is expected from the model (see Mikosch

[25]).

13



However, the performance of the GARCH (1,1) model is not free of contro-

versy. For example, there is less dependence in the tails for the returns than for the

GARCH (1,1) model (refer to Mikosch [25]). If the data was following a GARCH

(1,1) model, we would expect the ACF of the absolute values to decay exponen-

tially to � (refer to remark 6.2. in Mikosch [25]). But this is not the case, as seen

by the almost constant sample ACFs for the absolute returns in Figure 2.3.

Two other controversial issues are the long range dependence (LRD) effect (see

(2.1)) and the IGARCH effect present in medium and large sample sizes of returns.

The IGARCH effect refers to the case where the sum of the estimated parame-

ters of a GARCH model (estimates for ) � and � � from equation (3.1)) adds up to a

number close to one. The empirical evidence for the IGARCH effect comes from

considering long return series (Bollerslev et al. [3]). It implies an infinite variance

of the log-returns. This is in contradiction though to the finite variance result which

one typically observes from the tail analysis on the returns (see de Haan et al. [8]

and Chapter 6 in Embrechts et al. [15]).

While it has been suggested that both the long range dependence (LRD) and

the IGARCH effects could be caused by non-stationarity of the returns data (see

for instance Mikosch and St �� ric �� ([26], [27])), no agreement has been reached in

the literature on the explanation for these effects.

All the volatility models discussed so far assume that the unconditional distri-

bution of asset returns is constant over time. An alternative methodology is based

on the assumption of non-stationarity of the distribution of returns. It has how-

ever a long history and can be traced back to Hsu, Miller and Wichern [19]. They

characterized asset returns as non-stationary processes with discrete shifts in the

unconditional variance. This modelling approach is supported by Longin and Sol-

nik [22] who provide some evidence that the unconditional correlation between

markets increases during highly volatile periods. Also, Loretan and Phillips [24]

reject the hypothesis that stock returns are covariance stationary.

In the non-parametric, non-stationary and unconditional modeling framework,

14



the univariate model of interest is� 	 ��k2��q§� t �
¨ 	pojt �©� oLS=o������
o � o¨ 	 iid o E � ¨ 	 � � �ªo Var � ¨ 	 � �¡� oq 	�o t = 1, 2, ������o � o a smooth, deterministic function o
with the volatility being estimated using a two-sided evaluation weighted (Nadaraya-

Watson) estimator as

« q � � t � $ � � ���¬ V� � �®2¯ ��°G� t � � � � � «k � �� ��� ¬ V� � � ®8¯ ��°
� t � o
where ®2¯ �I� � � ± ��� ® �I�²'�± � o ± is the bandwidth, ® is the normal kernel (see

Drees and St �� ric �� [12]).

We apply a similar non-parametric regression-type modelling approach to two

bivariate sets of returns. In the first case, we model the changing variance as a

deterministic, smooth function of time.

15



3.2 Regression Model I

Denote by ³ 	 the m-dimensional column vector of returns at time t. The model

assumes that the returns satisfy³(	 �lk2�l´!� t �I¨ 	po t �¡� oLS=o������Oo � where k is a constant mean,¨ 	 is an i.i.d. sequence of vectors with possibly dependent marginals,´!� t � o t �¡� oLS=o������Oo � o is an invertible diagonal matrix �
´!� t � is thought of as a smooth, deterministic function of time. The diago-

nal entries of ´ � � t � , corresponding to the volatilities, are estimated by standard

non-parametric regression methods for non-random, equidistant design points t us-

ing each of the square return series. We use the two-sided evaluation weighted

(Nadaraya-Watson) estimator given by

« q���� t � $ � � ���¬ V� � �®2¯ ��°G� t � � � � � «k � �� ��� ¬ V� � � ®8¯ ��°
� t � o (3.2)

where ®2¯ �I� � � ± ��� ® �I�²'�± � o ± is the bandwidth and ® is an exponential kernel

defined by ® ��µ � � �¶ ���-� �·�[ ¸Y[ o � µ �=¹ � o (3.3)

where c is chosen so that K(u) is a density function. The value � in the kernel

comes from prior experimentation with exponential filters. The estimates for the

volatility are obtained at t ��±º��� o�������o �»�¥± .

The residuals are obtained as« ¨ 	 � « ´ ��� � t � � ³�	 � «k � o t ��¼!��� o������
o �»�¥¼ o
where

« ´!� t � is a square root of the estimate of the diagonal matrix ´ � � t � . It is

obtained by taking the square root of the diagonal entries of ´ � � t � .«k $ �l� ����¬ V	 � � ³ 	 is the estimated mean of the returns.
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3.3 Regression Model II

In the second set-up,³�	 �lk2�½´§� t ��¾ 	pojt �¡� oLS=o������
o � where k is a constant mean,¾ 	 is an i.i.d. sequence of vectors with independent marginals,´§� t � oxt �¡� oLS=o������Oo � o is an invertible matrix �
Note: The difference to Regression Model I is that

1. S(t) is no longer diagonal.

2.
¾ 	 has independent components.´!� t � is again thought of as a smooth, deterministic function of time. ´ � � t � ,

which corresponds to the covariance matrix, is estimated by standard non-parametric

regression methods for non-random, equidistant design points t using the series� ³ 	�� «k � � ³ 	!� «k �D¿ o5t �À� o������Oo � so that we estimate not only the volatilities but

also the covariance between the two sets of returns. We use the two-sided evalua-

tion weighted (Nadaraya-Watson) estimator of ´ � � t � given by« ´ � � t � $ � � ���¬ V� � � ®2¯ � t ��° � � ³(	�� � � «k � � ³�	�� � � «k �DÁ� ��� ¬ V� � � ®8¯ � t �Â° � o t �©� oLS=o������
o � o (3.4)

where ®2¯ �I� � � ± ��� ® �I�²'�± � o ± is the bandwidth and ® the same exponential

kernel as in (3.3).

The residuals are defined as« ¾ 	 � « ´ ��� � t � � ³(	 � «k � o t ��¼!��� o�������o �j�n¼ o
where

« ´!� t � , the square root of the estimate of ´ � � t � , is calculated using the eigen-

value decomposition method. This symmetric square root is used since no hierar-

chy is present in our bivariate data sets. Otherwise, in the presence of hierarchy,

one can use the Cholesky decomposition instead and work with an upper triangular

matrix as square root.
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Chapter 4

Extreme Value Theory and
Extremal Dependence

This chapter deals with Extreme Value Theory and discusses the estimation of the

spectral measure. The latter is used in the investigation of the extremal dependence

between the coordinates of the residuals.

The numerous approaches by which extreme values may be statistically mod-

elled separate into two forms: methods for maxima over fixed intervals and meth-

ods for exceedances over high thresholds. We outline the fundamental aspects of

the first method here. Further details about the theory covered in this chapter can

be found in Embrechts, Klüppelberg and Mikosch [15] and Resnick [34], Chapter

5.

4.1 The Block Maxima Method

The limit theory for the maximum of a sample of n independent and identi-

cally distributed random variables is based on a location-scale normalization of the

maximum so that its distribution is non-degenerate as �
ÃÅÄ .

As an illustration, let ��m � � be a sequence of iid random variables with common

distribution F, and denote their partial maxima by ÆÅV �ÈÇ � �O��m �go�������o m V � �É V� � � m � o �ËÊÌ���
The Fisher-Tippett Theorem (see Embrechts, Klüppelberg and Mikoch [15])

then states that there exists only three location-scale families of Extreme Value

Distributions G, namely the Frechet, Weibull or Gumbel distributions, for which
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one can find constants ¶ V©Í � and Î V uxÏ such thatÐiÑiÒV�Ó � � � ¶ V ��� � Æ VÔ� Î V ��Õ � � �×Ö8��� � o � ujÏ^o
and the distribution F is then said to be in the maximum domain of attraction of G

(F ujÆÙØFÚ � G �p� �
In other words, provided a non-degenerate limit can be achieved, it follows

that, whatever the distribution of the original variables, the limiting distribution of

the maximum belongs only to this small set of possible distributions.

