The stationary nonlinear Boltzmann equation in a
Couette setting; Li-solutions and positivity.

L. Arkeryd * & A. Nouri.

Abstract.

This is the second part in a study of the stationary nonlinear Boltzmann equa-
tion for forces including hard spheres, in a Couette setting between two coax-
ial, rotating cylinders with given Maxwellian indata on the cylinders. A priori
Li-estimates are obtained, leading to isolated solutions together with a hydro-
dynamic limit control based on asymptotic expansions of low orders together
with a rest term. A proof of the positivity of such solutions is also given.

1 Introduction.

For a general introduction see part one [AN2], which is set in the same close to
equilibrium frame as the present paper, namely a stationary nonlinear Boltz-
mann equation in the domain {2 between two coaxial cylinders A and B with
Maxwellian ingoing boundary values. The problem is extensively treated from
a numerical and asymptotic perspective in [S]. The boundary values and the
solutions are assumed to be axially and circumferentially uniform in the space
variables. Then, with (r,0,z) and (v,,vg,v,) respectively denoting the spatial
cylindrical coordinates and the corresponding Cartesian velocity coordinates, a
distribution function may be written as f = f(r,v,,vp,v,), and the Boltzmann
equation becomes

af 1 1 ~
L4y INf= =
(1.1)
r € (ra,rB), (vr,v4,v;) € IR>.
The ingoing Maxwellian boundary data on 9" are
flray) = (@m) R i-Comama’=d) -y,
(1.2)
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8 14+wp (- 0+ (vg—eugmi)?+02))

f(re,v) = (2m)~ ge2t s . v < 0.
(1 +TB)5
Here
of af
e 2 _ -4
Nf:=uvg ao, VgUy B’
(1.3)

QDW= [ | B —on@) (W) ) = [0 (0.)dv.do

The kernel B = |v — v,[?b(6), b € L1 (S?), is assumed to satisfy (2.19) below
and belong to the Grad class, that is with its terms suitably majorized by the
corresponding ones for the hard sphere model (cf [M]). Consider functions which
are even in the axial velocity direction v,. Take the radiias rq =1, rg > 1,
and let ¢* denote the Knudsen number. The rotational velocities of the inner
and outer cylinders are taken as ugqa = euga; and ugp = eugp; respectively.
The non-dimensional perturbed temperature and density are

2
TB = € TB2,
2 2
€ ron—1
B 2
wp = ( UG a1 — TB2 —I—Ae) 14
1 +627'BZ TJ23 6A1 ’ ( )

where 7p9 is given and A is a parameter.

The main result of this paper is the following theorem.

Theorem 1.1 Assume that (uga1 — ugp17B)(3uga1 + ugpir) > 0. There is a
negative value Ay;; of the parameter A, such that for A < Ap;p and 0 < € small
enough, two isolated, non-negative L'-solutions f2, j = 1,2 of (1.1-2) coezist,
and satisfy

/Mlsupessre(u,m) | fej(r,v) \2 dv < 400.

The two solutions have different outward radial bulk velocities of order €3. For
fized €, they converge to the same solution, when A increases to Ay;p. The
solutions have rigorous leading order hydrodynamic limits when € — 0.

Remark. For a study of a corresponding two-roll problem far from equilibrium,
see [AN1]. The above existence result is based on a priori estimates of Li-type,
which are uniform in e. The positivity of the solutions follows from a contrac-
tion mapping iteration using the L?-estimates for ¢ large. The approach has
wider applicability. In particular, as discussed in Section 5 below, analogous
results hold for all cases of the two-roll problem treated in [S]. We expect the
techniques developed here, also to be useful in the study of related problems,
such as the Taylor-Couette set-up of [SHD], the Bénard asymptotics of [SD],
and the two-component gases of [ATT].



Write R = frest = Pofrest + (I — Po)frest = R + R, where Py is the pro-
jection on the hydrodynamic part, and

J1 2
=M+ 9+ freg) with ¢ =/, M = (2m) 3 exp (~[1.5)
1

Here Z{l €/1pJ is the asymptotic expansion with certain boundary values equal
to the terms of corresponding order in the e-expansions of (1.2), and based on
a splitting into interior Hilbert behaviour, and boundary layers of suction and
Knudsen types. The main part of the paper is devoted to a rigorous study of
the rest term R = f,.5+ in L9, using as ingoing boundary values what remains
of (1.2) after the asymptotic expansion. The rest term problem is solved by a
contraction mapping iteration.

