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1 Introduction

The linear Boltzmann equation

(3'tf(x,v,t)+v'8mf(z,v,t):%/ (f(z, v t) = f(z,0,0) v w|dw (1)

St

describes the evolution of a density of particles in a medium in which the particles
don't interact among themselves. The motion of each particle is described by a jump
process: The speed of a particle is constant (equal to one), and also the direction is
constant in exponentially distributed time intervals. At the end of such an interval,
the direction jumps according to a law that corresponds to the specular reflection on a
circular obstacle (with a uniformly distributed impact parameter).

This Boltzmann equation can be rigorously derived as the “Boltzmann-Grad” limit
of a system with obstacles of finite size. This was done by GallaVvottil[Gal, Ga2] (but
see also Spohn [$p]) by considering obstacles of diametdnose centers are dis-
tributed in the plane according to a Poisson law with density A formal calculation
yields a mean free path of order one, uniformlyjrand Gallavotti showed that this is
rigorously true, and that the limiting evolution equation is really the Boltzmann equa-
tion (X).

Quite contrary to this, Bourgain et al. [BGW, GW] showed that the corresponding
scaling for aperiodic distribution of scatterers cannot give rise to a Boltzmann equa-
tion, the reason being that the distribution of free path lengths is not exponential in that
case. An asymptotic formula is given in [CG]. At a formal level, however, it can still
work as was shown by Golse|[G].

As a way of deriving a linear Boltzmann equation starting from a periodic distribu-
tion of scatterers, Caglioti et al [CPR] considered scatterers of diamefigh centers
on a rectangular lattice with parameterin each lattice point, independently of the
other lattice points, the probability of finding a scatterer.i$n the limit ase tends to
zero, this distribution approaches a Poisson distribution, but one cannot immediately
infer from that, that the dynamics of scattered particles approach a Boltzmann process.



In Caglioti et al, the convergence to the Boltzmann process is proven rigorously
for a third kind of process, a “Markovian” process, in which there is an obstacle on
every lattice point, but each time the test particle encounters an obstacle, there is an
independent random choice: with probabillty- € the test particle continues as if the
obstacle was not there, and with probabilitthe particle is scattered. They then prove
that in the limit all three processes are equivalent.

In this paper we consider a scaling which is intermediary between the case consid-
ered in [CPR] and i [BGW]: the scatterers still have radiusut the lattice parameter
is €, wherel/2 < v < 1. In order to achieve a proper Boltzmann-Grad limit, the
probability of finding a scatterer at a lattice site mustte!; we have found it conve-
nient to writev = 1/(2 — 0) whered is between zero (which corresponds to the purely
periodic case), and one, which corresponds to the scaliihg in|[CPR].

The technique we use is in the spirit very close to that of [CPR], and in particular
we first study a “Markovian” process, in which each time a scatter is encountered a
random choice is made as to whether scattering takes place or not, and then this system
is shown to be equivalent (in the limit as— 0) to the system where the scatterer
configuration is determined once and for all.

There is one major difference, however. Wher= 1, the number of scatterers
encountered along any line lies between and+/2¢~! per unit time, which makes it
comparatively easy to establish that in the limit, the mean free times are exponentially
distributed. According to [BGW], this is false whén= 0, and actually for any)
strictly smaller than one. Excluding a small set of initial directions it is rather easy to
show that if0 < § < 1, then in the limit, thdirst free time is exponentially distributed,
and so the main problem is to prove that the same holds for the second flight (and the
third, and so on).

In the second section of the paper, we describe i detail each of the stochastic pro-
cesses, and state precisely the convergence theorems that are the main results of the
paper: first that the law corresponding to the Markovian process converges in the sense
of distributions, to theL!-solution of the Boltzmann equation, and then that in the
limit, all three processes (the fixed obstacle process, the Markovian process and the
Boltzmann process) are equivalent.

Sectior] B then contains the proof of Theofgm 2; this is rather elementary, but some-
what technical. For a fixed the probability to find a free flight, depends on the number
of obstacle sites that this trajectory meets. Hence the proof relies on a rather careful
estimate of the functios(x, v, L), which gives the number of times that a line segment
of length L, crosses obstacle sites, given that it starts from R? in the direction.

The relevant results are given in Sectign 4.

The proof of Theorerp]1 relies on a stronger result from Seffion 5, where we prove
a that the stochastic process related to the Lorentz gas converge to the process related
the Boltzmann equation. More precisely, the trajectories of any one of the processes
belong with probability one to a Skorokhod space, and define a measure on this space;
we prove that the measure corresponding to the Lorenz gas converges to the measure
corresponding to the Boltzmann equation. One essential ingredient in the proof is an
estimate on the probability that a random trajectory returns to the same obstacle, which
is the most technical part of Sectiph 5



2 Three jump processes and their asymptotic
equivalence

In this section we will describe the three stochastic processes that are the subject of this
paper: the jump process associated to the scattering of a particle on a fixed but random
set of scatterers with finite radius (the lattice gas), the “Markovian” process given by
scattering on a set of obstacles with fixed positions, but where scattering takes place
with a given probability, independently of possible previous encounters with the same
obstacle, and finally, the jump process associated with the Boltzmann equation. Once
these processes are well described, we are ready to state THgorem 1, an asymptotic
equivalence between the three, and, as an important step on the way, Theorem 2, which
states that the Markovian model converges to the Boltzmann equation.

2.1 The lattice gas

Much of the content of this section is borrowed from [CPR]. Zgthe a two-dimensional
lattice whose cells have si2e

Zi ={(1\ 2N | ji €2, i=1,2}.
andC be the lattice formed by the centers:
C={((h +1/2)A, (G2 +1/2)N)js € Z, i=1,2}.

From here, the lattice parameter is sef\te= ¢!/(2-9). Next we consider an array of
random variables

{nc}cec

wheren,, the occupation number, is a random variable taking the valae0 with
probability p = €/(2-9) and1 — p respectively, independently for all € C. The
“physical domain” for the problem is constructed by placing a circular obstacle (scat-
terer) of radiuse at the center of those lattice cells for whiehh = 1. For a given
scatterer configuratiofw. } .c¢, the region occupied the set of scatters is

Ae= | Belao), 2)

ne=1

where B.(x.) is a closed unit disc with radiusand center at € C. The set of all
possible obstaclet) B.(z.), is called the “obstacle sites”.

Consider now a test point particle with initial positiane R? \ dA., and with
an initial velocityv € S'. (This means that particles are allowedstart inside a
scatterer; of course, in the limit agjoes to zero, the fractional volume of the scatterers
goes to zero, and so this is only a matter of convenience). The particle then moves with
constant velocity until it encounters a scatterer, i.e. when

t=min{r > 0|z +v7 € OAc, v-w <0},



wherew is a unit normal vector pointing out from the scatterer, iRfo\ A.. At this
point the velocity jumps according to a specular reflection, so that the new veltcity
is given by

vV=0v-20v ww. (3)

We denote byz (t) = T!(x,v) the flow constructed in this way. A typical path is
illustrated in Fig] 1. Note that this is well defined for alle R2, and that all the
stochasticity comes from the generation of the configuration of the scatterers.
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Figure 1: Typical path for the lattice gas model. The occupied obstacle sites are black;
the actual occupation of a lattice site is randomly determined once and for all.

Next we consider the evolution of a density of particles, when for each particle a
new configuration of scatterers is generatediylf= fo(z, v) is the initial distribution
density for the particle, its distribution at time> 0, denoted byf6 = fe(x,v,t), is
given by the formula:

/ fe(aj, v, t)g(z,v) dedv = / fo(z,v) E(g(ﬂt(z, v))) dxdv,  (4)
R2x St R2xS1

where g is any continuous function anB denotes the expectation with respect to
{n.}cec, the distribution of occupied sites. In Sectjdn 5 we shall prove:
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Figure 2: Typical path in the Markovian model. Note that in this case the trajectory
may pass through an obstacle on which it has previously bounced, and in the same way,
bounce off an obstacle that it once passed through.

Theorem 1 Let f; : R? x S' — R* be the initial probability density (so thaf is
assumed non-negative and It (R?, S*) with integral one). Then, for any > 0,
0<d6<1:

y_{%fe('vt) :f('vt) (5)

inD'. The limiting functionf (-, t) is the unique solution of the transport equatiEIw (2):

OtV = 3 [ (@)= f@ovld ©

where S~ = {w € S'| v-w < 0}, v is the outgoing velocity after a collision
with outward normalv and in-going velocity (see formula []3)) and (z,v,0") =

fo(z,v).