These distributions can all be written as the Generalized Extreme Value Distri-

bution which is given by

ÖEÛ*���
Üpk o q op% � �ÞÝ �g�-�O�I�#����� % ���8�Âk � '*q � ���Dß Û � o if %Þà� �ªo���Y�O�I�á���Y�O�I�#���2�Âk � '*q �p� o if % � �
(in the range �v� % ���F�Âk � '*q¥Í � if %»à� � ). Here qÂÍ � and k op% may be any real

numbers.

The parameter % is called the shape parameter and may be used to model a wide

range of tail behaviour.

The Generalized Extreme Value Distribution with %»âÌ� is called the Weibull

distribution ã�ä . An example of an Æ~Ø2Ú � ã�ä � is the uniform distribution on � �ªo � � .
The case % � � is referred to as the Gumbel distribution. The normal distribution

belongs to its maximum domain of attraction. The third family, where % Í � , is

defined by the Frechet Extreme Value Distribution åæä with a positive tail index ) ,

where )ç�è�(' % . Its distribution function is given by å ä ��� � �é�g�-�O�I�ê� � ä � for��Í � .
A characterisation of the maximum domain of attraction of å ä is that ëìuÆ~ØFÚ � å ä � if and only if the right tail ë �¡�5� ë is a regularly varying function1

with index �á) . Examples of such distributions are the stable distributions and the

Student-t distributions.
1Recall that in one dimension a random variable X or its distribution is said to be regularly varying

if there is .º/F1 such that 354 6 /87*9�:;7=<�>�?�@A7-BDC�7E/F1
where ?�@A7-B is a slowly varying function, i.e., ?G@AHI7-BKJL?�@A7�BKM;N for all HO/21 as 7-M2P .
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We now move to the multivariate context using the main convention that oper-

ations on vectors and relations between vectors are interpreted componentwise.

If íFV �î��m Vï�go�������o m V�ð � o ��ñò� are Ï ð -valued random variables, define the

maximum to be Vó� � � í»ô�$ �©� Vó� � � m
� ��o�������o Vó� � � m

� ð � o
the vector of componentwise maxima.

A multivariate distribution Ö0��õ � �öÖ8��� �go������Go � ð � is then called an extreme

value distribution if there exists a distribution ë ��õ � and normalizing functions÷ ��� � �ø� � � ��� � o�������o � ð ��� �p� ñ � and ù ��� � �ø�K¼ � ��� � o������
o ¼ ð ��� �p� uúÏ ð such

that ë V � ÷ ��� � õF� ù ��� �p� Ã&Ö8��õ � (4.1)

for õ uÅÏ ð where Ö0��õ � à� � , which is equivalent to supposing there exists i.i.d.

random vectors í V0�¡��m�VY� o������
o m V*ð � o ��ñÌ� such that

�8z Vó� � � m
� � Õ � � ��� � � � ��¼ � ��� � o�������o Vó� � � m

� ð Õ � ð ��� � � ð �û¼ ð ��� � | ÃüÖ0��õ � �
When relation (4.1) holds, we say F uýÆ~ØFÚ � G � . We always assume the one

dimensional marginals of Ö are non-degenerate and we choose the normalising

constants such that the þ -th (þ �ÿ� o�������o Î ) marginal Ö � of Ö is a one dimensional

extreme value distribution with representation �g�-�O�I�#���(� % � � ���Dß Û � for some % uxÏ .

There is a positive measure � , associated with G and defined on subsets of� � z���o Ä |������
	 such that

� ��(�#Ö8�p��õ Û � � � ' % � �~�á�G� z��Go õ |�� � � (4.2)

The measure � is called the exponent measure (see e.g., Resnick [34]) and is

finite on compact sets, that is subsets bounded away from � . We have equation

(4.1) equivalent to vague convergence of measures on z���o Ä |�����
	
� �8z � í�� � ù ��� �p� ' ÷ ��� � u �p� � � Û � � � ' %*| Ãè��� � � o
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where � satisfies relation (4.2), and this in turn is equivalent to convergence of a

sequence of point processes to a limiting Poisson Process (Resnick [34], page 154).

The distribution Ö satisfies the following property

Ö 	 �p�p� t õ � Û �Å� � ' % � �ÌÖ0�p��õ Û �Å� � ' % � o t Í �ªo õÂÍ � �
This translates to the measure � which in turn has the following important

scaling property (c.f. e.g., de Haan et al. [9]) :

����� Ú � � � ��� �G� Ú � o �ÔÍ �ªo (4.3)

where A are Borel subsets of
�

.

We make a polar coordinate transformation. We pick a norm
� � � on Ï � . Then

from equation (4.3) we get

� �(íÈu � $ � í � ÍÅ� o í ' � í � u��	 � � ��� � �(íÀu � $ � í � ÍÌ� o í ' � í � u��	 � $ � ��� ��� � � � o
where � is a subset of the unit sphere and where ��� is known as the spectral

measure. In other words, after transformation to polar coordinates, the measure �
is a product measure. The relationship between the spectral measure, ��� , and � is

given by

��� � í � ÍÙ� o í ' � í � u�� � � ��� � � � � (4.4)

It is customary, but not obligatory, to use the Euclidean � � norm, to parame-

terize the unit sphere by angles in z �ªo�� ' S�| and to think of the ��� as a distribution

on subsets of z �ªo�� ' S�| . Intuitively, the density of ��� evaluated at ¢ uÈz �ªo�� ' S�|
can then be interpreted as a measure of the likelihood that with í � ��m o�� � ,�ï��¶ t � ��� � '�m � � ¢ provided that at least one of the components of í was ex-

treme. Most of the mass concentrating around � ' T indicates a high correlation be-

tween extreme movements of the two components while most of the mass around �
and � ' S corresponds to independent occurences of extreme movements in the two

components.

In order to estimate the extremal dependence, we therefore estimate the spectral

measure which is equivalent to estimating � .
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4.1.1 Estimation of the Spectral Measure

A natural estimator of � , the tail empirical measure

« � V �G� � $ ��� ��� V� � � � ¾ � �"! �$#% � � �$&'& ß # ( � � �)& �p�p� � � #Û � � � '
«% � (4.5)

is provided by De Haan and Resnick ([7]).

The following result holds (see Proposition S �+* in their paper): Suppose (4.1)

holds and ����� � ÃüÄ , ����� � '�� Ã � , ����� � '*����Y� Ã Ä . Suppose
« ÷ � � � � , «ù � � � � , «% are

estimators of ÷ � � � � , ù � � � � , % satisfying

« ÷ � � � �÷ � � � � Ãì� o «ù � � � � � ù � � � �÷ � � � � Ã �ªo «% Ã %
a.s. Then

« � V , defined in eq. (4.5), is a strongly consistent estimator of � :« � V Ãè� o � �+�-� (4.6)

In particular, one can use estimators
« ÷ � � � � , «ù � � � � , «% given in Dekkers, Einmahl

and de Haan [10] and defined below.