Section two summarizes the asymptotic discussion from [AN2]. Section three
contains some a priori estimates for the rest term. A dual problem is studied
for the non-hydrodynamic part in L? for ¢ < 2, and uses a strong form of the
Banach-Steinhaus theorem to obtain an a priori estimate uniform in e. This is
then used to prove the corresponding non-hydrodynamic estimate for the orig-
inal problem and g > 2.

Section four deals with the rest term; the contraction mapping procedure, the
hydrodynamic limits, and the positivity. The final section takes up existence re-
sults for other two-roll problems, where the approach applies essentially without
modifications.

2 The asymptotic frame.

Write the solution of (1.1-2) as f = M(1 + ®). Then the new unknown
®(r,v,,vg) should be solution to

05 1 1.
o5+ NG = (Lo + J(2,9)), (2.1)
B(1,v) = e2i—(o—eusa)’) _ 1 4 >0, (2.2)
Blrp,) = Lt “’f;3 o2 g (Rl D) g g (2.3)

1+7p)2

Here J is the rescaled quadratic Boltzmann collision operator,

2
—®(vi)ip(v) — @(v)¢h(v))dvsdoo,

and L is this operator linearized around 1,

@) =5 [ Bo— ) M) @000 + Bl

(£®)(v) == /JRM? B — s, )M (0,) (@) + B) — B(v,)

—&(v))dv,dw = K(®) — 0.



Denote by (®4;)1<i<j resp.(®B;)i1<i<j, the first to j-th order terms of ®(r4,v)
resp. ®(rp,v), with respect to e.

Solutions ® will be determined as in (1.5), as an approximate solution v plus
a rest term R = frest,

O(r,v) = P(r,v) + GjOR(T,’U),
where for j; =4

T—TRp

Wp(r,v) = 6(<I)H1(r,'u) + By ,v)) + e <<I>H2(r, v) + By (L8 u))

€
r—TB

r—1 T—T
+63(¢H3(T,’U)+q)w3( ,’U)—|-¢K3A( s ,U)+‘I>K33( 643,1)))

r—Trp T—TRB

r—1
;0) + Preaal( - ,v) + @ran( - av)>(2-4)

+¢t (¢H4(7‘, v) + P4
with

/éHl(-,v)(l,vr,UQ)M(v)dv = /¢w1(-,v)(1,vr,02)M(v)dv

= /@Hg(.,v)'u,M(v)dfu =0, (2.5)
lim Oy 2 w)=0, 1<i<4, (2.6)
T :‘B—)‘ )
1 _
lim  Bgia(——yv) =0,  lim Bup(—r2,0) =0, 3<i<@7)
It —+oo - ¢

Here (e® 1 + 2@ o+ 3P 3+ €*®p4) (1, v) denotes the truncation up to fourth
order of a formal expansion Y, <, €*® g (r,v). The sum (e®y1+€*Pyy2) (FLE, v)
consists of correction terms allowing the boundary conditions to be satisfied to

first and second order. They correspond to a suction boundary layer at rp.

Supplementary boundary layers of Knudsen type, described by

r—1 r—r r—1 r—r
€ (Pxaal V) + Pran( 64B,’U))Jrfél(q’KzlA( V) + Pran( 643,0)),

are required in order to have the boundary conditions satisfied at third and
fourth orders.

We shall here give a fairly detailed discussion of the asymptotic expansion for
Jo = 71 = 4. Uniqueness statements in that discussion are modulo possible shifts
of terms between the asymptotic expansion and rest term at fourth order. Recall
(see [D]) that L((|v|)vgv,B) = —vgv,, L(v,A) = v,(v> — 5) for some functions
B(|v]) and A(|v]), with vgv, B(|v|) and v, A(|v|) bounded in the (,)ss-norm, and
let

wy = /'vagBMdv.



Let g(n,v) be the solution to the half-space problem

U,«ag =Lg, n>0, v e R?,
v,
g(0,v) =0, v, >0,
/g(n,u)vrM(U)dv =1, a.a.n>0. (2.8)

By [BCN], [GP] there are constants A, D, and E such that, (sub-)exponentially,

lim g(n,v) = A+ Dv* + Evg + vy. (2.9)
n—+00

Proposition 2.1
Assume that

(ugB1TB — uga1)(ugp1TB + 3ugar) >0, A+5D >0,

and set

=

rg+1

TB

Apif = — (2w1 (A+5D)(rpugpr — uga1)(rBUgB1 + 3U0A1)> -
For A > Ay, there is no solution 1 in the family defined in (2.4-7).