2.2 The Boltzmann process

The transport equation (or linear Boltzmann equatign (1)) corresponds to a stochastic
process for the motion of particles. Suppose that, v, t) is a weak solution of the
Boltzmann equatiorj {1) with initial dat& (z, v). Thenf(z,v,t) induces an evolution

g = g(z,v,t) on atest functio® € Cy(R? x S') by the following formula:

[ lwogteotdeds= [ flang @) dade,
R2Z2x St

R2x St



The functiong(z, v, t) can be expanded in a series,

g(a:,v,t) = Vtg(xvv) = Z(Vtgo)n(xav) = Zgn(xvvat) (7)

n>0 n>0

whereV'! is a linear semi-group. The first onegg(x,v,t) = e~t¢°(z + vt,v) and,
forn > 1,

t t t
gn(z,0,t) = (Vtgo)n(;v,v) ::e_t2_"/ dtl/ dty - - / dtn/ dw;
0 ty tn—1 -

dwy, H lw - vi—1|g(zn(t), ).
S k=1

Here

Vo ="V,

Uk = Vj_1 = Vp—1 — 2(Wk - Vk—1)wk ,
and
I7,(t) =x + tlv + (tQ — tl)’Ul —+ ... (tn — tn_l)vn_l —+ (t — tn)’Un .

This defines a stochastic process) = (z(t),v(t)), in whicht; — ¢, are indepen-
dent, exponentially distributed intervals between the jump titpesAt a jump time,
the particle changes velocity accordinguio.; = v — 2(vg - wi )wk, Wherewy, € S~
are randomly chosen. It is clear that

(20 (t), v (t)) = (2(t)| (number of jumps if0, [ ) =n — 1), (8)

and that(V*¢°),,(x,v) corresponds to those particles that change velocity exactly
times in the time intervaD, ¢[.

2.3 The Markovian model
Here we consider again the periodic lattice
C={Gh +1/2)A (G2 +1/2)A) | ji € Z, 1=1,2}.

with A = ¢!/(2-9) put at contrast with the lattice gas, we assume that all lattice points
are occupied by a circular scatterer with radiu$he phase space is then

(R?\ Ao) x St

defined as before, but with. = 1. To obtain a “mean free path” of order one, we
assume that at each encounter with an obstacle, the particle performs an elastic collision
with probability p := €%/2=9 or goes ahead with probability — p. After the first



collision the procedure is iterated. This gives rise to a stochastic process which is
Markovian, when regarded as a discrete time process

73k 2z, € A x ST,

wherek enumerates the instances where test-particle encoumegrsHowever, it is
not a Markov process in continuous time, because the time intervals between those
instances are not independent. Nonetheless, we insist on calling the pfocéss—
(R\ Ac) x S* “the Markovian model”. A typical path is illustrated in F[d. 2.
The distribution density for the particle at time>- 0, f. = f.(x, v, t), is given by:

/ fe(z,v,t)g°(x, v) dedv = / fo(z,v)E(¢° (T (x,v))) dedv, (9)
JR2 xSt JR2x St

whereEE denotes the expectation with respect to the proegsand wherg)®(z, v) is

an arbitrary (continuous or smooth) function. Just like_ in [CPR], we can compute an
exact formula forf.(z,v,t). The two observations needed are, first, that due to the
reversibility of an actual scattering event (the collisions are elastic), we have

Pf({l},v|y7 ’LU) = Pte(y7 —’U)|$, _U) )

wherePs (x, v|y, w) denotes the transition probability associated with the process. This
means, that though the process is irreversible, the probability of finding a certain trajec-
tory from A to B is the same as finding the reverse trajectory fiBrto A. Moreover,

it is easy to compute the probability of realization of a given trajecE(y, v):

q(T(z,v)) =p*(1—p)", (p=e"279), (10)

wherek is the number of actual scattering events along the trajectoryhasdhe
number of times that the trajectory crosses an obstacle without scattering. In summary
this gives

felw,v,t) =B[(Rfo)(Ti(x, )] = > a(Ti(w,—v))(Rfo)(Ti(z, —v))
It(x,—v)

(11)
where(Rf)(x,v) = f(x, —v), and where the sum is taken over all possible trajectories
starting at(z,v). Clearly this is a finite sum, because there is a maximal number of
obstacles in any finite time interval. A set of possible trajectories, and one realization
is shown in fig[ B.

For the evolution associated to this model we prove the following theorem:

Theorem 2 Let f, : R? x ST — R* be the initial probability density. Then, for any
t>00<6< 1t

hmfe('vt) :f('vt) (12)

e—0

in M, wheref(-,¢) € L'(R? x S) is the unique solution of the transport equation:

(0 -+v- V) f(w,0,) = 5 [ U= faonwldo, (3)

7



Figure 3: Possible trajectories leaving a given point, and one realization.

whereS— = {w € S'|v-w < 0}, v/ is the outgoing velocity after a collision with out-
ward normalw and in-going velocity (see formula BS)) ang(x,v,0%) = fo(z,v).

The proof of this result is given in Sectii 3. It is somewhat technical, and as a
preparation, we give here some definitions related to the evolutiarfQf= (z.(t), ve(t)).

Similarly to the Boltzmann process already discussed, the evolutien isfde-
scribed by a semi-groug?, as defined ir{]g):

ge(xavat) = Vetgo(xvv) = E[QO(Tf(ﬂfav))}

This semi-groug’! can be expanded as a sum of terms, each one taking into account
the case of exactly collisions with obstacles the given time interval in the following
way:

For a fixed initial condition(x, v) andt > 0, let

Si1(t) ={r€(0,t) |z +vr € OA¢, v-w <0}, (14)

i.e. the set of times when a trajectory starting:atith directionv enters an obstacle,
assuming that no scattering takes place, or in other waétds) is the set of possible
times for the first scattering event of a trajectory. Given that this first event takes place
att; € S1(t), and that the outcome of the scattering gives the new velogjtwe can

then define the set of possible times for the second scattering event, and then for the



third, and so on:

So(t,t1) = {7 € (t1,t) | t1 € S1(t), x4+ t1v+ (T —t1)v1 € OAc, v2-w < 0}

Sp(t,tr . tn1) ={7 € (tn1,t) [ t; €S;, i=1...n—1,
TH+tv- -+ (T —th1)Un_1 € OAc, U - w < O}
Sp1(tity .. ty) = {7 € (tn,t) | t; € Si, i=1...n,
x4t + (7 —tp)vy € OAc, Vpr1 - w < O}.
Of course all theS,, depend on the initial position, and so it would be more correct,
perhaps, to writes,, (¢, 1 ...t,—1;2,v). Given the initial position and velocity, the
sets of scattering events completely determines the trajectory, because there is no other

randomness in the process but the choice whether a scattering takes place or not. We
denote

Snp = |Sn(t, tl e tn—l)‘ (15)

the cardinality of the set,,, and also
k(n) = |Sn+1(t,t1 ce tn)| + Z |Sj(tl‘,t1 .. .tj,1)| s
j=1

which counts the number of encounters with an obstacle which did not result in a
scattering event, given that scattering did occur & at,,. Then

ge(x,v,t) = Z(Vfgo)n(m,v,t) = Zgg7n(a:,v,t) (16)

n>0 n>0

whereg, o(z,v,t) = (1 — €¥/279)51¢%(2 4 vt, v) and, forn > 1,

ge,n(l',U7t) = Z Z pn(l . p)k(n)

tleSl(t) tnESn(t,tl...tn,l)
go(x +tv+ (ta —t1)vr + .o (tn — tne1)Un—1 + (t — tn_1)Vn, Un),

wherevy = v andv; = v}_, is the post collisional velocity with incoming velocity
v;_1, and, as beforey = 9/279,

To prove Theorerp|2 we shall show that, for any functine Cy(R? x S') and
forallt > 0,

/ (fe(z,v,t) — f(z,0,t)g° (z,v) dvdv — 0 as e—0. 17)
R2x St



3 Convergence of the Markovian model to the Boltz-
mann equation

From the very definition of, and the weak definition of,one can see that provirg {17)
is equivalent to showing that given the initial dgtdx, v),

/ folz,v) (Vi®(z,v) — Vig®(x,v)) ddv — 0 (18)
R2xS!?

whene — 0, for fixed ¢ (but uniformly for any intervad < ¢ < T, and for all
g"(z,v) € Cp). That it is enough to consider test functions with compact support,
follows from the fact tha‘tf{lmbmw1 f(z,v,t)dedv — 0 asR — oo (also this holds
uniformly in a bounded time interval, because of the bounded velocities), ant that
andV'? are bounded operators ii*°. Moreover

[ o) (V') = VigP(a0) e <
R2x St

1601 /{f odwd - MV VIl (19
o>M

The first of the terms in the right hand side go to zerdAsncreases to infinity (this
is one point where we use in an essential way fgat L'). The rest of the section is
devoted to proving that the second term goes to zero wher.