Denote the sample by �(íjô �ú��m � �go�������o m � ð � o °ê� � o������
o � 	 and indicate the

order statistics of the jth components � m � � o������
o m V � � bym � � & X � Õ m � � & X � Õ ����� Õ m � V & X �
Define the functions ,t � ��-;t�o

U�� � t � � ��^� ,t o U � � t � � S���ê� ,t � ���ê� S ,t � o
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and define the estimators by � þ �¡� o������
o Î �
. � �/� ���$0 ���� � � � ����Ym � VY� � & X � ������Ym � Vï� 0 & X � o
Æ � �/� ���$0 ���� � � � ������Ym � VY� � & X � ������Ym � Vï� 0 & X � � � o«% � � . � ���^� �S ���ê� . ��Æ � � ��� o« ¼ � � � � � �lm � VY� 0 & X � o« � � � � � � � m � Vï� 0 & X �21 * . �� � Æ �1 *W� U�� � «% � �p� � � U � � «U � �p� �

The spectral measure can now be estimated with the help of the tail empirical

measure as follows, «�43 �G� � $ � « �*V�� � í � ÍÌ� o í ' � í � u � � �p� �
We interpret

«�43 as a distribution on subsets of z �ªo�� ' S�| and its density eval-

uated at ¢ uÿz �ªo�� ' S�| can then be interpreted as a measure of the likelihood that�ï��¶ t � ���65m � '�5m � � � ¢ provided that at least one of the components of �
5m �go 5m � �
was extreme where

� 5m �go75m � � �©�p���(� «%�� �p��m � � « ¼ � � � � �p� ' « � � � � � �p�p� �Dß #Û98 o ���(� «%�� �p��m � � « ¼ � � � � �p� ' « � � � � � �p�p� �Dß #Û;: � �
(4.7)

Choosing the right value for k

A good choice of the parameter k in the tail empirical measure (eq. 4.5) is

a prerequisite. St �� ric �� [37] uses the scaling property of � in eq. (4.3) to help

decide on the optimal k. Since
« � V is a strongly consistent estimator of � in the

limit, the scaling property also holds for
« �YV asymptotically. Defining the set A as
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Ú � � ��� opt � $ �#ñ �ªopt ñ �ªo � � � t � ÍÙ� 	 and with u varying in the neigbourhood

of 1, a good k is therefore such that the following relation holds« � V ��µ Ú �=< µ ��� « � V � Ú � � (4.8)
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Figure 4.1: The scaling law for different values of k.

This method of choosing k is devised by St �� ric �� [37] and is illustrated in Figure

4.1, where the ratio
« � V ��µ Ú � '�µ ��� « � V � Ú � is plotted against u for different values of

k. As u decreases, the set uA gets larger, resulting in the counting of points towards

the centre of the distribution by � V . This in turn causes the failure of the scaling

law (4.3) and the violation of (4.8). But for values of u in the neighbourhood of � ,
an appropriate choice of k is one which gives a graph which hovers around � . The

upper two graphs illustrates the case where the k values are too small, resulting in

us going too far in the tails and hence wasting useful information. The fourth graph

shows the case where the k value is too big.
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Chapter 5

Regression Model I

In this chapter, we fit Regression Model I (refer to Section 3.2) to two sets of

data, namely:

1. Data set 1: Time series of daily returns obtained from contemporaneous

foreign exchange noon buying rates in New York City for the British Pound

(GBP) and the German Mark (DEM). The data sets range from January 11,

1979 to January 24, 2002.

2. Data set 2: Time series of daily returns calculated using the closing prices of

the Standard & Poors ����� Composite Stock Price Index (S&P ����� ) and the

Dow Jones Industrial Average Index (DJI). The data sets range from January

03, 1977 to March 06, 2003.

We refer to Data set 1 as GBP/DEM and to Data set 2 as S&P ����� /DJI. Since the

results for the two series are quite similar, for ease of illustration, we mainly show

graphs obtained using GBP/DEM but the tabulated results from the statistical tests

are provided for both series of data.

5.1 Volatility Estimation

The preliminary step in fitting Regression Model I is to subtract the estimated

mean from the log-returns. We then proceed to apply the two-sided exponen-

tial kernel regression (eq. 3.2) to the square zero-mean returns with bandwidth
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±Ë�ò� S�� for GBP/DEM and bandwidth ±Ë�ò� TY� for S&P ����� /DJI to estimate the

volatilities.
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Figure 5.1: Left four plots: SACFs/SCCFs for the estimated residuals (
«¨ 	 ) obtained

by standardization with the changing variances. Right four plots: SACFs/SCCFs

for (
� «¨ 	 � ). Note: For each, the plot at the intersection of row i and column j cor-

responds to the SACF/SCCF of the coordinate i and past lags of the coordinate j,

where ° osþ �¡� oLS and � oLS corresponds to GBP and DEM respectively.

We choose the bandwidth parameters such that the long range dependence as-

pect of the SACFs and SCCFs of the absolute returns disappears. We can judge

if a good choice has been made by looking at the autocorrelation structure of the

estimated residuals (
«¨ 	 ) and their absolute values (

� «¨ 	 � ) as well as the Ljung-Box

test plots. Under the null hypothesis.?> $ «¨ 	 are independent vectors,

we expect the SACFs and the SCCFs to stay within the boundary of the +��-, -

confidence intervals for most lags, as they do in Figure 5.1, hence supporting the
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Figure 5.2: Left four plots: Ljung Box test p-values at different lags for the es-

timated residuals (
« ¨ 	 ) obtained by standardization with the changing variances.

Right four plots: Ljung Box test p-values at different lags for (
� «¨ 	 � ). Note: For

each, the plot at the intersection of row i and column j is based on the SACF/SCCF

of the coordinate i and past lags of the coordinate j, where ° osþ �è� oLS and � oLS
corresponds to GBP and DEM respectively. The broken line has been drawn at a

p-value of .05.

null hypothesis at a significance level of � �-� .
There are formal techniques for choosing the bandwidth such as cross-validation

but we did not look at them here.

However, the plot of the p-values from the Ljung-Box test in Figure 5.2 indi-

cates the presence of serial correlation in the GBP residuals and the presence of

serial cross-correlation between the GBP and DEM estimated residuals for most

lags. On the other hand, the Ljung-Box test based on the SACFs and SCCFs of the

absolute residuals accept the hypothesis of independence for most of the first S��
lags as seen in right plots of Figure 5.2.
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GBP/DEM S&P ����� /DJI
Periods � S * � S *

Lower value � �+@ � � � Q�+ � � �*T � �+@ S � � �*T � �+* Q
Upper value � � Q*� � � R�S � �+@ª� � �+@ Q � �+@ � � � T�T

Table 5.1: Checking the hypothesis that the contemporaneous dependence between

the coordinates of the standardized residuals (
« ¨ 	 ) do not change across the three

periods. The lower and upper values of the +��-, confidence interval for the stan-

dard Pearson sample correlation coefficient are given.

Drees and St �� ric �� [12] come across a similar situation and offer a possible

explanation for it. They argue that dividing by the changing volatility changes only

the absolute values and not the signs of the returns. As a result, we see a change

in the SACF of the absolute residuals but not much in that of the residuals. The

latter behaviour may indicate either weak dependence in the signs of the returns or

non-stationarities in the mean. In the model though, only the non-stationarities that

might be present in the second moment structure of the time series are taken care

of.

Figures 5.3, 5.4, 5.5 and 5.6 show the returns, the estimated unconditional stan-

dard deviation and the standardized residuals for the GBP/DEM and S&P ����� /DJI

data sets . The heteroskedasticity seems to be quite reduced in the residuals com-

pared to the original series of returns.

5.2 Subperiod analysis

In order to check if the residuals are identically distributed, we split the resid-

uals in three subsamples of equal length.

First, we estimate a +��-, confidence interval for the standard Pearson sample

correlation coefficient U between the coordinates for each subsample. The results

are tabulated in Table 5.1.

