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Abstract

This paper considers the time- and space-dependent, linear Boltzmann
equation with general boundary conditions in the case of inelastic (granu-
lar) collisions. First mild L!-solutions are constructed as limits of iterate
functions. Then boundedness of all higher velocity moments are obtained.
Finally the question of convergence to equilibrium is studied, using a gen-
eral H-theorem for a relative entropy functional.

1 Introduction

The linear Boltzmann equation is frequently used for mathematical modelling in
physics, (e.g. for discribing the neutron distribution in reactor physics, cf. [1]-
[4]). In our earlier papers [5]-[11] we have studied the linear Boltzmann equation
for a function f(x,v,t), representing the distribution of particles with masses m
colliding elastically and binary with other particles with masses m, and with given
(known) distribution function Y (x, v,). The purpose of this paper is to generalize
our earlier results to the case of inelastic collisions for granular gases. In recent
years a significant interest has been focused on the study of kinetic models for
granular flows, see e.g. [12]-[14], whose papers study the non-linear Boltzmann
equation for granular gases, (mostly in the case of hard sphere collisions).

So we will study collisions between particles with mass m and particles with
mass My, such that momentum is conserved,

mv +m,v, = mv' +m,v., (1.1)

where v, v, are velocities before and v', v. are velocities after a collision.



In the elastic case, where also kinetic energy is conserved, one finds that
the velocities after a binary collision terminate on two concentric spheres, so all
velocities v’ lie on a sphere around the center of mass, v = (mv+m,v,)/(m+m.),
with radius - |v—v, |, and all velocities v/, lie on a sphere with the same center
v and with radius —%—|v — v./|, cf. Figure 1 in [5].

In the granular, inelastic case we assume the following relation between the

relative velocity components normal to the plane of contact of the two particles,

w -u=—a(w-u), (1.2)
where « is a constant, 0 < @ < 1, and w = v — v,,w' = v/ — v/ are the relative
velocities before and after the collision, and u is a unit vector in the direction of
impact, u = (v —v)/|v/ —v|. Then we find that v/ = v/, lies on the line between
v and v}, where v} is the postvelocity in the case of elastic collision, i.e. with
a =1, and v, = v/ lies on the (parallel) line between v, and v/;.

Now it follows that the following relations hold for the velocities in the gran-
ular, inelastic case,

m
'=v— N——(w-u)-u
vi=v-(at )m—i-m*(w ),

(1.3)
v, :v*—i-(a—f—l)L(w-u)-u,
m 4+ m,
where w - u = wcosf,w = |v — v,|, if the unit vector u is given in spherical
coordinates,
u = (sinf cos (,sin @ sin ¢, cos ), (1.4)

0<0<7/20<(<2m
By (1.3) we get for the relative velocity after collision, w' = v/ — v, that

w=w-—(a+1)(w-u)-u, (1.5)

and we also find (for w' = w)) that

(W' | = |w|V/sin2 0 + a2 cos? 6. (1.6)

Furthermore, the change of kinetic energy AF in a binary granular collision can
be calculated by

2AE = m|[V'|> + m,|v.]? — m|v]* — m,|v.|]* =

=—(1- QZ)%wQ cos” 6.
m+ m,

(1.7)



One can also see that all velocities v/ and v, terminate on two different spheres
(with different centers, if o # 1), cf. [12]-[14],

(1—a)m, n (14 a)m,w

!

vi=v+ w
v o= (1—a)m - (14 a)mw (1.8)

where v = (mv +m,v,)/(m+m,),w =v—v,, w = |w|, and 7 is a unit vector.

Moreover, if we change notations, and let 'v,' v, be the velocities before, and
v, v, the velocities after a binary inelastic collision, then by (1.2) and (1.3), cf.
[12]-[14],

'v:v—w(wu)-u
V. = m(wu) -u.