To study this second term, we rely on the semi-group propery‘cdndV?, and
that||V!||z~ = ||V!|z~ = 1. The semi-groups are also boundediih ||V||;: =
|V z: < 1. Dividing the intervall0, ] into N intervals gives

N-1
Vtgo(x,v) B ‘/;tQO(x’,U) _ Z V;Jﬁ (V% _ ‘/eﬁ) V(N—l—j)%QO(l,’v) )
j=0
Hence it is enough to show that for some suitably chases N,
N [V g0 (,0) = VI g, 0) 1 — 0 (20)
ase — 0, because then, for any > 0, one can choos&! so large that
20

fodzdv < ————— |
/{f0>M} 2[1g° | Lo

. t
and then take so small thatN, ||V ¥ ¢°(z,v) — V¥ ¢°(z,v)| 11 < e0/2M. Let
Te = t/Ne. Now,

Vg’ (w,0) — V“go(fﬂ,v)’ = ‘ > (Vg (@v) = (V7g°), (z,0)) ‘

n=0

<|(VTg%)y (@0) = (VT6%) y ()]
(V79" (@,0) = (V7°9°), ()]

4 ’ ST (V) (o) + ‘ > (vrg), (w)’

n>2 n>2

10



Itis clear from the definition of V™ ¢%) (z,v), that

|X @), o)

n>2

=1l 1)

Moreover, the following propositions hold true:

Proposition 3 Letg®(x,v) € Cy(R? x S*). Suppose thag’(z,v) = 0if |z| > R (so
R is the diameter of the support ¢f). Assume that > 2¢/(2=9) Then

|2 wed), @, < Cale o~

n>2

Proposition 4 Let ¢°(z,v) satisfy the same conditions as in Proposit@n 3. Assume
also thatt ~ p%, with0 < o < 1.

1. Ifa < 1/3,then

I (VEg"), (z,v) — (V") (z,0)]|
< Crllg°||pt' 1= /log(1/1) . (22)

2. Let),o(w) be the modulus of continuity g%, i.e. a function such thdy® (z,v1)—
g% (z2,v2)] < Ago(|z1 — @2| + |1 — wo]) for all xy, 2, v; andwv,. There is a
~ > 0 such that

I (VEg°), (z,0) = (VP°), (@, 0)]| <
Crt Ao (/%) + OR|g°||L=t" 7. (23)

What this says is that, in a short time interval, the probability that a trajectory has
more than two velocity jumps is very small, and that trajectories with at most one
velocity jump have essentially the same distribution in the limit gs to zero.

This is enough to prove Theorgr 2, because, returning to the exprgssjion (20), and
using N.7 = t, we then have

NeﬂVeNigO(a:,v) — VNLegO(x,v)HLl < Ncro(1) =to(r),

whereo(r) is a function converging to zero with We can conclude, by taking for
exampleN© = ¢~9/(8-49) which implies that the conditions fatin Propositiof B and
Propositiorf # are satisfied. O

The proofs of Propositidn 3 and Propositjgn 4, both depend very much on Proposi-
tion[5, and its corollaries. Consider a line segment of lerdgghtarting from the point
x in the directionv, and denote by(z,v, L) the number of obstacle sites that this
segment crosses. Then Proposifipn 5 says essentially that

s(x,v, L) = Le %= 4 (x,v, L) and
s(z,v, L) < cLe0/(=0) 4 Tee(v, L),

11



where the error terms may be very large, but are small with respectlio %/(2=9)
after integration over; the second error one actually bounded, but at the cost of the
constant: in front of Le—%/(2=9),

Proof of Proposition[3 From [16), we have

|(Vetgo)(xvvvt) - (Vetgo)o(xvvvt) - (Vetgo)l(x’v’t)‘

> P(neo = n)E[g(T!(x,v)) |neo = n]|, (24)

whereP(n., = n) is the probability that there are exactly, scattering events in the
trajectory, and wher& [ A | B| denotes the conditional expectationstjiven B. The
right hand side of (24) is then bounded by

sup  |g(y, w)| Z P(ne =n), (25)
(y,w)€ERZx St n—2

where actually?(n., = n) depends on the initial valugr, v). It remains to estimate

/ P(neo >n)dedv, (26)
Ax St

whereA is a subset oR? sufficiently large to contain the support af
The probability that there are at least two scattering events is
> P(ne =n) = P(ng, > 1) _ P(scattering ak) P(nc, > 2|k)

n>2 k=1
=S p1-pF - - p)): (27)
k=1

in this expressions; is the number of obstacle sites crossed by a segment of length
starting in the direction from the pointz, p(1 — p)*~! is the probability that the first
scattering event takes place exactly atkkth encounter with an obstacle, angis the
number of encounters with obstacles at the secondjiapn the starting position for
the first lap, the direction, and the numberThis corresponds to the number of crossed
obstacle sites along a segment of lengtht,, starting at pointz; in the directionu; .
Note thatt{, 1 andv; are all well defined, given the random numbeand the starting
positionz andwv.

The probabilityp is supposed to be small (and actually converge to zero), so one
can assume that 2 < (1 — p)/7, for all p sufficiently small. Then

1—(1—p) <1—¢ 2P, (28)

Next we writeb, = p(1 — p)*~1/ (1 — (1 —p)**), so that}_;" , by = 1. Because
1 — e~ 37 is concave inr, one can then use Jensen’s inequality to deduce that

s1
S b1l e i) < (1 e FTL bm) . (29)
k=1

12



Integrating overd while keeping the initial direction fixed, and again using the Jensen
inequality gives the estimatg4| denotes the area of the sé}

o0 1 5 o
— = (1 — »)S1 o D un brs2
/AE_ZP(nw—n) dr < |A] IAI/A(l (1—p) )(1 e K )d:r

< |Alsup (1 - (1—p)™) (1 _ e~ F i Ja XLy bese df”) . (30)
z€A

There is no loss of generality in assuming tHas rectangular, with sides aligned with

the directionv, and we can then choose a coordinate system sactkaty, z) where

y = x - v (recall thatjv| = 1). ThenA = I} x I, withy € I; andz € I, and the

exponent in[(30) becomes

3p 1 / > 3p 1 / >
_— bpsodr = ———— brpsa dzdy . (32)
2 |A| A,; 2 || |I2] Ji, 12,;
4
I j ¢ ° ¢ °
2" ] = .
‘07 j=2k=1 ° j=8k=2 °
z O .
'y e
° °
L

Figure 4: The figure shows a strifp with ¢ in an interval of length. andz € I

In what follows, we shall consider the integral with respect {see fig[ #, which
shows a strip of this domain, with length = ¢ and width|I|, wherel denotes a
segment of constanf). In the figure, all scatterers whose centers belong to the strip
are enumerated with the symbplandc; € R? denotes the center of theth scatterer.
Similarly, z; then denotes the second component;df this coordinate system. Sup-
pose now that a line segment starting freng I in the directionv is scattered on the
j-th obstacle, and that the scattering anglg.iF hen the relation

z—zj =esinf/2 (32)

13



holds. Letk = k(g, j) denote the number of scatterers that this line segment crosses
on the way from! to the scatterer, and write = z(3,j). The other way around,

one can follow a line fromz € I, and count the number of crossed obstacles, and
stop on thek™ one along the trajectory. This identifies uniquely an obstaded a
scattering angl@, and so there is a one to one correspondence between a ¢ouple
and(s, 7). If we denote the exact time of scattering againstliﬁ'eobstacle along the
way byt = t1(z, k), and the paint at which this takes place by = z1(z, k), then

the expression fos,, including all variables, i (31) is

S = S(l'l(za k),ﬁ(z, k)vt - tl(zvk)) )

wheres(x, v’, t), in general, is the number of times a segment of lengthrting atc in
the directionv’ (the directiorafterthe scattering, which is identified with the scattering
angles in a natural way). The inner integral in (31) then becomes

S1

TS b (2, k), Bz k), t— (2, k) dz <

2| J1, =

Zbkb?ps x, B8(z, k), t)dz

|f2| L=

because is increasing irt. Using the identification ofz, k) with (5, j), and [32), one
can then write the integral and sum as

27
/ 1A > b m)suw(x B, ) cos(B/2)dB, (33)
cj€Jy

whereJ; = [y, y + t[x [ is a strip of lengtht as denoted in the figure. Let
5e(0,t) =sups(z,6,t),  and
Bs(ﬁv ) |I|2COS 6/2 Z bk(ﬁ])
cj€Jy
We then use Propositign 6 with = ¢, to see thas. (3, ) < c1te /=% 4, (B,1),
where

21
/0 ree(B,0)]dB < cs,

and wherér. .(8,t)| < cate=/(279) for some constants. By the very construction,

2” B.(8,t)dB = 1 independently of (just carry out the sum and integral BS )
W|thout the functions,; for this to be exact, one has to define the; ;) to be zero
when this corresponds to¢ I). Itis also clear that

Bo(p,t) < #{c; € I},

]

where #{-} denotes the cardinality of a set. Here, with a rough estimate, 3f
2¢/(279) 'then#t{c; € J;} < 2t|1|e=2/(>=%), and then

B(f8,t) < Cte™%/2=9) = Ct/p.