The marginals are found to be dependent for both series of data. The clear lack

of overlapping between the confidence intervals for the three periods indicates that

the dependence between the coordinates changes with time for both data sets.
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Figure 5.3: Top plot: GBP returns. Middle plot: The corresponding volatility

process
« q§� t � estimated using the exponential kernel estimator. Bottom plot: The

standardized residuals.

Secondly, for each coordinate, we perform a pairwise comparison of the three

empirical distribution functions using the Kolmogorov-Smirnov test1. Table 5.2

shows that at the � � � significance level, we reject the null hypothesis that the

marginal distribution of the first coordinate does not change between period � and

period S for both series of data. For the second coordinate, the null hypothesis is re-

jected across all three periods at the � �-� significance level by the S&P ����� /DJI data.

For all other periods and for both coordinates, the null hypothesis is not rejected at

the � �-� significance level.

Thus, even though the residuals showed very little evidence of serial depen-

1Kolmogorov-Smirnov is not strictly applicable since there may remain some dependence in the

data. However, we judge this to be of minor importance.
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Figure 5.4: Top plot: DEM returns. Middle plot: The estimated volatility process« q§� t � . Bottom plot: The standardized residuals.

dence, they do not seem to be identically distributed.

In our next step, we investigate the extremal dependence between the coordi-

nates.

5.3 Extremal Dependence

We concentrate on the extremal dependence in the left tail. For that purpose,

we divide the residuals into three subsamples of equal length. As from here, we

then work with the contemporaneous positive values of the negated residuals or,

equivalently, with the contemporaneous coordinates from the lower left quadrant.

We check the tails of their marginal distributions by calculating the confidence

intervals around the Maximum Likelihood Estimate (MLE) for the shape parame-
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Figure 5.5: Top plot: S&P ����� returns. Middle plot: The estimated volatility pro-

cess
« q§� t � . Bottom plot: The standardized residuals.

ter % of the Generalized Pareto Distribution (GPD) (see Appendix B) fitted to the

scaled excesses over a high threshold.

The overlap in the +��-, confidence intervals for % (refer to Tables 5.3 and 5.4)

show that the marginal tail shape parameters for the GBP/DEM and S&P ����� /DJI

data are about the same for the three periods and for each of the coordinates. The% values are indicative of light tails.

We measure the extremal dependence with the help of the spectral measure

(see relation 4.4). The latter is estimated using the tail empirical measure (refer to

eq. 4.5). The values of k to be used in its estimation are determined according to

the method used by St �� ric �� [37], as explained in Section 4.1.1.

The scaling ratio at these values for each of the three periods are plotted in

Figure 5.7 (see Left plots) for the GBP/DEM data.
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GBP/DEM S&P ����� /DJI
Periods Periods

Marginals � vs S � vs * S vs * � vs S � vs * S vs *� � ����T �i� T �i� R � ��� � � �YQ�Q � S��S �+* Q � �-Q � �-+�R � �-S @ � ���-� � ��T�T
Table 5.2: Checking the hypothesis that the marginal distributions of the standard-

ized residuals (
«¨ 	 ) do not change across the three periods . Pairwise comparison

of the periods are performed using the Kolmogorov-Smirnov test and the p-values

are given.

GBP/DEM
Periods

Marginals � S *� �I� � �+*ª� TWo � �i� �-+ � �I� � � TY� @ o � �i�A@ � � �I� � �+* +��ªo � � � ����T �S �I� � � S*TY+=o � �i�A@ Q � �I� � � TYR�S=o � � �-� @ � �I� � �+*B@ +=o � � �YQ�� �
Table 5.3: +��-, confidence interval for the MLE of the shape parameter % of the

GPD for the marginals of the contemporaneous standardized residuals (
« ¨ 	 ) from

the lower left quadrant for the GBP/DEM data.

S&P ����� /DJI
Periods

Marginals � S *� �I� � �+* Q�S=o � � � � * T � �I� � �i� � @ o � � T-�-+ � �I� � � S @ +=o � �i� R�S �S �I� � � TïQ�+=o � � � ��T * � �I� � � S @ �ªo � � S *B@ � �I� � �i�A@ +=o � � TYR�� �
Table 5.4: +��-, confidence interval for the MLE of the shape parameter % of the

GPD for the marginals of the contemporaneous standardized residuals (
« ¨ 	 ) from

the lower left quadrant for the S&P ����� /DJI data.
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Figure 5.6: Top plot: DJI returns. Middle plot: The estimated volatility process« q§� t � . Bottom plot: The standardized residuals.

In order to investigate if the extremal dependence changes across the three

periods, we work with the standardized residuals scaled and transformed according

to equation (4.7) for each coordinate at each period. The contemporaneous pairs of

scaled residuals whose distance from the origin is greater than a threshold value of� are considered as extreme (see eq. 4.4) . The angles at which these extreme pairs

are located with respect to the x-axis are then calculated and denoted by ¢ ��o ¢ � o ¢�C
for the three periods respectively.

Estimated densities of the spectral measures (see eq. 4.4) for the GBP/DEM

residuals are illustrated through the histogram/density plots of ¢ ��o ¢ � and ¢DC (see

Right plots of Figure 5.7).
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Figure 5.7: The scaling law for �8� ��� (top and middle) and �8� T * (bottom) and

the estimated density/histogram of the spectral measure for the GBP/DEM con-

temporaneous standardized residuals (
«¨ 	 ) from the lower left quadrant for period� (top), S (middle) and * (bottom) respectively.

5.3.1 Non-Parametric Testing

In this section, we check the hypothesis that ¢ ��o ¢ � o ¢DC belong to the same pop-

ulation by doing a pairwise comparison of the empirical distribution functions of

the vectors of angles with the help of the Kolmogorov-Smirnov test and the New

Rank Test, a non-parametric test outlined in the Appendix A.

The results from Table 5.5 show that for the GBP/DEM data, the hypothesis

of identical distributions is rejected by both tests for period S versus * and by the

New Rank Test for period � versus S at a significance level of � � � . The results for

the S&P ����� /DJI data show that the hypothesis is rejected at the � �-� significance

level by both tests for periods � versus S and by the Kolmogorov-Smirnov test for
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GBP/DEM S&P ����� /DJI
Periods � vs S � vs * S vs * � vs S � vs * S vs *

K-S � �-S�R � S � � ��� * � � * + � S*T � �-S�R
N-R � â � � � � �-�ºâ � � â � � � � � � â � â � �-� � �-�ºâ � � �-�ºâ �

Table 5.5: Checking that the angle populations are identical. Pairwise comparison

of the periods are performed using the Kolmogorov-Smirnov test (K-S) and the New

Rank test (N-R).

period S versus * .

5.3.2 Conclusion

The results from this chapter allow us to conclude that the residuals standard-

ized by the changing variances can be modeled as independent vectors but that

the contemporaneous dependence changes through time. The distribution of the

marginals is characterized by changes in the center and lack of change in the tail

estimates. As for the extremal dependence between the residuals, it is found to

change across time.

The implications of such findings are that accounting for the changing vari-

ance is enough to remove the linear temporal dependence observed in the absolute

returns but there is a need for the changing covariance structure to be taken into

account.
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Chapter 6

Regression Model II

In this chapter we fit Regression Model II (see Section 3.3) to the GBP/DEM

and S&P ����� /DJI data sets. For ease of illustration, we again provide the graphs

only for the GBP/DEM data set.

6.1 Covariance Estimation

We first substract the estimated mean from the log-returns and then apply a

two-sided kernel regression (see eq. 3.4) to the resulting zero-mean return series

to estimate the covariance matrix. Since it is hard to find the common parameter

which works as well in estimating the variance as the covariance simultaneously,

we have used the same parameter as for the variance.