For A = Ay, there is a unique solution v in the family defined in (2.4-7).
For A < Ayy, there are two solutions 1 in the family defined in (2.4-7).

'I"I"B

Proof of Proposition 2.1. Denote by Y = , and let the expansions } -, € k® 11 (7, v)
and >, €¥(Dpi(rp,v) + Pwi (2, v)) formally satisfy (2.1). Then,

LOg = LOpy + J(®g1,Ph1) = LOps + 2J(Pp1, Prro)

= L®py + 2J(Pp1, Ppr3) + J (Ppro, P o) = 0, (2.10)
o 1 k=1
UT%+;NQHIC*4:L(I'Hk‘i‘ZJ(Q)Hj,@kaj), k25,(2.11)
Jj=1

and

Loy, = Loy + J(Pwi,2®11(rs,.) + Pw1)
= L®ys + 2J (B (rB,.) + Pwi, Pwo) + 2J(Bw1, @ua(rp,.) + Y&y (rp,.))
= LOywy + 2J (w3, mi1(rB,.) + Pw1) + J(@wa, Py + 28 ma(rs, )
+2Y @y, (rB,.)) + 2J(®w1, @us(rs,.) + Y®yo(rs,.)
& 0Py

+5 (s, ) — vy~ =0, (2.12)
k—5
OPwip_s 1 LY
2 NN () ()N (P p—a—i(rB ) + Pwh—a—i
Uy +TBZ;( )(TB) (®ak—1-i(rB,.) + Pwk—1-i)
k—1
=LOwr+ Y J(2®ui(rs,.) + Pwj, Pwr—j), k>5. (2.13)
7j=1



By (2.5) and (2.10), ®g1(r,v) = bi(r)vs for some function by, and ®py,7 > 2
split into a hydrodynamical part a;(r) + d;(r)v? + b;(r)vg + ¢;(r)v, and a non-
hydrodynamic part involving Hilbert terms of lower order than i. Equations
(2.11) have solutions if and only if the following compatibility conditions hold,

0%y; 1 \ o
/ (’U,,-? + ;N(I'HZ)(l,U —5,vg9, v, )M (v)dv =0, i>1.

They provide first-order differential equations for the functions a;(r), b;(r),
c¢i(r) and d;(r), i > 1. Together with the boundary condition (2.2) at first and
second orders, this fixes ®py(r,v) = “Alyy, Sy and c3(r) = %2, for some
constant ug # 0. By (2.5) and (2.12), ®w1(Y,v) = 21(Y)vy, for some function
21, and @y, i > 2 split into a hydrodynamical part z;(Y) +y; (Y)v? + 2; (Y )vg +
t;(Y)v, and a non-hydrodynamic part involving Hilbert terms of lower order
than 7. Equations (2.13) have solutions if and only if the following compatibility

conditions hold,

k—5
/ (UT% + % ZZ_%(—l)i(%)Z.N(‘I’ch—4—i(7”B, )+ (I)Wk—4—i) (v?
—5,v9)M (v)dv = 0, ;c > 5, (2.14)
and
Oyp_s 12 v
JC D N @i ) +
<1>W,c_4_,-) (1,0, )M (v)dv =0, k> 5. (2.15)

Equations (2.14) (resp. (2.15)) provide second-order (resp. first-order) differen-
tial equations for y; and z; (resp. z; + 5y; and t;). Together with the boundary
conditions (2.3) at first and second orders, and the conditions (2.6) and (1.4),
this fixes

U ugY
9A1)6J—w1TB,

Qyw1(Y,v) = (ugp1 —
B

®yyo in terms of us, and implies that t3 = ¢4 = 0. Then, giving the value 0 to
any coefficient of order bigger than 5 in the second-order differential equations
satisfied by y; and z;, 3 < 7 < 4 and taking into account (2.3-6) fixes the
functions y; and z;, 3 < ¢ < 4 in terms of u;. Finally the following Knudsen
analysis at third and fourth orders make the first-order differential equations
satisfied by x3 + 5ys and z4 + 5ys compatible with (2.3), (2.6) at third and
fourth orders. O