14



Thus the expressiofi (B3) is bounded by
2
p [ BAs.0s 55 <
0
2m 2m
<p [ B0t A5 p swB (5 [ e (5.0)]d0
0 B 0
2
<at+Ct [ Irna(ait)lds < O, (34)
0
Similarly, we estimate the factgt — (1 — p)**) in (30) as
1-(1-p<1- €73 < 1 — g Cltprrc(vt)
Now 1 — e~W1+¥2) < min(1,y;) + min(1,y2), and hence
(l_efc(t+prp7‘(v,t))) (1 _ efct)
< C(t—i—min(l,pm}e(v,t))) min(1,¢). (35)

We conclude the proof by integrating overand inserting the relations betweent
andp:

/ P(neo > n)drdv < C’R/ (t + min(l,prp76(v,t))) min(1,¢) dv
AxS1t St

< Cpt*;
the only condition needed is that> 2¢'/(2=9). O

Proof of Proposition[4 The idea of the proof of this proposition is similar to the the
corresponding one in_[CPR], though here we make direct use of the counting lemma
from Sectio 4, just in the proof of Propositigr (3).

Proof of [22):

go(z,v,t) = (Vtgo)o(a:,v) = e 'g%(x 4 vt,v), and
geo(m,v,1) = (Vg%), (x,0) = (1 = p) 0 g0z + vt ),

and so

lgo(s ) = ey Dllze < l19° 1z /A o7 = @=pn e dody

X
= llg°llz e* / [1—e'(1—p) @] dadv, (36)
AxS?t
where, like beforeA C R? contains the support @f’. Next,

et(l _p)sl(z,v,t) — et+log(1—p)sl ,
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and using Corollarly 51 below, we find tHat —¢/p| < r, (v, t), where on the average
71.¢(v,t) is small. Moreoverjog(1 — p) + p < Cp?, and so

|t +1og(1 —p)si| < C(prye(z,v,t) +pt).

Now, with ¢ ~ p®, (which means that ~ '/, ande ~ t(2-9)/9%) the estimate on
r1,¢(v, t) from Corollary[5.] implies that

p/s1 |r175(x,v,t) | dv < c1t/%% 4 ¢y (tlﬂ/o‘ log (tlfl/‘so‘))l/2
Then, for smalk,
meag{v € S| plrp.| > t'*7}) < O\/log(1/t)t 5 177,
for some constan®'. On the complementary set,
|t +log(1 — p)s1| < C(vt1+7 + t1+1/a) ,
and so the integral i (36) is smaller than
C|A| (t1+"/ +t1+1/a) + O/l (L5 17

If o < 1/3, then the estimaté (22) follows by taking= § (% — 1).
Proof of the estimat¢ (23)\Ve need to compare

g1(z,v,t) = (Vtgo)l(z,v) = eft/o /7 ¢z + vty + (t — tl)v',v')w dw dty,
(37)

and

gea(m,v,t) = (VIg") (w,0) = Y p(1=p)* 26" (x + tro + (t — t1)v1,v1)
t1€851(t)
(38)

whereS, (t) are the instances where a trajectory encounters an obstacle site, as defined
in (I4); the corresponding points of encounter, and deflected velocity are denoted
andv;. Also, s1(z, v,t) andsa(z, v, t; t1) are the number of encounters with obstacles
sites on the first and second lap of the trajectory, as described before.

Consider first[(3[7). The integral over can be parameterized by the scattering
angleg, or equivalently by: = sin(3/2), and so it can be written

s
e*ti/ / @z oty + (t— 1)V, v) dzdt .
0 J-1
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We then write the argumerX (¢1, z; x, v, t), andv’ = v/(z;v). For the moment, «
andt are considered as parameters, and they will only be written out when needed. We
cut the integral into pieces, and write

472/ Z / X(t1,2),0(2)) dz dt: , (39)

T; m=—mgo—+1

whereT; = [“5U HlandZ,, = [2=1, [ The positionX (t1, z1; 2, v,t) corre-

mo 7m0

spondmg to the end]pomts of the intervals, are denoted

Xjm(2,0) =z + (t(j = 1)/jo)v + (t = t(j — 1)/jo) v' ((m — 1) /mo, v) .

In any one of the subsets of the integ(39), we have ¢; — t(%l) < t/jo, and
[v/(2) =o' (%=L)] < 24/1/my. Also, obviouslyv — v'| <2, and so

|X(t172’) — Xj,m| = 2t/]0 + 2\/ l/mo .

Becausg® is continuous and compactly supported, it is uniformly continuous, which
means that there is a functiog (w) which tends td® asw tends ta0, such that
19°(21,01) = g° (22, v2)| < Ago(|x1 — 22| + [v1 — v2]). Then,

1t 1 &
r.v.t) =e TS ms U -1 40
gu(x,v,t) =e QJOmOXT ; Xm0 ((m—1)/mo))  (40)
J m mo
+§17m0»jo(xvvvt)v

where

G1.mo.jo (T, v, 1) < tAg0(2t/j0 + 24/1/myg) .

Similarly we write

ge(x,v,t) pz > o(a-p)t
j=1lm=

1- motleSl(t)
X Uyer; Laez, 9°(X(t, 2152, 0,1),0(2150))

wherez = z(t1) = sin(f8)/2), andg(t;) is the deflection angle betweenand the
outgoing velocityv; (¢1). Just as in the continuous case, one can repléage, z;) by
X.m, and use the uniform continuity gf. With

Gemosjo (0, 1) < ps(x,v,6)Ago(2t/jo + 2+/1/myg)
SOt +prec(v,t))Ngo(2t/jo +2+/1/mo) ,
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one can write

fore ) =53 S Kt 1))

j=1m=1-—mg

s1+s
X Z ﬂtleTJﬂzleZm(lfp)l ’ (41)
tlesl(t)

+ gﬁ’moxjo (CC, U, t) :

It remains to compare the sums [n(40) and (41). For this we use again Proppkition 5
and its corollaries, to see that

|t +log(1 — p)s(z,v,t1)+s(x1, 01, — t1)]
< prl,e(”: tl) +p’l“1,€(111,t - tl)

and so, the sums differ by at most

Z‘ ZPTTLOJO Z ]]~t1€T ]]~z1€Z et+10g(1 p)(s1+s2)
t1€51(t)

—t 2p mojo
te fHQOHL‘X’ <2m0j02‘1_t#{t1651(t) ’t1€Tj7Z1 EZm}‘
7jm

Z t+log (1— p)(51+52)‘>

t1651(t)

e gl 5

The cardinality of the set in the first sum, is given by Corol[ary 5.2 itk ¢/, and
k = 1/2my, so that each of the terms in the sum is bounded by

2p mojo /te=%/(2=9) . 2pmoJ .
1- 2 0]0( — + 7, (v,t/50, 1/2m0))‘ < “PMojo 0]071’6(v7t/3071/2m0)
t 2moJjo t

Summing all the terms, we find that
||gl(" ) t)_ge,l('v R t)HLl <C |A| t /\g°(2t/j0 + 2\/ 1/m0)
LA / prec(v,t) dv A (2t /o + 24/ T]mg)
Sl

1 C A" P modo / Foc (0, oy 1/2mo) dv
St

—tHg ||Loo/ Z p’l—e P('l e(v,t1)+r1,e(vi,t— tl))‘d.’L‘d’U

tlesl( )
(42)