07/03/1979 07/03/1983 07/03/1987 07/03/1991 07/03/1995 07/03/1999

Time

0.2
0.4

0.6
0.8

1.0

Figure 6.1: Plot of the correlation between the GBP and DEM returns estimated

using the exponential kernel regression estimator.
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The residuals are given by« ¾ 	 � « ´ ��� � t � � ³(	 � «k 	 � o t ��¼!��� o�������o �»�¥¼ o
where

« ´§� t � , the square root of the estimate of the covariance matrix ´ � � t � , is cal-

culated using the eigenvalue decomposition method.
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Figure 6.2: Left four plots: SACFs/SCCFs for the estimated GBP/DEM residuals

(
« ¾ 	 ) obtained by standardization with the changing covariance. Right four plots:

SACFs/SCCFs for (
� « ¾ 	 � ).

The estimated correlation between the two sets of data is plotted in Figure 6.1.

A look at the autocorrelation structure of the estimated residuals (
« ¾ 	 ) and their

absolute values (
� « ¾ 	 � ) (see Figure 6.2) indicates that the SACFs and SCCFs stay

within the boundary of the +��-, -confidence intervals, drawn under the null hypoth-

esis of i.i.d. residuals, for most lags, hence supporting the null hypothesis that
« ¾ 	

are independent vectors at a significance level of � �-� .
This is further supported by the plot of the p-values from the Ljung-Box test
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Figure 6.3: Left four plots: Ljung Box test p-values for different lags for the es-

timated GBP/DEM residuals (
« ¾ 	 ) obtained by standardization with the changing

covariance. Right four plots: Ljung Box test p-values for different lags for (
� « ¾ 	 � ).

Note: For each, the plot at the intersection of row i and column j is based on the

SACF/SCCF of the coordinate i and past lags of the coordinate j, where ° osþ �¡� oLS .
The broken horizontal line has been drawn at a p-value of .05.

(see Appendix A) for the residuals in Figure 6.3. On the other hand, the presence of

serial correlation in the first coordinate of the absolute residuals and the presence

of serial cross-correlation between the coordinates of the absolute residuals can be

observed from the Ljung-Box test plots in Figure 6.3.

One possible explanation for this situation could be due to the fact that the

chosen parameters estimated the variance properly but did not perform as well for

the covariance. Or it could be that the model did not fit perfectly.
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GBP/DEM S&P ����� /DJI
Periods � S * � S *

Lower value � � � � * � � � � � � � � ��T � � � ��T � � � �-� � � � �-�
Upper value � � � @ � � �-R � � �-� � � �-� � � ��T � � ��T

Table 6.1: Checking that the contemporaneous dependence between the coordi-

nates of the covariance standardized residuals (
« ¾ 	 ) does not change across the

three periods. The lower and upper values of the +��-, confidence interval for

the standard Pearson sample correlation coefficient for the three periods.

GBP/DEM S&P ����� /DJI
Periods Periods

Marginals � vs S � vs * S vs * � vs S � vs * S vs *� � � * R �+*B* � �YQ*� � ��T�T � S�R �+@ SS � +�+ � �i� + � � T�T � S*T � R*T � S*T
Table 6.2: Checking that the marginal distributions of the covariance standardized

residuals (
« ¾ 	 ) do not change across the three periods . Pairwise comparison of

the periods are performed using the Kolmogorov-Smirnov test and the p-values are

given.

6.2 Subperiod Analysis

The results from Tables 6.1 and 6.2 further seem to support the null hypothe-

sis of i.i.d. residuals with independent marginals for both the GBP/DEM and the

S&P ����� /DJI data series.

The overlap in the +��-, confidence intervals indicates that the dependence be-

tween the coordinates stays constant across time. The fact that the confidence in-

tervals contain the zero is also an indication that the coordinates are uncorrelated.

As for the marginal distributions of the standardized residuals, they are found to

change across period � and S for one of the marginals for both data series at a

significance level of � �-� but not at a significance level of � � � .
So far, we have seen that accounting for the changing covariance seems to take care
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GBP/DEM
Periods

Marginals � S *� �I� � � S�S�R=o � � S �A* � �I� � �+* � @ o � �i� TY+ � �I� � �i� + @ o � �+* R�+ �S �I� � � S � +=o � �i� + � � �I� � � S�+ * o � �i� Q�+ � �I� � �+* Q��=o � � �-R @ �
Table 6.3: +��-, confidence interval (C.I.) for the MLE of the shape parameter %
of the GPD for the marginals of the contemporaneous covariance standardized

residuals (
« ¾ 	 ) from the lower left quadrant for the GBP/DEM data.

S&P ����� /DJI
Periods

Marginals � S *� �I� � �+* ���=o � �i��� S � �I� � �i��� R=o � �+* R�� � �I� � �+*ª� �=o � �i�A* � �S �I� � � T-� * o � � � ��� @ � �I� � �+*ª� R=o � �i�A*B@ � �I� � �i� TY+=o � �+* Q * �
Table 6.4: +��-, confidence interval for the MLE of the shape parameter % of the

GPD for the marginals of the contemporaneous covariance standardized residuals

(
« ¾ 	 ) from the lower left quadrant for the S&P ����� /DJI data.

of the linear dependence. The null hypothesis of identically distributed residuals

has also been supported by the statistical tests carried out. In the next section,

we use extreme value theory to check for possible non-linear dependence. More

specifically, we investigate the stationarity of the dependence structure between the

coordinates across time, concentrating mainly on the extremes.

6.3 Extremal Dependence

We again concentrate on the extremal dependence in the left tail and follow the

same procedure as in the previous chapter.

Estimates of the left tails of the residuals (see Tables 6.3 and 6.4) indicate

that they are quite stable across time and for each of the marginals for both the

GBP/DEM and the S&P ����� /DJI data sets.

The values of k to be used in the estimate of the spectral measure for the

GBP/DEM residuals at the three different periods are determined to be ��S=opTY� and
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Figure 6.4: The scaling law for �8� ��S (top), �0� TY� (middle) and �0�/@ � (bottom)

and the estimated density/histogram of the spectral measure for the GBP/DEM

contemporaneous covariance standardized residuals from the lower left quadrant

for period � (top), S (middle) and * (bottom) respectively.

@ � respectively. The scaling ratio at these values as well as the corresponding esti-

mated densities of the spectral measures are plotted in Figure 6.4 (Left plots). See

Figure 6.5 for the density plots corresponding to the S&P ����� /DJI data.

In all of the three periods, we see that most of the mass is concentrated around

the axes indicating extremal independence.

6.3.1 Non-Parametric Testing

In this section, we perform the pairwise comparison of the empirical distribu-

tion functions of the angles corresponding to the positions of the extreme residual

pairs. We check that ¢ ��o ¢ � o ¢DC belong to the same population. The results from Ta-
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Figure 6.5: Top Plots and Bottom Left Plot: The estimated density/histogram of

the spectral measure for the S&P ����� /DJI contemporaneous covariance standard-

ized residuals from the lower left quadrant for period � , S and * . Bottom Right:

Estimated density curves of the spectral measure for the S&P ����� /DJI contempora-

neous covariance standardized residuals from the lower left quadrant for the whole

period. The curves correspond to a family of smoothed histograms with different

binwidths.

ble 6.5 indicate that the extremal dependence stays constant at the � �-� significance

level across the three periods for the GBP/DEM data set. The null hypothesis of

identical distribution is rejected at the � � � significance level by the New Rank Test

for the S&P ����� /DJI data between period S and * but accepted at the same level for

all the other periods and by both tests.