In the following sections of this paper we give in Section 2 some preliminaries on
the linear (space- and time-dependent) Boltzmann equation. Then in Section 3
solutions are constructed as limits of iterate functions, and in Section 4 bound-
edness of higher velocity moments are studied. Finally in Section 5 we give an
H-theorem for a (general) relative entropy functional, and also use this theorem
to study the problem of convergence, when time goes to infinity.

2 Preliminaries

We consider the time-dependent transport equation for a distribution function
f(x,v,t), depending on a space-variable x = (z1,%,23) in a bounded convex
body D with (piecewise) Cl-boundary I' = 9D, and depending on a velocity
variable v = (v, vp,v3) € V = R® and a time-variable ¢ € R, . Then the linear
Boltzmann equation (in the case of no external forces) is in the strong form

0
W v, 1)+ v - grad f(x,v,0) = (@F)(x,v,0), (2.1)
x € D,veV =RteR,, supplemented by initial data

f(x,v,0) = fo(x,v),x € D,veV. (2.2)

The collision term can, in the case of inelastic (granular) collision, be written, cf.
[12]-]14], and also [1]-[11],

@), v, 1) = / / a0, 0)Y (v 1) =
- Y(x,v.)f(x,v,t)|B(6, w)dv.dfd(,

(2.3)



with w = |v—v,|, where Y > 0 is a known distribution, and B > 0 is given by the
collision process, and finally J,, is a factor depending on the granular process, (and
giving mass-conservation, if the gain and the loss integrals converges separately).
Furthermore, 'v,' v, in (2.3) are the velocities before and v, v, the velocities after
the binary collision, cf. equation (1.9), and Q = {(6,¢): 0< 0 < 6,0 < { < 27}
is the impact plane.

If the collision term is written in a weak form with a testfunction g = g(v),
then we (formally) get

@f, 9) /(Qf)(x v, 1)g(v)dv =

///Vm (VI v, Y (%,v2) B0, |v — v. | dvdv.dodc, (2.4)

where v’ is the velocity after collision.
_In the following of this paper we will study the angular cut-off-case with
6 < m/2. Then the gain and the loss term in (2.3) can be separated

Q)G v, 1) = (QTf)xv, 1) = (Q ) v, 1), (2.5)

where we can write

(@) (x,v, 1) = / / 0,0 (! V.V, B0, ). —

(2.6)
= / K,(x,v = v)f(x, v, t)d'v
v
and
(@ f)(x,v,1) = L(x,v) f(x,v,1) (2.7)
with the collision frequency
L(x,v) = // Y (x,v,)B(8, w)dv,dfd(, w = |v — v,|. (2.8)
Ve
In the case of a non-absorbing body we have the following relation
L(x,v) = / K, (x,v = v')adv'. (2.9)
v

For hard sphere collisions the function B(f,w) can be written, cf. [1]-[4] and
[12]-{14],

B(f,w) = const - wsinf cos B, w = |v — v,|. (2.10)



Another physically interesting case is that with inverse k-th power collision forces

k-5
B(f,w) =b(0)w,y = 1 (2.11)
with hard forces for £ > 5, Maxwelllian for £ = 5, and soft forces for 3 < k < 5.
The factor J, in the gain term can in the hard sphere case be calculated and
found to be proportional to a=2, cf. [12]-[14].
Furthermore, the equation (2.1) is in the space-dependent case supplemented
with (general) boundary conditions
|nv| . . .
_(x,v,t)= | —R(x,v—vV X,V,t)dv,
nv<0nv>0xel'=0D,teR,

where n = n(x) is the unit outward normal at x € I' = 9D. The function R > 0
satisfies (in the non-absorbing boundary case)

/ R(x,v = v)dv =1, (2.13)

and f_ and f, represent the ingoing and outgoing trace functions corresponding
to f. In the specular reflection case the function R is represented by a Dirac
measure, R(x,v — v) = §(v — v + 2n(nv)), and in the diffuse reflection case
R(x,v — v) = |nv|W(x, v) with some given function W > 0, (e.g. Maxwellian
function).