We assume as before, that- p® for somea < 1, and moreover, we sety ~ et
andj, ~ ¢ 72, for some positive numberg and~v,. Then after integrating, the second
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term in [42) is absorbed by the first one. By Corollary 5.2, the third term is bounded by

1/2
t _8/2=9) 1og (t6—1/(2—5)/j0) ) )
MoJo

1/2
< 01A] %]l (mojoe1/<2-6> + ez (mojot p)*/* (log (1= /jo ) ) )

< Al gl (#7577 4 542717 (10g(1/) )

|A[ (g% L (Clmojoﬁl/(z_é) +pmoj002(

Here any choice oft < 1 makes it possible to choosg and~; so that this term is
smaller thart' 7 for v = v; + 7.
The last term in[(42) is estimated in a different way. First of all, the factor

P (rc@t)rc@i-0) s hounded by! < 2, say, for smallt, simply because
s1 + s2 > 0. We keep the same relations betweem, my and j, as before. By

Corollary[5.1,
/51 plre(v,0)] dv < C 1Y/ log(1/t),
and so, for anyy < 1/«
meagv | plrie(v,t1)| > 17 } < Cta log(1/t) .
Also, just like in the proof of Propositidi 3,
/ Z plrie(vi,t —t1) | dado SCR(tl/O“;th%(lJr%)\/W);
AXST 4 e85 (t)

this follows like in equation[(34), by replacing. . with r, ., and then integrating over
the remaining space variable and oveiThen (this is again the Tjebychev inequality)

/ Z ]lp 71 (ur t—t1) |>t7 dx dv < CR (tﬁf”f + t%(lJré)*”/ /log(l/t)) .
AxS 4 €51(1)
1 1
This all means that the last term [n {42) is bounded by

cowlf”/ dx d
9° | = | 6|AX81p Z x dv

t1 €51 (t)

+ Crl¢° | o= (£75 7 + 120377 /log (1/1))
< Crllg°llp (£147 + ¢35 + 130407 log(171) ) |

and so we can conclude by choosing- 0 suitably. And so all the terms ifi (#2) go to
zero faster than, whent — 0. ]
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4 Counting encounters with obstacle sites

In this section we compute a formula that gives the number of times that a trajectory
of length L starting at a given point € Q. and in a given directiom € S! meets an
obstacle. This is calculated in a very classical way, using the Fourier series, and we
refer to [O,[BGW] similar estimates. Setting the starting point at the edge of a lattice
cell results in an error of at most one, and this will be insignificant in the end. We now
refer to Figur¢ b. The line segment of lengths assumed to start at a point along

the left side of the lattice cell, and we assume thattineeets the horizontal line with
anglea. There is no loss of generality in assuming thak o < 7/4. As in the

figure we denote; the point at which the line intersects the next cell (modulo the cell
sizee'/(27%)), and so on, fo{y; } 1L, whereM = | L cos(a)/e!/ (29|, Clearly the
number of times that the line segment crosses the scatterer is the same as the number
of y;:s that are in the segmehtthe oblige projection of the scatterer on the left side of
the cell. We can then write an almost exact formulasfar, v, L), the number of times

that the trajectory crosses a scatterer (we assume herkf/tiaan even number):

M/2

s(z,v,L) Zﬂz (y) (1) = Z L (yksnay2) (£1) (43)
— )2

wherell; denotes the characteristic function of the interiahndy;, is given by the
formula

Uk = yo + ke'/=9 tan(c) mod €1/(2-9) (44)

A first observation is that the averagestf:, v, L) overx is independent of: For
any setd C R?,

s(z,v,L)d /:H.ka Ydx = M|I| +1, (45)
|A|/ |A|

that is

1 _ Lcos(a) € s
W/AS(%ML) dx = - | /@9 cos(a) = Le +2. (46)

Obviously this can't hold uniformly for alt; for o = 0, for example, the value one
finds is eithers(x, v, L) = 0 or s(z,v, L) = Le~ /(=% depending or:. To compute
a more precise estimate for a giverwe change scale so as to make the lattice size one,
and and make a translation so thiat(y) looks like in figurg 5. The support df; (y)
is then an interval of length(!=9/(2=9) |n the following we will also replace the
characteristic functiodl ; (y) by a regularized version, which we write

Y
V(y) = ‘I’(m)a (47)

whereW is a smooth function which approximates the characteristic functio[nf%;r%]
The regularization can be chosen to give an arbitrarily good approximation, either from
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below or from above. As in [D, BGW] we make use of the Fourier seriegfowhen
estimating the sum if (43). Writing

be) = [ e i ceR,

and then

R e(1=9)/(2=0)  /(1-8)/(2-6)

\I/e,a(g) = - Y < - 5) f c7Z. (48)

COS «x COS «x
The sum is then
¥ o«
sro,L)= Y Y . o (€)e2miluo+ A tan(a)+k tan(a))
k:—% 62700
= (M =+ l)i’e,(x(o) + TD,E(.I‘, v, L) s (49)

where

N

2
TD,é(xa v, L) = Z Z ‘i]e,a (€)€2Wi(y0+% tan(e)+k tan(a))d
M

NL
o
T
o

M
2

— Z ¢€7a(§)62ﬂi(yg+% tan(a))E( Z 627rik: tan(a).ﬁ) ) (50)

M
k__z

o~
t
=

The factor yvithin parenthesis in the last member is nothing but the Dirichlet kernel
Dy (w) = 2EGLEIY) evaluated at the point = tan(a)¢; it follows that
|rp.e(x,v, L) < ’ Z T, o e2mi(yo+i M tan(a))ﬁDM(tan a{)‘
£#0

< [ Wea(©)] |Du(tanag)] . (51)
£#0

Because 0f (48), ift is sufficiently smooth, then for any integerthere is a constant
C, such that

. C,
Wealé)] <s —a
1+ |£s|
wheres = % and then the sum is bounded independently afida when-
evera > 1:
. < sC,
> Weal@<s> a_/ L d{ < C,. (52)
o &sta o 1+[sc]
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Proposition 5 For a givenz € R?, v € S', andL > 0, let s(z,v, L) be the number
of times a line segment of lengkh starting atx in the directionv, crosses an obstacle
site (see also formuld (43)). L&t be a smooth approximation of the characteristic
functionll|_; /5 1/o) (see figf p). Then

s(x,v, L) = Le %= + A 4 BLe %/C=9(W(0) — 1) + 7p.(z,v, L).

Here |A.| < 2¢(179)/(2=9) ' |B| < 2. Moreover, there is a constaity, depending
only on the regularization o¥, such that

/ sup |7p.e(z,v, L)|dv < Cy log (Le_l/@_‘s)) . (53)
Sl

T

Proof: By dividing the circle into eight octants, it is possible to reduce the problem to
integrating ovel < a < /4, and thus the computations leading[to](49) 4ndl (50) are
valid. Doing the change of variable= tan(«) gives

w/4
/ sup |7p e(z,v, L)| da
0 x

< sup <Z‘1’m ) Sup/ |Da (1) 1+ ——dr.  (54)

The first sum is bounded by a consté@nt, as we have seen above, and the integral of
the Dirichlet kernel is itself bounded by

1 €] 1
Dy (7€ / —— dr < Clog
| 1ol = s (M) ;
I€]
the last estimate can be found e.g. [inl[Ed]. The result then follows, becdduse
Le /(=0 1, O

Corollary 5.1 Lets(z,v, L) be defined as in Propositigf) 5. Then there is a function
r, (v, L), and constants; andc, such that

s(z,0, L) = L@ <, (v, L),
where

1/2
/ Ir1.e(v, L)| dv < ¢;179/2=0) ¢, (Le_‘s/@_‘s) log (Le_l/@_‘s))) .
S1

Proof: Take¥ = (251)*1]1[_ 14 e,] * L[—¢, ), I.€ the convolution of the charac-

3 €y

teristic functions of two intervals. Theh > ]1[_%7%], and

S sin(&(3 + €1)) sin(e,€)
U6 = p Serme
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With this choice of (which gives arupperbound for the number of crossed obstacles;
replacinge; by —e; in the first characteristic function gives, with exactly the same
estimates, a lower bound), one thus has

U(0) =1+ O(ey),
and, for an absolute constatit

¢ 1
e l+E2°

For any choice o€; > 0, the equationg (48) and (49) give

(b)) <

/ sup ’s(;l:, v,L)—Le*‘s/(Q*‘s)‘ dv
St x
<er1=9/(2=0) 4 are=8/2=8)¢ | B oe <L€—1/<2—5>> (55)
€1
where thec's are fixed (not very large) constants. The result now follows by choosing
€1 optimally. O