6.4 Whole period analysis

Since accounting for the changing covariance results in i.i.d. residuals with

stationary extremal dependence, we can carry out the same analysis on the whole

sample of bivariate returns.

Estimated densities of the spectral measure for the whole sample for the GBP/DEM

(see Figure 6.6) and for the S&P ����� /DJI (see bottom right plot of Figure 6.5) resid-

uals show most of the mass being concentrated around the axes. This result indi-
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GBP/DEM S&P ����� /DJI
Periods � vs S � vs * S vs * � vs S � vs * S vs *

K-S �+@ Q � �-R�+ �i��� �i� R � S�R � �-S �
N-R � �-�ºâ � � �-�ºâ � � �-�ºâ � � �-�ºâ � � � � â � â � �-� � â � � �

Table 6.5: Checking that the angle populations are identical. Pairwise comparison

of the periods are performed using the Kolmogorov-Smirnov test(K-S) and the New

Rank test (N-R).
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Figure 6.6: Estimated density curves of the spectral measure for the GBP/DEM

contemporaneous covariance standardized residuals from the lower left quadrant

for the whole period. The curves correspond to a family of smoothed histograms

with different binwidths.

cates extremal independence between the coordinates which corroborate with the

expectations we had following the subperiod analysis.

6.5 Conclusion

In this chapter, we fitted Regression Model II to our data sets and estimated

the covariance matrix of the bivariate returns data using the two-sided exponential

kernel regression estimator.

The results from the analysis of the dependence between the coordinates as

well as the marginal distributions of the resulting residuals across time were much

improved compared to the results from Regression Model I so that the null hy-

pothesis of identically distributed residuals was better supported. The extremal

dependence between the coordinates of the transformed residuals was also found

to stay reasonably constant across time. Since the resulting residuals also seemed
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independent in the extremes, it indicated that most of the extremal dependence

could be due to the changing covariance structure of the returns. And accounting

for this changing covariance is enough to go from non-stationary bivariate returns

to residuals whose extremal dependence is stationary.
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Chapter 7

GARCH Modelling

As an alternative to the non-parametric approach used in the last two chapters in

estimating the volatility, we now turn to a conditional parametric modelling of the

volatility, namely the GARCH models. We restrict attention to the GARCH (1,1)

model.

All the computations in this chapter have been carried out on the GBP/DEM

and the S&P ����� /DJI data sets using the GARCH module in Splus. We show the

graphs only for GBP/DEM since the results are very similar for the S&P ����� /DJI

data.

7.1 Univariate GARCH

We start by fitting a univariate GARCH (1,1) model with constant mean to the

univariate returns separately. We thus have the following model for the returns� 	 �lk2�nm 	po
where � 	 is the returns, k is the mean andm 	 ��q 	Dr!	�o
where q��	 ��)O����)
m��	���� � � q��	���� �

We used the heavy-tailed t-distribution for the conditional distribution of m 	
given the past in the likelihood since, as we have observed earlier when looking
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at the stylized features of financial data, returns tend to have heavier tails than

the Gaussian distribution. By default, the number of degrees of freedom for the

t-distribution is estimated as part of the maximum likelihood fitting procedure in

the GARCH module.
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Figure 7.1: QQ-plots of the GBP GARCH (1,1) standardized residuals. Left: Con-

ditional Gaussian distribution used. Right: Conditional t-distribution used.

As an illustration, see Figure 7.1, where the QQ-plots of the standardized resid-

uals are drawn when the Gaussian distribution is used as conditional distribution

(see Left plot) and when the t-distribution with estimated � � Q�R degrees of freedom

is used (see Right plot). A better fit is obtained with the t-distribution while the

left plot indicates that the standardized residuals have a somewhat heavy-tailed

deviation from a Gaussian distribution in the tails.

The ACF of standardized residuals and of their absolute values show very little

evidence of dependence as shown in Figure 7.2.

On the other hand, subperiod analysis of the standardized residuals indicates a

change in the marginal empirical distributions across time at the � � � significance

level, especially for the S&P ����� /DJI data, while the marginals are more stable

for the GBP/DEM data. The dependence between the coordinates is also found to

clearly change with time as shown by the complete lack of overlapping between the

confidence intervals for the standard Pearson sample correlation coefficient across
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GBP/DEM S&P ����� /DJI
Periods � S * � S *

Lower value � �+@B* � � Q�+ � � �*T � �+@ª� � � � @ � � T-�
Upper value � �+@ R � � R�S � �+@ � � �+@B@ � �+@ª� � � TïQ

Table 7.1: Checking that the contemporaneous dependence between the coordi-

nates of the univariate GARCH (1,1) standardized residuals do not change across

the three periods. The lower and upper values of the +��-, confidence interval for

the standard Pearson sample correlation coefficient for the three periods.

GBP/DEM S&P ����� /DJI
Periods Periods

Marginals � vs S � vs * S vs * � vs S � vs * S vs *� �i� S �i� S � �-� * � ���-S �i� S � � @B@S � S * �+@ � � ��T � � ���-� � ����T � � � �
Table 7.2: Checking that the marginal distributions of the univariate GARCH (1,1)

standardized residuals do not change across the three periods . Pairwise com-

parison of the periods are performed using the Kolmogorov-Smirnov test and the

p-values are given.
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Figure 7.2: SACFs/SCCFs for the univariate GARCH (1,1) standardized

GBP/DEM residuals (Left four plots) and for their absolute values (Right four

plots).

the three periods. The results are tabulated in Tables 7.1 and 7.2 and allow us to

conclude that an assumption of i.i.d. residuals is not reasonable.

We therefore need to take into account more than just the changing conditional

variance and do so by fitting a bivariate GARCH (1,1) model to the bivariate re-

turns.

7.2 Bivariate GARCH Model

The model we use in this case is

³(	 ��k2� íF	po
where all the quantities in the above equation are vectors of dimension 2. ³ï	 is

the bivariate vector of returns, k is the vector of mean values of ³ 	 . The conditional
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distribution of í 	 given the past is a bivariate t-distribution with the conditional

covariance matrix, denoted by }�	 . We choose to work with the BEKK (1,1) model,

introduced by Engle and Kroner [14] and which has the following conditional co-

variance matrix structure}W	 � ÚáÚE � ÚÔ� ��m 	���� m E	���� � ÚFE � �HG � }�	���� G E� �
The presence of a paired transposed matrix factor for each of the 2x2 parame-

ter matrices ÚÔo Ú#� and G � ensures symmetry and non-negative-definiteness of the

conditional covariance matrix though it should be noted that ÚÔo Ú � o G#� need not be

symmetric.

The ACF of the standardized residuals and of their absolute values show very

little evidence of dependence as shown in Figure 7.3.
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Figure 7.3: SACFs/SCCFs for the bivariate GARCH (1,1) standardized GBP/DEM

residuals (Left four plots) and for their absolute values (Right four plots).
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GBP/DEM S&P ����� /DJI
Periods Periods

Marginals � vs S � vs * S vs * � vs S � vs * S vs *� �i��� � ��T � � � * T � ��� * � �-R�� � � * QS �i� � � �-R�� � �����-+ �+@B* �i� S � �YQ*�
Table 7.3: Checking that the marginal distributions of the bivariate GARCH (1,1)

standardized residuals do not change across the three periods . Pairwise com-

parison of the periods are performed using the Kolmogorov-Smirnov test and the

p-values are given.

GBP/DEM S&P ����� /DJI
Periods � vs S � vs * S vs * � vs S � vs * S vs *

K-S � � �-S * � � ���-S � � �-S�� � � S � � � �YQ*� � � � @ª�
N-R � � � â � â � �-� � â � � � � â � � � � �-�0â � � �-�ºâ � � â � � �

Table 7.4: Checking that the angle populations using the Bivariate GARCH (1,1)

model are identical. Pairwise comparison of the periods are performed using the

Kolmogorov-Smirnov test (K-S) and the New Rank test (N-R).