Lemma 2.1 Setn = r—;}, u= %‘ﬂ. There are unique Knudsen boundary lay-

ers ®r3a(n,v) and Px3p(p,v), and boundary values ®p3(1,v) and Pyw3(0,v),
such that

0P -
Ur 617(7314 =L®k34, 1n1>0, vE R3a
Pr34(0,v) = @az(v) — @m3(l,v), vr >0,
nlgl—noo @rsa(n,v) =0, (2.16)

6



and

0P ~
Up BI;?)B = L®k3g, p<0, ve R?”
®x3p(0,v) = ®p3(v) — Pu3(rp,v) — Pws(0,v), v <0,

lim ®g3p(p,v) =0. (2.17)
—>—00

The boundary layers fix the possible values of a3(1), ds(1), us, bs(1) and z3(0),
y3(0), z3(0), hence complete the definitions of ® g3 and Pys.

Proof of Lemma 2.1. For a proof of Lemma 2.1, we refer to [AN2]. Recall that
the analysis implies that ug is a solution to the equation

rp+1 w
BT Aug+ —5 (3upar +ugp17B) (ugar — ugp1rp =(8.18)
TB 2ry

u3(A+5D)

A study of the positive roots ug to (2.18) leads to the three cases described in
Proposition 2.1 for A with respect to Ay . That proof requires

A+45D #0, (2.19)

a condition satisfied for hard spheres, and assumed to hold for the kernels B of
this paper. O

Lemma 2.2 Setn = :;41’ w= T_e#. There are unique Knudsen boundary lay-

ers ®aa(n,v) and Prap(p,v), and boundary values @ y4(1,v) and Py 4(0,v)
such that

v 0Praa
T 6’]7
Draa(0,v) = Paa(v) — Pga(l,v), v, >0,

lim CI)K4A == O,
—+00

= LOysn +2J(@p1(1), ®x34)), 7>0, veE R,

n
and

0o - -
UT% = L®xsp + 2J (@p1(rp) + ®wi(0), @xsp), p <0, v e R,
@ r4p(0,v) = @pa(v) — @ua(rp,v) — Pwa(0,v), v, <0,

lim ®x4p =0.
U—>—00
Proof of Lemma 2.2. For a proof of Lemma 2.2 we refer to [AN2]. The fourth
order Knudsen boundary layers fix the possible values of a4(1), ds(1), us =
rpea(rp) and z4(0), ya(0), z4(0), hence complete the definitions of ® g4 and
Dy, O

Lemma 2.3 Denote by | := E%(fﬂ/) + J(1h, 1) — 64D¢). Then,

(/M(v) sup | I(r,v) |? dv)1/2

re(l,rp)

s of order one with respect to e.



Proof of Lemma 2.3. By definition of 4,

N

6 — ~
51 = J(®H1 — @u1(rB), Pw1)

+e (j((I)Hl — ®m1(re), w2) + J (Pw1, Pz — Pua(r) — Y‘P'IH(TB))
+2(J(@ws, @1 — P (rp)) + J(@w2, Pz — Oz (1) — Y iy (r5))

N Y2
+J(@w1, Pz — Pus(re) — Y ®yo(rp) — 7‘1#11(7“3))

+J(Pxsa, @1 — mi(1) + Pwr) + J(Pksp, @1 — 21 (rB) + Pwi — ‘I>Wl(0))) +O(%).
Hence

I = ej<71(r)Y3¢>W1 +72(r)Y2®yo + 3(r)Y ®yws + Y4 (r)Y @34 + v5(r)Y Pk3p, ’Ug)

+J(@k34, Pw1) + O(e),

where (;)1<i<5 are bounded functions in . The announced bound follows from

the sub-exponential decrease of ® 34 with n = 1:_41 O

3 On the control of f, and f

As orthonormal basis for the kernel of L in L2,(IR%) we take 1y = 1,105 =
Vg, Yy = Up, Py = Uy, Y4 = %(fu2 —3). Recall that in this paper all functions

are even in v,. For functions f € L3,([ra,r5] x IR®) we shall use the earlier
splitting into f = f + fL = Pof + (I — o) f, such that

) = 1o(r) = L2 1at0) + Foryon + o+ L futrye

/M(’U)(].,’U,’UQ)fJ_(T,’U)d’U =0,
[ Muntro)ds = o), [ Mas (000 = 1),
/Mz/)gf(r,v)dv = fo(r), /Mz/)rf(r,v)d'u = fr(r).