Corollary 5.2 Lets(z,v, L,v) be defined as in Propositic[r] 5, except that only those
encounters with obstacles sites are counted, which fall into a subintéfval the
crossection (see fig 4). Assume that the length of the interval isherex < 1. Then

’ s(z,v, L, k) — /{Leié/(zf‘s)’ <rie(v, L, k),
where

1/2
/ 71 e(v, Ly k)| dv < ¢,6379/C2=0) ) (Lme“;/(z_‘;) log (Le‘l/(z_‘s))) .
S1

Proof: All that changes from before, is that equatipn|(48) is replaced by

~ ,{6(176)/(275) ~ /{/6(176)/(275)
Beal6) = i §) ez

COS «x Ccos &

Then all calculations can be carried out as before, to obtain the result. O

Proposition 6 Lets(z,v, L) be defined as in Propositigf) 5. Then there are constants
¢1, c2 andes, and a functionry. (v, L), such that
S(Z‘, v, L) S ClLeié./(Qié) + TF,6<’U? L) )

and where

|ree(v, L)| < coLe™1/(2=0) and / [7ee(v, L)|dv < 3.
Sl
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Proof: Starting at equation (43), we first note that

M/2 5 M/2 M/2
Z Ly (Yrtnay2) < M1 Z Z W7 (Yjthtn1/2) 5
k=—M/2 j=—M/2 k=—M/2

which then change§ (#9) arjd [50) into

s(x,v,t) < 2(M + 1)U, o(0) + rpc(x,v,L),  and

M

2 2 . 2
ec(z,v, L) Z W ol o2miyo+4 tan(a))g T ( Z ekatan(a)g)
E#0 k=—Y

What was before the Dirichlet kernel is here thgér kernel:

_ 1 sinz(ﬂw(M+1)) . i
Fy(w) = 379 sn?(zw) » and the result follows in exactly the same way as be
fore, becausé < Fiy < (M +1) andf0 Fy(w)dw = 1. O

Remark. The estimates in Propositi¢pf 5 and Proposifiorj 5.1 are considerably easier
here than the ones carried outlin [BGW], because here we are interested averages over
free path lengths (or rather the inverse of the free path lengths) rather than their max-
ima. And this is one of the fundamental reasons why the main result of this paper, the
convergence of the billiard dynamics towards a Boltzmann equation, holds here while

it fails in [BGW].

~1/2 T . 1/2
UG YIPEE)

Figure 5: A line, step by step covering the torus; the obstacle radiastie size

of the toruse!/2—9, and the width of the rectangle is in general much smaller than
The figure to the right shows a smooth approximation from above, of the characteristic
function
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5 Asymptotic equivalence of the stochastic processes

We have previously described three stochastic processgs, the process coming
from the “diluted Lorentz gas”z.(t), the Markovian process, and finall(t), the
jump process which is associated with the Boltzmann equation. In this section, we shall
see that with probability one, each of these processes belong to the Skorokhod space
Dyo.m(R? x S'), that each process induces a meagurg:., andy on Dy 71(R? x
S1), and that each ofi. and/i. converge tou whene — 0. Theorenﬂl is a direct
consequence of the statement that— 1 ase — 0.

We begin with some basic definitions, and then the proofhat: 4.

The Skorokhod space is the space of right continuous functions with left limits
(cadlag):

Dior)(R* x ') ={2:[0,T] = R? x S'|Vt € [0, T]z(t) = Slir?+ z(s) ;

A = fm ()
vVt € [0,T],3z(t7) = lim z(s) },

s—1—

equipped with the distance

ds(x,y) = inf ¢ sup ||z(t) — y(A(¢ + sup |t —A(t)|},
s(z,y) AEA{te[O,T]” @) —yAO)l 5, g te[O’T]\ 1}

A={AeC(0,T]) : t> 5= A(t) > A(s), N(0) = 0, A\(T) = T}.

Itis clear that all the three processes considered here belahg tg(R* x S') with
probability one. A time* € [0, 7] is called a jumping time for if lim, .- z(t) #
lim,;_,;«+ 2(t); it is enough to verify that with probability one, any one of these pro-
cesses have only finitely many jumping times. Actually, wher- 0, which was
considered in[[CPR], it can happen that a trajectory is trapped in the corner between
two obstacles for the Lorentz model, and bounce infinitely many times in a short time
interval, and then an argument is needed to show that this happens with zero probabil-
ity, if the initial data is taken from an initial distributiofy € L*(R? x S1); as soon as
0 > 0, this is impossible.

We consider now the Boltzmann process), where the initial data(0) is dis-
tributed according tgfy € L'(R* x S'). This induces a measure @, 11(R* x S),
which first is defined on cylindrical, continuous functiofs Dy, 71(R* x S') — R,
i.e. functions of the formF'(z) = F,(2(t1),2(t2), ... 2(ts)), whereF,, € C((R? x
SHm), and where) < t; <t < ... < t, < T is any sequence of times. For such
functions a measure is defined by,

/F(z)u(dz) :/fO(ZO)Pt1,O(Zl‘ZO)Pt2,t1(22‘21)"'Ptn,tn—l(’zn’ZTL*l)
XF (21,22, ..., 2n)d20dz1 - - - dzp

whereP;, ;. . (zn |zn,1) is the probability of a transition from the statgto the state
zo inthe interval from; to¢,. The measure is then extended to all continuous functions
F: D[O’T](RQ X Sl) —R.
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Exactly the same construction is valid for all the three processes considered here,
and we denote byi., ., and P. and P. the corresponding measures and transition
probabilities. Moreover, we writg* etc. in equations that are true for all of these
processes.

We now wish to prove that the processconverges ta ase — 0, in the sense that
the corresponding measures converge:

Proposition 7 For each continuous functioft : Dy 1 (R? x SY),

tiy [ F@(d) — [ Fleulds). (56)

Proof: All the processes considered here belong with probability one§g- (R? x

S'). We equipR? x S with the metricd(z1, 22) := min(||z1 — 22|, g, 1)- First

we recall a result from [GS, p. 431], which adapted to our case says that for such
processes, if

1. the marginal distributions of. (¢) converge to the marginal distribution oft),
and

2. there is a constardt, such that for alk > 0, and all choices o < ¢; < t3 <
t3 < T,

E[d(2e(t1), ze(t2))d(2e(t2), 2e(t3))] < Clts —t1)?, (57)

then for all continuous functional : Dy 7(R? x S*) — R, the distribution of(z.)
converges to the distribution @ =), which is exactly the statement of the proposition.
(Note that[(5F) is a stronger statement than the condition required in [GS]).

That the one dimensional marginals converge is essentially the content of Theo-
rem[2. To see thaf ($6) holds for cylindrical functions that factorize as

F(z) =[] Fi(=(t),  F e C&®R?x SY)
one can do very much as in the proof of Theofg¢m 2. We have

/ 1 (d2)F(2) = / folzo) By (2l20) Py, (21122) - Py (2n1]2n)
X F1 (Zl)FQ(ZQ) e Fn(zn)dzodzl e dZn

= / [VhRVETM R BVITUR](2) fol2) dzo -

Let

G? = V€t1F1VEt27t1F2 L Fn—lvet"it"*an
G" = VURVPUE . F, VTR,

and recall from Sectionl 2 that
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1. |[VEF| L, < |F|L, (both semi-groups are contractive),
2. (V= VHF| < Cto(r),
3. G =VHRIGI LGl = Ve i [/BGr2,

Thus we obtain the bound

| [utdaFe) - [uare)

< (sup | Filloo) IGE ™" = G" M|z, + Crtyo(r) < ...

<

< Cto(r).

The convergence on the set of general cylindrical functions is then follows by a density
argument.
It remains to check thaft ($7) holds. This can be done exactly like'in [CPR]:

d(ze(t1), ze(t2))d(ze(t2), ze(t3)) < [2e(t1) — ze(t2)[[rRx st |z (t2) — 2e(t3)[[Rx 51
< flwe(ty) — ze(t2)llr2 [|7e(t2) — ze(ts)]|r2

+ |7e(t1) — ze(ta)|r2[|ve(t2) — ve(ts)ll s

+ [[ve(t1) = ve(t2)lls1]lwe(tz) — e(ts)|r2

+ [[ve(t1) = ve(t2)lls1]lve(t2) — ve(t3) | s1-
If there is at least one jumping tindes (¢, ¢2), then||jve(t1) — ve(t2)|ls1 = O(1), and
if there are at least two jumping times € (¢1,t2) andis € (t2,t3), then|jv.(t1) —
ve(t2)|| 51 ||lve(ta) — ve(ts)|ls: = O(1). We denote by (t1,t2) andya(ts, 2, t3) the
characteristic functions of the sets

Ai(ti,ts) = {z€Dpm(R*x SY):3t, € (t1,t2) s.t. v(ty) #v(t))}
As(ty,ta ts) = {2 € Dior(R* x SY) 1 Fty, € (t1,12), Ly, € (t2,13)
s.too(ty,) #v(t!))}.