In this case, the confidence intervals for the standard Pearson sample correla-

tion coefficient overlapped across the three periods implying that the contempora-

neous dependence between the marginals was more stable across time.

The marginal distributions were more stable across time (see Table 7.3) for the

S&P ����� /DJI residuals compared to the univariate GARCH modelling case. On

the other hand, we see less stability for the marginals of the GBP/DEM residuals.

In the univariate GARCH case, they changed only across period S and * for the

second marginal at the � �-� level. They also change here though we reject the null

hypothesis this time at the � � � level. But the null hypothesis of identical marginals

is also rejected at the � �-� level across periods � and * and periods S and * by the

first marginal.

We move next to the extremal dependence between the coordinates of the resid-

uals in the left tail. The results from the New Rank Test in Table 7.4 indicate that

the extremal dependence changes at the � � � significance level between period � and
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* for the GBP/DEM data as well as between period S and * for both the GBP/DEM

and the S&P ����� /DJI data.
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Figure 7.4: The estimated density/histogram of the spectral measure for the bi-

variate GARCH (1,1) contemporaneous GBP/DEM residuals from the lower left

quadrant for period � (Left), S (Middle) and * (Right).

The estimated densities of the spectral measures are plotted in Figure 7.4 for

the GBP/DEM data.

They do not look so different across the three periods even though the statistical

tests indicate otherwise. In all of the three periods, we also see that most of the

mass is concentrated around the axes indicating extremal independence.

To see if fitting different models would give different results, we fitted first a

different bivariate GARCH (1,1) model and then more complicated BEKK models,

namely the BEKK (1,2), BEKK (2,1) and BEKK (2,2) to the GBP/DEM data. We

also experimented with other conditional distributions than the t-distribution.

From the point of view of the Box-Test Plots for the absolute residuals, the

BEKK (1,1) model with the conditional t-distribution seemed to perform best in

filtering out the heteroskedasticity.

7.3 Conclusion

In this chapter, we first filtered out the changing conditional volatilities from

the bivariate returns using univariate GARCH (1,1) models. The standardardized

residuals were not found to be i.i.d.

The bivariate GARCH (1,1) model seemed to do a good job in filtering out
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the heteroskedasticity. The S&P ����� /DJI residuals were found to be closer to i.i.d.

and with more or less stable extremal dependence across time. On the other hand,

less stability was observed for the marginals of the GBP/DEM residuals and the

statistical tests indicated less stable extremal dependence across time. However,

visual inspection of the estimated spectral densities indicated a lot of similarity

across the three periods and also pointed to extremal independence between the

marginals.
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Chapter 8

Direct Extreme Value Analysis

In this chapter, we perform a direct extreme value analysis of the GBP/DEM and

the S&P ����� /DJI returns data sets using the spectral measure theory1. The extreme

bivariate coordinates are then declustered so as to be made more independent.

In the univariate context, essentially two approaches have been proposed for

declustering (refer to Embrechts et al. [15] for more details). The first one iden-

tifies events as clusters of high-level exceedances and filters out the cluster peaks.

Specifically a model threshold and a separation interval are chosen such that if

two exceedances over the model threshold are closer together than the separation

interval then they are deemed part of the same cluster. If the time interval between

successive exceedances is longer than the separation interval, it indicates the end

of the old cluster and the beginning of a new one. The second approach is instead

based on dividing the time into blocks and extracting the maximum value within

each block. An improvement of the first methodology is proposed by Smith [36]

and Davison and Smith [6] .

Shortly, there is no universally accepted method for identifying clusters and

even simple-minded approaches seem to work just as well in practice. Usually

rough intuitive judgement is used in the choice of the separation interval and it is

recommended that different values be used for comparison.

The situation is a bit more complicated in the multivariate context. Coles and

Tawn [5] achieve multivariate declustering by fixing a large enough time block

1The tail empirical measure is still a consistent estimator of the spectral measure under the type

of dependency structure commonly used in the econometric time series modelling (see St IJ ric IJ [37]).
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length and independent events are filtered out by concatenating the maxima of the

marginal processes within each block. Nadarajah [29] applies univariate decluster-

ing to the marginal processes at low threshold levels and concatenate independent

extremes in each margin with the concurrent values in the other margins to produce

independent events.

In the sequel, we follow an approach closer to the second one since it results

in contemporaneous coordinates and also does not produce events which are not

actually realized. In that respect, it allows us to compare our results with the ones

obtained using the previous models in the previous chapters. However, our analysis

differs in various aspects.

We first filter out the extreme values and then identify independent events from

them. In so doing, we end up with contemporaneous coordinates and the extreme

bivariate coordinates extracted, using the norm, are those which are extreme in

either of the margins.

Secondly, Nadarajah [29] filters out the marginals into cluster peaks according

to the separation interval and then concatenate them with concurrent values in the

other margins. We do not work with marginal cluster peaks but with all the large

values in each margin.

Thirdly, Nadarajah declusters even further within the concatenated coordinates

by grouping those events which are still closer than the separation interval and

choosing a single event out of these according to three possible rules:

1. by choosing the one that is closest to the central time of the grouped event;

2. at random among the events;

3. by choosing the one corresponding to the most extreme value of the structure

variable of interest.

We instead keep track of the time indexes which the extreme coordinates cor-

respond to in the original data. A separation interval is then chosen. If the time

interval between successive pairs of coordinates is longer than the separation inter-

val, they are treated as being effectively independent. Otherwise the coordinates

are filtered for rejection.
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GBP/DEM S&P ����� /DJI
Periods � vs S � vs * S vs * � vs S � vs * S vs *

K-S � � S*T � TYR � � �-��R � � ��T � � � * � �i���
N-R � �-�ºâ � � �-�0â � � � � â � â � �-� � � � â � â � �-� � �-��â � � �-�0â �

Table 8.1: Checking that the angle populations for the declustered data are iden-

tical. Pairwise comparison of the periods are performed using the Kolmogorov-

Smirnov test (K-S) and the New Rank test (N-R).

A separation interval of 5 days was chosen. Due to the already scarce number

of extreme values, we minimised the rejection level by rejecting only if the ac-

cumulated separation time was less than 6. As an illustration, suppose that three

bivariate coordinates have time indexes 18, 20 and 24. We reject the second value

only and not the third one, even though the difference between them is only 4 days.

The remaining two bivariate coordinates will then have time indexes 18 and 24 and

can be considered to be effectively independent. Under the block method or the

method adopted by Nadarajah [29], these three would belong to the same cluster

and we would end up with only one bivariate coordinate instead of two. So in

effect, we optimise the use of the already scarce data at this extreme level.

8.1 Data Analysis Results

For purposes of comparison, we divided the data into three periods and fol-

lowed the same procedure as we did in Section 5.3. Here, we worked with the

returns directly instead of the residuals.

The extreme pairs of coordinates were then chosen using the declustering method

outlined above so as to make them more independent. The angles at which the re-

sulting independent extreme coordinates were located with respect to the x-axis

were then calculated and the null hypothesis that they belonged to the same popu-

lation tested.

The end results are tabulated in Table 8.1 and show that the extremal depen-

dence remains stable across time at the � � � significance level for both data sets.

Visual inspection of the estimated densities of the spectral measure (see Bottom
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Figure 8.1: The estimated density/histogram of the spectral measure for the non-

declustered (Top Row) and declustered (Bottom Row) GBP/DEM data for period �
(Left), S (Middle) and * (Right).