(The t,-moment of f vanishes since f is even in v,.) Define 7 := ve
Df := v, % + LNf with N given by (1.3). For 1 < ¢ < 400, denote by || . ||,
the usual Lebesgue norm, and set

L= {f3] f lg= (/M(v)(/ | f(z,v) |1 dac)%dv); < +o0}.

Due to the symmetries in the present setup, the position space may be changed
from IR? with measure dz, to IRt with measure rdr. The relevant boundary
space becomes

4 and

1

L= (551 1 o= ([ orM@) | S0 Pdo) +

vp >0

(/ [ [ M) [ f(rp;v) ? dv); < 400}

8



We shall also use

WI([ra,rp) x RY) = W9~ := {f;v2f € L9, v 3Df € 19,47 f € L}

The following propositions were proved in part one [AN2].

Proposition 3.1 Let u € IR, g = g, ﬁ_%g €Ll fpe LT, 2 < q < oo be
given. For small enough € > 0, there exists a unique solution F € W% to

1 - -
DF = 6—4(LF +eud (Fyvp) +9), Fraar = fo, (3.1)
where the boundary data are given on the ingoing boundary Q.

Proposition 3.2 Let 2 < g < +00, and let F be the solution in W1~ to (3.1)
for g = g1. The hydrodynamic part Fy| of F' can be split as F|| = Fp + o,
where Fy, = <. For small enough € > 0

| Fry o< e( 1 FL Lo+ 573 ), (3.2)

1 _
| Fellg< c(€ || Fy llg + | Fulg +— | /gvevrB(l'vl)Mdv [1)- (3.3)

We shall also need the following L? estimate for the non-hydrodynamic part
F,.

Proposition 3.3 Let 2 < g < +o0 and let F be the solution in W~ to (3.1)
for g =g1. The following estimates hold for small enough € > 0;

1 L1

| D2F) (< c(| 7 2g |q +e| Fror g +62‘fb I~), g < oo, (3.4)
1 1

| 72F1 |oo< ¢(| 7729 |oo +€ | | oo +€ | fo |~),

1 L1 8

|72 F [oo< (| 729 oo +e ¢ | F g+ | fo|o)- (3.5)

The estimate (3.5) also holds when g has a non-vanishing hydrodynamic com-
ponent g

Proof of Proposition 3.3. The estimate (3.5) was proved in part one ([AN2])
under the restriction ¢ = g, . The same proof holds without this restriction, so
we shall only discuss (3.4).

The mapping from 7319 x Lt into W9~ given by (g, fs) — F, with F the
solution to (3.1), is continuous and bijective by [M, Ch 6.1]. The analysis in
[M] is carried out for 2 < ¢ < cc.

Invoking a duality argument, similar results then follow for 1 < ¢ < 2, in
particular for the dual problem to (3.1) with u = 0;

1 .
~Dh=—(Lh—H.), hjpo- =hy, (3.6)

€



where the boundary data hy = 0 are given on the outgoing boundary 9Q2~.
Here corresponding to (3.6), the mapping T, from ﬂ%ffi into 73 L x L+ given
by T.(H.) = (hy,e2yTh), is continuous for 1 < ¢ < 2 and e close to zero.
Moreover, T is for ¢ = 2 equicontinuous with respect to € close to zero, as
follows from multiplying (3.6) with h, using Green’s formula and the spectral
inequality,

—/hithrudx >c|D2hy 2.

Below that equicontinuity with respect to e from the case ¢ = 2, will also be
needed for 1 < ¢ < 2. But h, belongs for ¢ < 2 both to L? and L? whenever
H, is in I2. The L%norm of 72k, in the case 1 < ¢ < 2, is bounded by a
constant times the corresponding L2-norm. That makes the L7-norm of v3h 1
and the LT norm of €2y h uniformly bounded with respect to € close to zero, for
a residual set of elements 772 H | in (I — Py) L. The Banach-Steinhaus theorem
applies, so the norms of T, are uniformly bounded for € close to zero. Hence the
following estimate holds for (3.6) in the case of zero outgoing boundary data,
0 < € close to zero, and 1 < ¢ < 2,