Now, using differentiation along the characteristics, the equation (2.1) can
formally be written, cf. (2.5)-(2.9),

%(f(x +tv,v,t)) = / Kox+tv,)v—ov)f(x+tv, v, t)dv
v

— L(x+tv,v)f(x+tv,v,t).

(2.14)

Let t, = t3(x,v) = inf e {7 : x—7v ¢ D}, and x;, = x,(x,v) = x—t,v. Here t,
represents the time for a particle going with velocity v from the boundary point
X to the point x.

Then we have the following mild form of our equation

f(x,v,t) = f(x,v,t) + /t(Qf)(x —Tv,v,t —T)dr, (2.15)
0
where

_ { fo(x—tv,v), 0 <t <t, (2.16)

FOOVE) = F (vt = 1), £ >



and also the exponential form
f(x,v,t) = f(x,v,t) exp[— / (x — sv,v)ds] +

/ exp[— / (x —sv,v ds]/ Ky(x—1v)/)v o v)f(x—1v,)v,t —7)dvdr.
(2.17)

Remark. One finds that f is a mild solution (2.15) if and only if f satisfies
the exponential form (2.17) of the equation, (cf. our earlier papers and also the
classical result by di Perna-Lions). For a proof we (among others) use that

d
dt(tb(x +tv,v)) =1 (2.18)

3 Construction of solutions

We construct mild L'-solutions to our problem as limits of iterate functions f",
when n — oo. Let first f~!(x,v,t) = 0 for all x,v € Rt € R,. Then
define, for given f" ! the next iterate f", first at the ingoing boundary (using
the appropriate boundary condition), and then inside D and at the outgoing
boundary (using the exponential form of the equation),

ff(x,v,t) = MR(X,\? —v) [ (x, v, t)dv,
v [nv|

nv<0,xel'=0D,veV =R tcR,,

(3.1)

and
B ¢
fr(x,v,t) = f"(x,v,t) exp[— / L(x — sv,v)ds| +
/ exp[— / (x—sv,v ds]/ Ko(x=71v,/)v = v)- (3.2)
N x -7, vt — 7)d vdr,
XEDUF+( ,veV =R teR,,
where

fox—tv,v),0<t <t

[ v,t) = { Frx —tyv, v, t — 1), t > 1. (3.3)

Let also f"(x,v,t) =0 for x € R® \ D.
Now we get a monotonicity lemma, which is essential in the following and
which can be proved by induction.



Lemma 3.1.

fHx, v, ) > (%, v, ),

(3.4)
xeD,veV,teR,,neN.

Remark. The iterate function f"(x,v,t) represents the distribution of particles
undergone at most n collisions (inside D or at the boundary I' = @D) in the time
interval (0, t).

Using differentiation along the characteristics with (2.18), we get by (3.2) that

%[fn(x +iv,v,t)] = /‘/Ka(x +tv,)v—ov)- 55)
PN x v v ) d'Y — L(x + v, v) U (x - tv, v, t).

Now integrating (3.5), it follows by (2.9) and Green’s formula that

// f"xvtdxdv—i—/// [ (x, v, ) nv|dvdl'dr =
bV rv

/ fo(x, V)dxdv+/ / M (x,v,7)|nv|dvdldr + (3.6)
DV TV

/ // L(x,V)[f" 1(x,v,7) — f*(x, v, T)]dxdvdr,
DV
where by (2.13) and (3.1)

/ M (x,v,7)|nv|dv —/ (x,v,7)[nv|dv. (3.7)

So by Lemma 3.1 and (3.6) with (3.7), it follows that (for all ¢ > 0)

/ M (x, v, t)dxdv < / fo(x, v)dxdv < oo. (3.8)
DV DV

Then Levi’s theorem (on monotone convergence) gives existence of mild (defined
by (2.15)) L'-solutions f(x,v,t) = lim,_, f™(x, v, t) to our problem with granu-
lar gases (almost in the same way as for the elastic collision case). Furthermore, if
L(x,v)f(x,v,t) € L}(D x V), then we get equality in (3.8) for the limit function
f, giving mass conservation together with uniqueness in the relevant function
space, cf. [6] and also [3],

/ f(x, v, t)dxdv = / fo(x,v)dxdv,t € R,. (3.9)
DV DV

In summary, we have for granular gases the following existence and uniqueness
theorem for solutions to our time-dependent linear Boltzmann equation with
general boundary conditions.