Rows of Figures 8.1 and 8.2) however indicate relatively more dependence in the

extremes in the second period for the declustered S&P ����� /DJI data and even more

for the declustered GBP/DEM data.

A comparison of the estimated densities of the spectral measure for the non-

declustered data (see Top Row of Figures 8.1 and 8.2) shows that the shape of the

density curves is almost the same as for the declustered data.

8.2 Conclusion

In this chapter, we carried out a direct investigation of the extremal dependence

between the returns data. The extreme bivariate coordinates were chosen so as to

make them more independent before comparing their extremal dependence across

time.

The end results indicated that the extremal dependence between the declus-
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Figure 8.2: The estimated density/histogram of the spectral measure for the non-

declustered (Top Row) and declustered (Bottom Row) S&P ����� /DJI data for period� (Left), S (Middle) and * (Right).

tered extreme coordinates remained constant across time at a significance level of� � � . The histograms/density plots of the angles however indicated relatively more

extremal dependence in the second period than in the first and third periods.
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Chapter 9

Conclusion

In this thesis, we discussed different methodologies of analyzing bivariate returns

with a specific focus on the behaviour of the extremes.

We used a non-stationary, unconditional non-parametric approach to model

in a first attempt the changing variances and then in a second step the changing

covariance structure. The second methodology used the stationary, conditional

parametric approach of GARCH modelling in order to fit the changing conditional

volatility. Thirdly, we performed a direct investigation of the extremal dependence

between the returns data. We proposed a declustering method to make the extreme

bivariate coordinates more independent before comparing their extremal depen-

dence across time. The goodness of fit on data of the first two methods used was

checked through a detailed investigation of the evolution of the marginal distri-

bution of residuals as well as the central and extremal dependence between the

coordinates.

To exemplify the use of the three different approaches, we analyzed two sets

of data. The first one consisted of daily returns obtained from contemporaneous

foreign exchange noon buying rates in New York City for the British Pound (GBP)

and the German Mark (DEM). The second pair of data consisted of daily returns

calculated using the closing prices of the Standard & Poors ����� Composite Stock

Price Index (S&P ����� ) and the Dow Jones Industrial Average Index (DJI).

Under the non-parametric non-stationary framework, the residuals standard-

ized by the changing unconditional variances were practically uncorrelated vectors

with dependent coordinates. The linear dependence was found to change with time.

63



An analysis of the extremal dependence between the coordinates of the residuals

showed that it also varied through time, pointing towards the need for a chang-

ing covariance structure to be taken into account. Similar results were obtained

when filtering out the changing conditional variances using the univariate GARCH

model.

When a changing covariance structure was estimated under the non-parametric

non-stationary framework, the residuals were close to being independent and iden-

tically distributed. The extremal dependence between the coordinates of the resid-

uals remained quite stable across time and was close to independence.

In the parametric and stationary framework, filtering out the conditional covari-

ance using the bivariate GARCH model gave similar results for the S&P ����� /DJI

data. On the other hand, mixed evidence was found in the case of the GBP/DEM

data set. Statistical tests indicated changes in the extremal dependence while vi-

sual inspection of the estimated densities of the spectral measure seemed to confirm

their stability across time.

In the case of the direct extreme value analysis of the returns, we found that

the extremal dependence between the declustered extreme coordinates seemed to

remain constant across time.

The methodologies we applied seemed to perform well in allowing us to draw

conclusions about the extremal dependence for bivariate returns. The limited ev-

idence provided in this work suggests that the dynamics of bivariate returns is

characterized by changes of the covariance structure. The fact that the residuals

appear to be independent in the extremes could imply that a large part (if not all)

of the extremal dependence in bivariate returns could be explained by the changing

linear relationship captured by the covariance. However, more indepth statistical

analysis is needed in order to confirm this statement. This will be the subject of

future research.
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Appendix A

Statistical Tests for the Models

Ljung-Box test (Ljung and Box [21])

Under the null hypothesis of independence in a time series, the Ljung-Box test

statistic K ��� � follows asymptotically a L � -distribution with n degrees of freedom,

with K ��� � being calculated as

K ��� � � � � � � S � V� � � � U � �� �Â° o
where U � is the sample auto- or cross- correlation function at lag i and L is the

length of the time series.

Non-parametric testing:

In order to test the null hypothesis that two sets of data come from the same dis-

tribution, we compare the empirical distribution functions using the non parametric

tests described below.

For the first data set of mutually independent variables in increasing order of

magnitude, m �go m � o������
o m V , the empirical distribution is defined by

ë�V ��� � � MN�O �ªo for � â m �°I'�� o for m � ¹ � â m �QP �� o for �xÍÅm0V
ëSR ��� � is defined accordingly for the sample � � o�� � o�������o��TR .
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1. Kolmogorov-Smirnov Test

The test statistic is the maximum of
� ë!V ��� � � ë R ��� ��� multiplied by a propor-

tionality factor. It is a powerful test if the variances of the two populations

are different (Baumgartner [1]).

2. New Rank Test (Baumgartner [1])

The new rank test is the integral of the square norm of the difference � ë V���� � �ë R ��� �p� , weighted by its variance. This emphasizes the tails of the distribu-

tion functions. It is at least as powerful as other standard nonparametric tests

like the Kolmogorov-Smirnov and the Cramer-Von Mises Tests (Baumgart-

ner [1]) but is very useful if the alternative hypothesis is not known, since it

is independent of whether the populations differ in their means, variances,

or only in the shapes. For sample sizes as small as � , the asymptotic distri-

bution approximates the exact one quite well and that holds even if � à�×Ç .

The critical values are S � TY+ * at a significance level of �-, and *=� R�R�� at a

significance level of � , .
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Appendix B

The Peaks Over Thresholds(POT)
Method

As mentioned in the beginning of Chapter 4, the numerous approaches by which

extreme values may be statistically modelled separate into two forms: methods for

maxima over fixed intervals and methods for exceedances over high thresholds.

We introduce very briefly some theory about the second method here.

The appropriate limit theory in this context is based on a point process result of

Pickands [33]. The limit result suggests modelling exceedances of a high threshold

by a non-homogeneous Poisson process. A consequence of this model is that the

excess values over the threshold follow the Generalized Pareto distribution (GPD)

and that maximum values are modelled by the Generalized Extreme Value Distri-

bution, both distributions having a common shape parameter % .
The key idea of this approach is explained below.

Suppose m o m �go������
o m V are i.i.d. with ÎVU�ë©uxÆ~Ø2Ú � Ö � o
where G is the Generalized Extreme Value Distribution with parameters ( k o q op% ).
Then, for large enough u, the distribution function of ��mü��µ ��� m Í µ can be

approximated by a member of the family

. �XW � �¡���ý����� % Wq§��µ � � ���Dß Û o defined on � W $ W2Í � and ���Â� % W � '*q§��µ � Í �Y	
(B-1)
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The family of distributions defined by eq. B-1 is called the generalized Pareto

family. It has two parameters. % is the shape parameter and coincides with the

shape parameter in the GEV model and q§��µ � is the scale parameter.

A key modelling aspect here is the selection of the threshold. Too low a thresh-

old is likely to violate the asymptotic basis of the model, leading to bias, while

too high a threshold will result in few excesses with which the model can be esti-

mated, leading to high variance. One method used in selecting the threshold is in

comparing the stability of parameter estimates based on the fitting of the models at

different thresholds. Then above a level at which the asymptotic motivation for the

GPD is valid, estimates of the shape parameter % should be approximately constant.

Sampling variability means that the estimates of % will not be exactly constant, but

they should be stable with respect to their sampling errors.

For more details on the POT method, refer to Embrechts et al. [15].
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