1 1
| D2hy |q +€ |y h|~<cq | D 2H, |, - (3.7)

Here ¢, is uniformly bounded for 1 < ¢ < 2. Turning to the estimate (3.4)
involving F', g = g, and fp, for ¢ = 2 it essentially follows from Green’s
formula, as was shown in part one. For ¢ > 2, set u = 0 in (3.1) to start with,
use the dual results (3.6-7) for ¢’ when 1 < ¢’ < 2, and take for 2 < ¢ < 0o

TB _
H=H, =(I-P)5|FL |72 FL(/ | Py |7 rdr)” 7).
TA

That leads to the following equation for D(hF'),

1
/MD(hF)rdrdv = —4(/ MFH  rdrdv+ /MgJ_hrdrdfu).
€
Recalling (3.7) and the definition of H |,

~ 1 ~_1 ~L
| D2 Fy [2<| 7 2g1 ol 92hy |g +€' | fo || vTR |~

~_1 ~_1 ~_ 1
o173 W 7 HL Iy +¢ | ol 4Ly )

4
~_ 1 1 Cce
<< | 29L|g+5|V2FL|§+T|fb|2N-

STl e

Here c is independent of ¢, so we may also take the limit when ¢ — oo. The
estimate (3.4) follows. The inclusion of euJ(F,vy) to g, adds ue | F| |, which
is incorporated in the left hand side, and a term ue | F), |4, which in turn is
estimated using (3.2-3) for ¢ < co. O

10



4 The rest term.

In this section we discuss the rest term, when (uga1—ugp178) (3uga1 +ugp17B) >
0 and A < Ay;s. Denote by x = Xjol <2z and by 1 the approximate solution(s)

from Section 2,

4

P(r,v) = Z eyt

=1

Except for the term z{vgv, B(|v|) in 9*, each ¢ for 1 <4 < 4 is a polynomial
of order 7 in the v-variable, with bounded coefficients in the r-variable. If we
remove zjvgv,B(|v]) from_.zp‘l, denoting the result by y* = Pt — Zlvgv, B(|v]),
and for convenience set ¥J = 7 for 7 = 1,2,3, then it holds that for € small
enough,

14 x¢ = 1+>‘<(24:eizﬁi) >0,
i=1

and also for any ¢, that the L¢-norm of (1 — x) is of any desired (high) order
in €. The aim is to prove that there exists a rest term R, such that

f=M1+x¢+€'R)

is a nonnegative solution to (1.1-2) with M~'f € L. Such a function R would
then be a solution to

DR = %(iR + 2J(R, x%) + €*J(R, R) + l), (4.1)

€
where
1
=~
€

(EGed) + T (2, x9) — ' D(x))-

Notice that for j = 1,...,4, 9’ can be constructed so that D/ = (I — Py) Dy,
hence that the corresponding [ = [, . In Section 2, ) was constructed so that
the lowest order term in [ contains an e-factor of order one. After the above
change to 9, this still 'nearly’ holds. The only new term of a different type

appearing, is L(zjvgv,B) = —zjvgv,. This term is non-hydrodynamic and
of e-order one in L!, due to the factor exp(gi2—"=2) in 2| (cf Section 2).

Denote by u(r) = bi(r) + 21 (*72) the coefficient of vy in the first-order term
of 1, ' (r,v) = u(r)ve. It is uniformly bounded with respect to r in (1,7p),

since %2 is positive. Let the sequences (R")necv and (R")nev be defined by

R =R% =0, and

1/ I
DR = 2 (LR”+1 + 2euJ(R™1, 5vg) + g"), (4.2)
R""(1,0) = Ra(v), v, >0, R""(rp,v) = Rg(v), v, <0. (4.3)

11



In (4.2-3)

= 2J(R", x9) — 2J(R”,>‘<e¢ )+ e*J(R", R") +1,
4RA() UM T 1 (ra,0), vp >0,
) =

ﬂe% (”2_ 1+er (v7+(ve —€U631)2+Uz))

3 _1_5('1;(7'37’0)7 Ur <07
(1 —I—TB)2

Rp(v
and
4 . .
R"(r,v) = R"(r,v) when e'R"(r,v) > — (1 + )‘(Z ezzﬁz(r,v)),
i=1

4
1 .
R"(r,v) = —a (1 + )‘(Z eP(r, v)) otherwise.
i=1

The solutions are well defined, since the proof in part one [AN2] of Proposition
3.1, can be extended to the case with R"*! instead of R™*! in the J-term of
(4.2). We observe that

/g”Md'u = /lMdv, ar(’l‘/Rn’Uer’U) :r/lMdv. (4.4)

We now discuss the existence problem for the rest term iteration scheme (4.2-3).