Theorem 3.2. Assume that K,, L and R are non-negative, measurable func-
tions, such that (2.9) and (2.13) hold, and L(x,v) € L{ (D x V).

a)

loc

Then for every fo € L*(D x V) there exists a mild L'-solution f(x,v,t)
to the problem (2.1)-(2.3), (2.5)-(2.9) with (2.12), (2.13), satisfying the
corresponding inequality in (3.9).

Moreover, if L(x,v)f(x,v,t) € L'(D x V), then the trace of the function f
satisfies the boundary condition (2.12) for a.e. (x,v) € I'xV. Furthermore,
mass-conservation, giwing equality in (3.6), holds together with uniqueness
in the relevant L'-space.

Remarks.

4

1)

2)

The statement in Theorem 3.2(b) on existence of traces follows e.g. from
Proposition 3.3, Chapter XI in [3].

The assumption Lf € L*(D x V) is for instance satisfied for the solution
f in the case of inverse power collision forces, cf. (2.11), together with
e.g. specular boundary reflections. This follows from a statement on global
boundedness (in time) of higher velocity moments, cf. Theorem 4.1 and
Corollary 4.2 in the next section.

The results above can easily be generalized to a case, where the coefficient
« in relation (1.2) depends on the space-variable, i.e. with a = a(x).
Furthermore one can also handle a case with granular (inelastic) collisions
at the boundary (with generalized specular reflections) by a relation nv =
—qyp - nv with a coefficient « = ap(x),x € I' = 9D; see the discussion after
the equations (2.12), (2.13), and cf. also ref. [14].

On boundedness of higher velocity moments

In this section we first study some velocity estimates, and then use these results
to prove boundedness of higher velocity moments in the case of inverse power
collision forces together with e.g. specular boundary conditions. These results
generalize our earlier statements to the granular inelastic case. The following
proposition on the difference of the squares of velocities after and before collision
is an analogue of Proposition 1.1 in [5], and can be proved in (almost) the same
way.

Proposition 4.1. Let v and v/, (0, () be the velocities for a particle with mass
m before and after a binary granular collision with a particle, having the corre-
sponding velocities v, and v, and mass m., such that (1.1) and (1.2) hold. Then

8



the following estimate holds, (for 0 < a<1,0<6 < 7/2,0<( < 2m),

Va0, OF = [v[* <

4.1
< 2(a+ 1)p,w cos B[3|v.| — p|v|cosb], (41)

with w = |v — v, |, p, = my/(m+m,),p=m/(m+m,).

Now we can prove that the following type of estimate holds also in the inelastic
granular collision case, (analogously to the elastic case, cf. Proposition 1.2 in [5]).

Proposition 4.2. Suppose v and v/, are velocities as in Proposition 4.1. Then
for all o > 0, there are positive constants K, and Ky (depending on o, m, m, and
a), such that
(L+ [va(0))7 = (1 + [v[})2 <
< Ki(weos0)(1 + |v,|)mxbo- (1 4 |[v|?)e-2/2 _ (4.2)
— Ky(wcos? 0)(1 4 |[v[?)e- /2,
In the rest of this section we assume inverse power collision forces with the
function B(@,w) given by (2.11).
To get higher velocity estimates for our solution f (given by Theorem 3.2
(a)), we start from equation (3.5), i.e. the differentiated mild form (along the

characteristics) for the iterate function f™, and multiply this equation by (1 +
v?)?/% where v = |v|,0 > 0. Then

d

7 (1+ 0?2 fr(x +tv, v, t)] =

= / Ko(x+tv,)v = v) (1 +0?)2f Y x4+ tv,) v, t)d'v — (4.3)
v

— L(x +tv,v)(1 + )72 f*(x 4 tv, v, ).