Because
lze(ti) — ze(tiv1)l|lre < |ti — tiga]
|ve(ts) — ve(tiz1)llsr < 2
X2(t1,ta,t3) = xi(t1,t2)x1(te,t3),
we have

E[d(2e(t1), ze(t2))d(2e(t2), 2e(t3))] < [ta — tal[ts — t2| + 4E(x2(t1, 2, t3))
+2[[ta — t1|E(x1(t2, t3)) + |tz — t2|E(x1(t1,t2))]
<tz — t1]? +4C1[ts — ta|lta — t1| + 4Ca|ts — tal[ta — t1] < Cslts — t1]?,

which is nothing but the estimafe {57). This concludes the proof of Propdsjtiof7.
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Next we wish to prove thaf. is close tou.. This is done in[[CPR] by defining
a “bad” subset oDy, 77(R* x S*), which is small fory., because it is small for the
measure:, and then the result follows by proving the statement on the complement of
this bad set.

Because of a technical difficulty in defining the bad subset, we here take a some-
what different path.

First we note that the two measurgs and . are concentrated on subsets of
Do) (R? x S') which consist of trajectories that have constant velocity, or change
velocities at a finite set of points, namely the points where the trajectory meets an
obstacle site; moreover, the two measures differ only on subsets where the trajectory
meets with the same obstacle site more than once. Whenl, i.e. the case con-
sidered in CPR, this happens with positive probability for both measures; though not
a proof, an explanation is that there is a positive probability that a trajectory crosses
itself, and fraction of the area occupied by obstacle sitegdsndependently of; this
is not a real obstruction for obtaining the desired result, as we shall see, but we begin
by proving that for0 < § < 1, the probability that a trajectory loops back to the same
obstacle site converges to zero with

Consider thus a trajectory that somewhere along its path makes a loop, i.e. one that

meets the same obstacle site a second time. It might have several loops, but here we
always consider a fixed one. Such a trajectory can be indexed by a seduené?,
0—& — & — &, — 0, where the) in the beginning and the end indicates the
starting point, and where thg denote the relative integer coordinates of the obstacle
sites where the trajectory changes direction. We can assume that the absolute coordi-
nates of the obstacles are distinct, i.e. that the loop is a “simple loop”, but of course the
&; need not be distinct.

Let& = (&1,...&,) € (Z2)™ denote this sequence. Note that the real length of such

a loop is approximately!/(2—9) <| S &+ \§j|), and that this length must
be less tharf".

Let Ay denote the obstacle site where the loop starts; the trajectory could have
traversed the site, or it could have been reflecte@.dg, the boundary ofiy. In either
case, the trajectory meeis), in a unique pointzy, vo) that satisfies - w > 0, where
w is the outward normal toly. In this setting,0Ag is part of the boundary of the
billiard table, 0A., as defined in Sectidn 2. Thelliard map is a transformation of
OA¢ % S}r to itself, defined by(xq,vo) — (z1,v1), wherez; € A, is the next point
where the trajectory hits the boundary, and wherkis the reflected velocity.

Let now ds denote the length measure on ih&.; in the present case all of the
boundary consist of circular arcs with the same radiysand this measure can be
written rdw, wherew can be identified with the outgoing normal at the paint_et 6
be the angle betweenandw. Then thebilliard measureis defined asos(0)r dwdv.
Below it is more convenient to parameteri@el, x Si by v and ¢ where( is the
distance between the center 4f and the line containing the trajectory defined by
(z0,v0). With this parameterization, the billiard measure becodie®. Now it is a
fact that this measure is preserved under the billiard map (s€e eg!/[BS1, P] for classical
and more recent results concerning billiards and their asymptotic behavior).

28



Consider a fixed trajectory that startgag, wo ), and then returns td,, after being
reflected on a sequence of other obstadligconsider also the corresponding sequence
€ = (&, -.-,&n). We define the seitg C 94, x S as the set of all trajectories going
out fromd Aq that can return tol, via the sequencg. Note that this is a well defined
set, that does not depend on whether a trajectory is realized or not.

Lemma 1 There are constant§; andC; such that

(58)

d¢dv-meagQe) < C,Onrmt2 -
€ /(2— 5)|Z 1§]| H |€1/(2 )¢

Proof: In Figure[6, we denotel; the j-th obstacle along the path. This is always an
obstacle where the trajectory changes direction. The calculation is not carried out in
full detail, although it is easy to see how to make each step completely rigorous.

Figure 6: Part of a looping trajectory

The notation in the figure should be clear, except perhapg,for, et.c.; in general
(x denotes the distance between the line segiigrnd the center ofl,,. This means
thatfork =1,...,n

Oy S

sin( ) .

and that ifg;, belongs to an intervah¢;, of size|A¢y|, then(;, belongs to an interval
that satisfiesCy,| < £|Agk|. We setly, = [e!/ (279,

From the figure we note that the length of theh lap is|Tx| = e/~ |&| +e.
Moreover,I'; is almost parallel t@;; more precisely, if3;, denotes the angle between
these two lines, thefi, = o(r/lx), ase — 0.
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Now, if the trajectoryl’,,; 1 is to join obstacledy, then¢,, must belong to a set
Ad¢,, which satisfies
|Adn| < (I+o0),
|Fn+ ‘
whereo denotes a rest term which is small compared to the first term, and vanishing
whene goes to zero. But thef), must belong to a sek(,, such that

r

18G| < Fleos(G) 186 < F—

(1+0)

Continuing backwards, this requires tltgt ; belongs to a seh¢,,_; that satisfies

|AGn]
|In]

where the rest termresults from the fact thdt,,_; and¢,,_, are not exactly parallel,
and do not have exactly the same length;dlgees to zero asgoes to zero, uniformly
in |¢]. This gives

|A¢n—1| < (1+0)a

|ACo1| < 7o

T
] 2
2, 2|1“n+1|( +0)%,

and inductively,

AGi] ST — 1+ [ o
2|Fn+1| j=n—k+1 l

In summary

r r oo
dvd(-meas? < —r—(1+0)"
‘ W) = 4] 2|Fn+1|( ) g% -

1+ 0) Yol T 1
= r —.
( 2 2|Fn+1| 1_{ lj
This is exactly our claim, once one has ket= ¢'/(2=9)|¢;|, and similarly withT,, ;.

O
Next we prove thafi. converges weakly tp.

Proposition 8 For each continuous functiof : Dy 7(R? x S*),

lim [ F(2)i(dz) — /F(z)u(dz) (59)

e—0

Proof: Fix ey > 0 arbitrarily. Using Propositioh|7,

[Pt = [Feu) (60)

b ([ Femdan - [ o)+ ([ Fende - [Fow)
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where

S 50/25

\/mew@—/F@MW>

provided that is sufficiently small. Also,

<

[ e - [FEua)

+

g]Lﬁ@MM—Aﬁ@MM

| r@nddn - [ Fenda:)
K¢

Ke

whereK. C Dj (R2 x S1) is the set of trajectories that contains at least one loop,
as defined above. On the complementary K€ét,the measureg, andy. are identical,
so the last term vanishes, and

[ F@) [ Petan)] < s P (1) + ). 6

Each trajectory in the se. contains at least one simple loop. L&t denote the
obstacle site where the loop starts, andfdte the index sequence for the loop. Then
let Q¢ be the set of allv, {) giving trajectories that have the same index sequence.
The probability that a given loop is realizgilven that the trajectory starts ifg is

(1 — p)Z?:+1l % < p™, wheres; is the number of obstacles sites that the trajectory
crosses along the path between jhe 1:th and thej:th reflection, and where is the
length of the sequeng Hence

Pg, = Pr(thereis aloop of typeg along a randomly chosen trajectory
p" Pr( there is & € [0, 7] such thatl™ (z,v) € Q¢)
oI dvd(-meagQle)
ome2/(2—6) ’