Proposition 4.1 For 2 < g < oo and € > 0 small enough, there 1§ @ unique
sequence (R™) of solutions to (4.2-3) in the set X := {R;| 73R < K}, for
some constant K. The sequence converges in LY to an isolated solution of

DR = é(iR + ' J(R,R) + 2J (R, x) + l), (4.5)
R(1,v) = Ra(v), v >0, R(rg,v) = Rp(v), v, <0. (4.6)

Replacing R™ by R™ in (4.2), the sequence (R"™) converges in L7 to an isolated
solution of (4.1), (4.6).

Proof of Proposition 4.1. 1t is obviously enough to prove the the proposition
for ¢ large and finite, below for ¢ > 16. For an equation of type

Df = (L1 +2euF(f, 500) +9),
f(l,’l)):fb(l,’l)), v > 0, .f(TBaIU):fb(TBa'U)a v <0,

with ¢ = g, it follows from Proposition 3.2 and Proposition 3.3 that the
following estimates hold,

~_1
e e( 1 lo+ 177310 ), (4.7)
1 _
I 5 I el 1 ol + 1 Sula 45 1) [ gvon BloDMao 1) @8)
~ 1 ~_1 ~ L
17311 1g< O( 1573 gL Lo +e| fron g +€ | P2y | ), g < o0, (49)

~1 ~_1 _8 ~1
175 oo C(17 301 loo €70 | [ g+ | 53| )- (4.10)
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For (4.2), (4.3) in the case n = 0, and taking ¢° = I, notice that R' has
boundary values of order one in ¢ and that the lowest order term in [ is zlvgvr
Tf we write | = 2}vgv, + [, then [ has order at least one with respect to e in L9
by Lemma 2.3. In this case (4.7-9) give

1 1, a1~
R C(1 R L+ | 2vov I+ | vgvy |y +- [ 77300, )- (410)

Using that 2] is of order € in L! and generally of order % in L9, it follows for
g < oo from (4.7-9) that uniformly with respect to 0 < € < ¢,

| 2R |,< C. (4.12)

This together with (4.10) implies that | 72 R |oo can be estimated by a term

8
of order € «.

For the corresponding estimates and ¢° = l|, we consider the equation

1 /. .
Df = 6—4<Lf + eud(f,vg) +z||) with f, = 0. (4.13)
Applying Green’s formula to the equation gives that

|52 F1 o< e(@ [ Uy | +6 | fj l2)-

As discussed above, [|| is of arbitrarily high order in € except for a vg-contribution
of e-order 3+ 1 4> coming from D(z}vgv, B). When using the approach of Proposi-
tion 3.2 in part one ([ANZ2]) to estimate f|, that vg-contribution never appears,
and modulo an /|- term of arbitrarily high order in e,

1 1
| D2 f) [2<c|D2fL |2,
hence
1
| D2f1 o< c|{]2-

Existence for (4.13) can now be obtained in WY~ similarly to Proposition 3.1
(cf part one [AN2]).
The proof of (3.5) in part one (cf (4.6) in [AN2]), implies that

8
75 f g e(es™ 175 o+ 775 g ).
Hence
~ 1 8_4
| D2 f |q<clea | l|| |2 + | l|| lg)5

and (4.12) holds for ¢ < 16. For 16 < ¢ < oo the [ part of R! is of negative

order %. For an estimate of | 72 R lso With the help of L? when [ = ljj, use

(3.5) to conclude
~1 _8 1 ~_ 1 _
|75 o< (70 173l + 17730 |oo ) < (e 1412+ [y oo )-
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It follows that for 16 < ¢ < oo, the [ part of R! estimated in LY, gives a
16—
contribution of order ¢ 2 .