Now integrating (4.3), it follows by Green’s formula that

t
// (14032 f(x, v, t)dxdv + / // (14022 f*(x, v, 7)|nv|dvdldr =

DV 0 v

¢
= // (14 )72 fo(x, v)dxdv +/ // (140272 f"(x, v, 7)|nv|dvdldr +
DV 0 TV
t

+ / /// Ko(x,v = v)(1 + 022" Yx, v, r)dxdvd'vdr —

0 DVV

_ /Ot //DV L(x,v)(1+ v2)a/2f"(x, v, T)dxdvdr,
(4.4)



where all integrals exist inductively. Let

— //Dv(l + )72 fr(x, v, t)dxdv (4.5)

be the velocity moment and take the derivative, using (4.4) and (2.9) (cf. also
(2.4)). Then

- / / (14 02)7 " (x, v, £) v|dvdl —
v
- // (1 + 0372 f"(x, v, t)|nv|dvdl +
I'v

x. Vv v/ ,Ul2(7/2 nflxv _ 1)2‘7/2 "x. v .
+///DVVKQ(, V(4 @)D (%, v, 1) = (1 + 02)7 2 (x, v, 1)]

- dxdvdv’,
(4.6)

where f"71(x,v,t) < f*(x,v,t) by Lemma 3.1. For the boundary terms in (4.6)
we assume a “non-heating boundary” with

R(x,v — v) =0 for |v| > |v|. (4.7)

This assumption is for instance satisfied for specular reflections. Then by (2.13)
and Lemma 3.1

[P v, iy <

v (4.8)

< / (1 + v f7(x, v, 8) avdv.
g

So we have, by (4.6), (4.8) together with (2.11), that

/// / Dvm O b6 va) 706 v,1)- (4.9)

(1 + (")) — (1 4 )Y dxdvdv,dodC.

Here we use the estimate in Proposition 4.2 together with some elementary in-
equality

—w" < (14 0,)H =27 (1 40202 1 <y < 1. (4.10)
And we get that there exist constants C,Cy, Cy > 0, such that by (4.9)

M(t) < CiMyy 1 (8) + CoMy (1) — CoMys (1), (4.11)

10



where we have assumed that the functions Y and b satisfy the following condi-
tions.

/ (14 0,05 qup (¥ (x, v.) v, < oo, (4.12)
14 xeD
/ inf (Y(x,v,))dv, >0, (4.13)
v x€D
and
w/2
0< / b(0)df < oo (4.14)
0
Now, for hard and Maxwellian collision forces, 0 § =(k—=5)/(k—1)<1,ie.
k > 5, it follows from (4.11), where —M ., (t) < —M,(t), that
d
%(ec"tM,,(t)) < O3 M, _s(t), (4.15)

with § =1 — v > 0 and some constant C5 > 0.

Integrating (4.15) and using for ¢ = 6 > 0, that the total mass My(¢) is
bounded, we get that M,(t) is globally bounded (in time) for 0 = ¢. Then we
can continue in the same way for o = 24, 3J,... up to o = oy, if

// (14 v%)?/2 fo(x, v)dxdv < oo. (4.16)
DV

Finally, let n — oo and use Lemma 3.1.
Then the following theorem for higher velocity moments holds for our solution
in the granular inelastic case.

Theorem 4.1. Assume that the collision function B(0,w) is given for (hard or
Mazwellian) k-th power forces by (2.11) and (4.14) with k > 5, i.e. v > 0,
and suppose that the function Y (x,v.) satisfies (4.12), (4.13). Let the boundary
relation (2.12) be given for a “non-heating” boundary by (4.7), (e.g. specular
reflection). Then the higher velocity moments, belonging to the mild solution
f = fa(x,v,t) in Theorem 3.2 (a), are all bounded (globally in time),

// (1+02)°2f,(x,v,t)dxdv < C, < 0,
DV

O<a<l,t>0,0<0 <oy,

(4.17)

if (14 v2)%/2fy(x,v) € L'(D x V).