IN

IN

(62)

i.e. p™ times the probability that a trajectory starting at the random initial pos{tion)

at some time has evolved t4, the first obstacle of the loop, and leavg in the
set{)g. The last expression can be derived as follows. Because of the periodicity, we
consider a random choice of a starting pdintv), wherez is chosen i a lattice cell with
areae?/ (2-9); hence the denominator. Considet, (') € Qg, and the corresponding
point (z’,v’) € R? x S'. We consider the history of an infinitesimal s&t x A(
around(v’, ’); there are two possible histories, also if we assume that there are no
other encounters with an obstacle before the one at the starting(ptint): either

the trajectory continues backwards in the directienl, or it continues backward in

the direction—v"”, where the latter corresponds to a reflection (see the figure). The
probability that a trajectory reaches the det x A¢ within a time intervalAt is

p dzdv-meag{(z’ — tv”,v") |¢ € A,V € Av,t € [0, At]})
+(1 — p) dedv-meag{(z’ — tv',v") |¢ € A(,v" € Av,t € [0, At]})
= dzdv-meag{(z' —tv',v"), C€A(, v € Av, t €[0,At]}) ;
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this is because the reflection leaves the meagude invariant. And the same then
holds for all possible histories, which shows the claim in the inequélity (62). Obviously

the full history should be mapped into one lattice cell, hence the normalization with
27e2/(2-9)

Figure 7: Different histories leading to starting point€ig

But then each of the measures in the right hand side ¢f (61) can be estimated by sum-
ming over alln and over allf with lengthn:

~ n,n, n+2
,LI’C(KE) < 27r€2/(2 3) Z Z TC Clp r 1/(2 6)|Zn—1 £]| H |€1/ (2— (56 |

n=1¢€x,
(63)

where the seE,, is defined by
En =1 (1o &) | 1D Gl + D161 < eV T g e 72\ {0}
j=1

Because we consider here only loops that are simple, i.e. all the velocity jumps take
place at distinct obstacles, exactly the same estimate holds féf. ) andu.(K.).
We can approximate the sum o€y, by an integral:

1 n 1
<
; 61/(276) J];[l |61/(276)£j‘ —

n+1 .
= ¢ /xexF,T el/2= ‘”IZ 125 5 H el/(2= ‘”Iw | dons

whereX, r = {x = (1,00 20) € (RY)™, 25 €R?, 2y > 1, 30, [25] < e_l/(Q_‘s)T}.
With a change of variableg, = ¢'/(?>=%)z;, one getslz, - - - dx,, = ¢ 2"/ = dy, .. - dy,,
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and then
1 L 1
<
; €1/(2-3) E |€1/Z=9)¢;]

1

72n/(275)0n+1\/\ d

€ T | I Y
vey | 225195l 5 1yl

n

1" dyn ) (64)
for some sefy C (R?)", which particular satisfies'/ =) < |Y"_ y;| < T,
/70 < y;| < T,andY " |y;| < T. We have

1 ﬁ1 - 1 1 H
[ vsl s lyl T2 \Z}LlyjP |y1|2 \yg

(note that this expression also holds fot= 1), and then the integral it (p4) is smaller

than
1 o
/ —Qdy1/ Hf 20 Yns
€1/(2=8) <y |<2T Y1l iz [YsI<T 5= 7

which, expressed in polar coordinates for eachke R? is

, 1
(2m)"™ / —dr / drg---dry,,
/=<2 T1 (= <T

121)

< (2m)" (log(2T) - 1og(el/<2—5>) "1 /(n — 1)

Now we put this back intd (§3):

1 1/(2—6)
Yy o) (log(2T) — log(e'/ )

NE KE S
fre (Ke) o3/

XZTC Cm n 2 —2n/(2— 6)Tn 1/( )

= GoT (log(27) 710g(61/<2—5>) prdet/(2-9)
= n—1
x> (Carpre )" -1,
n=1
= CoT (log(2T) — log(e/2=9) 209/ C-0)OT (65)

Here, in the last line(’y andC, are new constants independenffoinde, and the last
expression follows by setting= ¢, andp = ¢%/(2=9); thenpr e~2/(2-9 = 1. Clearly,
when0 < § < 1, i.(K¢) — 0 whene — 0, and because this calculation holds in the
same way fop., we can chooseso small thatup | F| (fic(Ke)) + (pe(K.)) < 0/2

so that finally the last two terms i (60) together are smaller thaand this concludes
the proof of the proposition, becausgwas arbitrary. O
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This proposition also concludes the proof of Theofgm 1. Note that the proof of
Propositiorj B really says something more than what is needed: that if trajectories cross
itself, this will very rarely happen inside an obstacle site, and hence the trajectories
don’t get a chance to test the difference between the two meagur@sd .. The
trajectories actually onlgo test this difference, if there is a real collision the starting
point Ay of a loop. This gives another factey and so the measure of this restricted
set converges to zero, also whén= 1 as in [CPR], and so this calculation would
give a proof also in that case. However, one would then need to make a more careful
calculation when proving Lemnjg 1.

AcknowledgmentsThe work presented in this paper was partially carried out when
B.W. was visiting Rome, and he would like to thank Mario Pulvirenti and Valeria Ricci
for their hospitality. V. R. would like to thank Leif Arkeryd and Bernt Wennberg for
their hospitality during her visit in Gothenburg, where the work started. B.W. was
partially supported by a grant from the Swedish Natural Sciences Research Council.
Both authors are part of the RTN network HYKE, wich is financed by the EU, Contract
Number: HPRN-CT-2002-0028.

References

[Bi] P. Billingsley, Convergence of probability measurdshn Wiley & Sons Inc.,
New York (1999).

[BBS] C. Boldigrini, L.A. Bunimovich, and Ya. G. Sinai: On the Boltzmann equa-
tion for the Lorentz gagl. Stat. Phys. 32 (3), 477-501, (1983)

[BGW] J. Bourgain, F. Golse, B. Wennberg: On the distribution of free path lengths
for the periodic Lorentz gasfommun. Math. Phys. 190, no. 3, 491-508
(1998).

[BS1] L.A.Bunimovich and Ya. G. Sinai: Markov Partitions of Dispersed Billiards,
Commun. Math. Phys. 73, 247-280, (1980)

[BS2] L.A.Bunimovich and Ya.G. Sinai: Statistical properties of the Lorentz gas
with periodic configurations of scattere@ymmun. Math. Phys. 78, 479-497
(1981).

[BSC1] L.A.Bunimovich, Ya.G. Sinai, and N.I. Chernov: Markov partitions for two-
dimensional hyperbolic billiardsRussian Math. Surveys 45 (3), 105-152
(1990).

[CG] E.Caglioti, F. Golse: On the distribution of free-path lengths for the periodic
Lorentz gas Il , preprinarXiv:math.DS/0301300 (2002).

[CPR] E. Caglioti, M. Pulvirenti and V. Ricci: Derivation of a linear Boltzmann
equation for a lattice gasvlarkov Process. Related Fields(2000), no. 3,
265-285.

34



[D] H. S. Dumas, Ergodization rates for linear flow on the torlisDynamics
Diff. Equations 3, 593-610 (1991).

[Ed] R.E. Edwards:Fourier Series, a Modern IntroductiorHolt, Reinhart and
Winston, inc, New York (1967).

[GS] I. Gikhman, A. Skorohod:The Theory of Stochastic Processe®s| 1.
Springer-Verlag, New York, Berlin (1974).

[Gal] G. Gallavotti: Rigorous theory of the Boltzmann equation in the Lorentz gas,
Nota Interna No. 358, Istituto di Fisica, Univegsidi Roma (1972).

[Ga2] G. Gallavotti:Statistical mechani¢csSpringer, Berlin, 1999

[G] F. Golse: Transport dans les milieux composites fortement coagdste
mockle du billard, Annales Inst. Henri Poincaré, Physique Théorique 61,
381-410 (1994).

[GW] F. Golse, B. Wennberg: On the distribution of free path lengths for the peri-
odic Lorentz Gas IIM?AN 34 no 6. 1151-1164 (2002)

[P] F. Fene: Rates of convergence in the CLT for two-dimensional dispersive
billiards, Comm. Math. Phy25 91-119 (2002).

[Sp] H. Spohn: The Lorentz flight process converges to a random flight process,
Comm. Math. Phys. 60, 277-290 (1978).

35



	Introduction
	Three jump processes and their asymptotic  equivalence
	The lattice gas
	The Boltzmann process
	The Markovian model

	Convergence of the Markovian model to the Boltzmann equation
	Counting encounters with obstacle sites
	Asymptotic equivalence of the stochastic processes