For n € IN it holds that (R(™+Y) — R") has | = 0, g" = g7 and zero ingoing
boundary values. Writing R("+1) = R! + Z?:1(R(j+1) — RY), it follows from
(4.7-10) that for 16 < g <

| 52 (R™D) — R [,<| 52 (R™FD — B") | ;< C™e™ | B |,
| 73 RO | o<| 52RO o< C | B! oo D (Ce) < C1 | R |,
0

for all n € IN. And so, for € small enough, (R"), resp. (R") converges in L4 for
q > 16, to some R, resp. R, solutions to (4.5-6). Analogously taking R" = R"
and e > 0 small enough, (R"),cpv converges in L? to some R, solution to (4.1)
with ingoing boundary values (4.6). The contraction mapping argument guar-
antees that these solutions are isolated. [

Proposition 4.2 Let Q be a bounded set in IR3, and f, a nonnegative function
defined on 0. If a function f such that M~'f € L®(Q x IR®) satisfies

vevaf = QU fT) - ML(M™'f7), (z,0) €Qx R?,  (4.14)
f = fb’ 89+, (415)

then f~ =0 and f = fT solves the boundary value problem

UV$f:Q(faf)a QXR37
f="fe, 09%.

For a proof of the proposition, see part one [AN2].

Let f = M(1+ xYi, €' + €*R) where R satisfies (4.5-6). Denote by
fT =max{f,0} and f~ = max{—f,0}. Then

4
ff=M1+ )_(Z €'+ ¢'R),
=1
and f satisfies (4.14), (4.15). Since f~ = 0 by Proposition 4.2, the R's of (4.1)
and (4.5) coincide, and this solution f to (1.1-2) is nonnegative.

It also follows from the proof that the solution f is isolated. Constants that
need not be precised in the fourth order asymptotics, are ’compensated to cor-
rect value’ by the fourth order rest term(, as can be seen from the uniqueness
arguments for the rest term. This also holds for the third order vy suction
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term coming from a fifth order coefficient c5(rg) + t5 = 0, since at third order
the relevant term has a factor L(v) = 0). In fact the previous analysis would
have proceeded without changes, had we taken for ¢* only its Hilbert part, and
included the upcoming boundary values in those for the rest term.

It finally follows from the previous proof that the hydrodynamic moments con-
verge to solutions of the corresponding leading order limiting fluid (Hilbert)
equations, when ¢ tends to zero.

5 Comments and remarks.

As mentioned in the introduction, the approach holds without change for the
other cases of asymptotic expansion in the two-roll setup that are discussed in
[S]. The following example illustrates the treatment in the upcoming types of
situations.

Consider the equation (1.1) under the scaling

af 1 1~
r € (ra,rg), (vr,vg,v,) € IR,
. . 2 21
for m = 3 and without the coupling wp = m<%u§ﬁ — Tp2 + Ae)

between the boundary values. Assume the cylinders rotate in the same direction
and that 1 < PSBQ/[(’I"QB - l)u(%Bl] < (uga1/ugpirp)?. This guarantees an
asymptotic expansion with positive (as well as one with negative) second order
radial velocity u, g9, and one with third order radial velocity. For the positive
one, take the asymptotic expansion 1 of Section 4 up to order three, and the
rest term R of order three in €. The rest term analysis proceeds as in Section
4 and gives the following result.

Theorem 5.1 For 0 < e small enough, there is an isolated, positive L'-solution
fe of the equation (5.1) for m = 3 with boundary conditions (1.2), and with
positive second order radial velocity u, o, for which

/Mlsupessre(m,w) | f(r,v) |? dv < +o0.

The hydrodynamic moments converge in L™ to solutions of the corresponding
leading order (second order in € for the radial velocity) limiting fluid equations,
when € tends to zero.

Also for the negative second order radial velocity u,z2, a second isolated solu-
tion can be obtained in the same way.
For the case of third order radial velocity, again take the asymptotic expansion
1 in Section 4 up to order three, and the rest term R of order three in e. The
rest term analysis proceeds as before.
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Theorem 5.2 For 0 < e small enough, there is an isolated, positive L'-solution
fe of the equation (5.1) for m = 3 with boundary conditions (1.2), and third
order radial velocity u,g3 for which

/M_lsupessre(,.A,rB) | f(r,v) |? dv < +o0.

The hydrodynamic moments converge in L™ to solutions of the corresponding
leading order (third order in € for the radial velocity moment) limiting fluid
equations, when € tends to zero.

The proof of convergence for the radial velocity moment also requires a splitting
in LY of the type in [AN2]. Theorems 5.1-2 in particular demonstrate that three
separate solutions to (1.1-2) coexist for these parameter values.
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