11



Remark. Also for soft collision forces, 3 < k£ < 5, (i.e. —1 < < 0), one gets
analogously a result on boundedness of higher moments,

/t // (1+02)°2f(x,v, T)dxdvdr <

0 DV (4.18)
C, o+l £ (x, v)dxdv.

< (1+t)//DV(1+v) Folx, v)dxdy

We will now finish this section by proving that our solution f satisfies the as-
sumption Lf € L'(D x V), giving existence of traces at the boundary together
with uniqueness and mass-conservation; cf. Theorem 3.2 (b) and Remark 2 in
Section 3. This result holds for both hard and soft inverse collision forces.

Corollary 4.2. The solution f = f,(x,v,t) in Theorem 3.2 (a) satisfies
L(x,v)f(x,v,t) € L"(Dx V),t € Ry, (4.19)

if a) in the hard force case v = (k —5)/(k — 1) > 0, the assumptions of theorem
4.1 are satisfied together with

(1+v,)"sup(Y(x,v,)) € L}(V), (4.20)
xeD
(1+02)"2fy(x,v) € LY(D x V), (4.21)
and if b) in the soft force case, =1 <~y = (k—5)/(k—1) <0,
sup(Y(x,v,)) € L'(V) N L=(V). (4.22)
x€eD

Proof. We estimate the collision frequency as follows
a)
L(x,v) // 0)|v — v.|"Y(x,v,)dv,.dfd( <

/ / Y1+ 02)72(1 4 0.)7Y (x, v, )dv.,dOd¢ <
< const.(1 + v?)7/2

and then we use Theorem 4.1.

b) For soft forces, the collision frequency is bounded,
L(x,v) = // b(0)wY (x,v,)dv.did( =
va
- / @1 wY(x v)dv. + / WY (x, v, )dv.]dodC
Q w<1 w>1

< 2 /OW/2 b(0)df[sup(Y (x, V*))/w<1 w7dw+/vsup(Y(x, V.))dv.]

X,V X

< constant,
so [[ Lfdxdv < const. [[ fodxdv.

12



5 On a (relative) entropy theorem

In this section we give generalizations (to the granular inelastic case) of our old
results on entropy and convergence to equilibrium.

Let ¢ = ¢(z),R, — R, be a conver C'-function, and assume that there
exists a stationary mild solution F' = F,(x,Vv) to the linear Boltzmann equation
with boundary conditions. Then a general (relative) H-functional H%(f) for the
solution f = f,(x,v,t) can be defined by

/ / bV Xxvvt))F (x,v)dxdv. (5.1)

This functional is generalization of the usual (negative) relative entropy functional
with ¢(z) = zlogz,z = f/E, E = E(v) Maxwellian (used for the non-linear
Boltzmann equation).

Then we can formulate the following (general) H-theorem for our solution (in
the granular case).

Theorem 5.1. Let f = f,(x,v,t) be the mild solution given in Theorem 3.2
(a,b), and let F = F,(x,v) > 0 be a corresponding stationary mild solution with
the same total mass [[ Fdxdv = [[ fodxdv. If Ho(fo) exists for a given conves

C'-function ¢, R, — R, then the relative H-functional H2(f)(t) in (5.1) exists
fort > 0 and is non-increasing in time. Moreover

0+ [ PO < ), (5.2)

0
where

) = / / / L dxdvAVE(xv = V)P (V)

{¢<f1£’zx, 5)-(7)- .
[y~ roen (g ) 20

Proof. (Sketch) For a formal proof of the H-theorem use differentiation (along
the characteristics) to get

%[F(x +tv v)¢(fé,xx+j¥vvvg) )]

[+ (o) - Lo () e v

%:/Ka(x—i-tv,'v—)V)f(x—i—tv,'v,t)d'v—
1%
— L(x+tv,v)f(x+1tv,v,t),

where

13



and
dF _ 12 ! !
T K,(x+tv,)v—ov)F(x+tv,v)dv — L(x+tv,v)F(x+ tv,v).
v

Integration [[[...dxdvdr, Green’s identity, and some changes of variables, us-
ing (2.9), give (5.2) with (5.1), (5.3). For the boundary terms we here use an
inequality of Darrozes-Guiraud type, cf. [2], p. 115-118, and also [11]

/VF(X, v)qﬁ(%) (nv)dv > 0,

if f and F satisfy (2.12), ¢ is convex, and n = n(x) is the outward unit normal.
We also see that P2(f)(t) > 0 in (5.3) because (for convex functions @)

¢(b) — ¢(a) > (b— a)d'(a).

For a strict proof of the H-theorem 5.1, with our solution given by Theorem 3.2
(a,b), we will use iterate functions f}';(x,v,t),n = 0,1,2,..., corresponding to
some cut-off in the initial function (for k,j =1,2,3,...),

Fos (%, v) = %F(x, V) + min(fo(x, v), kF(x, v)).

Here it follows (by induction) that (for ¢ > 0)
17 < Fix, v 0/ F(x,v) <k + 1,

Then, analogously to the formal proof, we differentiate the iterate functions (along
the characteristics) and integrate. Next, let n — oo (and use dominate con-
vergence), and then let k,j — oo (using a.o. Fatou’s lemma, and the lower
semi-continuous property for convex functions).

O

Remarks.

1) The results in Theorem 5.1 hold analogously if F' = F,(x,v,t) > 0 is any
non-stationary (i.e. time-dependent) mild solution to our problem (e.g.
with another initial function Fj).

2) One fundamental question in kinetic theory concerns the large time behav-
ior of the distribution function f = f(x,v,t); in particular, the problem
on convergence to a stationary solution when time goes to infinity. We
can (easily) generalize our earlier results, (cf. [7], [8]), on weak and strong
convergence to equilibrium to the granular, inelastic case, and we get for
instance the following result:

14



Let f = fa(x,Vv,t) be the mild solution (e.g. given by Theorem 3.2 (a,b)
and Theorem 5.1) to the linear Boltzmann equation with kernel Y = Y (v,.)
and a general collision function B = B(#,w), (including both soft and
hard inverse forces), together with general boundary conditions, and assume
that there exists a stationary mild solution F' = F,(x,v) > 0, (with total
mass || F|| = || fo||). Then, for every initial function fy(x,v) € L*(D x V),
the solution f = f,(x,Vv,t) converges strongly in L' when ¢ — oo to the
stationary solution F,(x,v), i.e.

lim ( //Dv|faxvt F,(x,v)|dxdv) = 0.

t—o0

For a proof of this statement, one can use the method from our earlier paper
[7] (in the detailed balance case), and change the Maxwellian function E to
the more general function F' = F'(x,v). First one proves weak convergence
to equilibrium, using (among others) our new H-theorem with the convex
function ¢(z) = (z — 1)?,z = f/F. Then the strong convergence result
follows by proving a translation continuity property for our solution; for
details, see [7].

3) The inequality (5.2) with (5.3) in Theorem 5.1 can also be used to prove
uniqueness of stationary solutions. Because if we (for instance) take ¢(z) =
(z —1)%,z = F/F, where F is another stationary solution, then

PA(F) = // (x,)v—=v)F(x,v)-
5 DVV

F(X: oo
‘F( ‘ dxdvd'v = 0,

and it follows (as in the elastic case) that F(x,v) = F(x,v).

4) In Theorem 5.1 we have assumed the existence of a stationary (equilibrium)
solution to our problem. This question has been studied (and partly solved)
in our earlier papers, but a general existence result for the linear stationary
Boltzmann equation is not yet received; cf. also the L!-result in [15] for
velocities bounded away from zero, and cf. [16].
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