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1 Introduction

The linear Boltzmann equation

∂tf(x, v, t) + v · ∂xf(x, v, t) =
1
2

∫
S1
−

(f(x, v′, t)− f(x, v, t)) |v · ω| dω (1)

describes the evolution of a density of particles in a medium in which the particles
don’t interact among themselves. The motion of each particle is described by a jump
process: The speed of a particle is constant (equal to one), and also the direction is
constant in exponentially distributed time intervals. At the end of such an interval,
the direction jumps according to a law that corresponds to the specular reflection on a
circular obstacle (with a uniformly distributed impact parameter).

This Boltzmann equation can be rigorously derived as the “Boltzmann-Grad” limit
of a system with obstacles of finite size. This was done by Gallavotti [Ga1, Ga2] (but
see also Spohn [Sp]) by considering obstacles of diameterε whose centers are dis-
tributed in the plane according to a Poisson law with densityε−1. A formal calculation
yields a mean free path of order one, uniformly inε, and Gallavotti showed that this is
rigorously true, and that the limiting evolution equation is really the Boltzmann equa-
tion (1).

Quite contrary to this, Bourgain et al. [BGW, GW] showed that the corresponding
scaling for aperiodicdistribution of scatterers cannot give rise to a Boltzmann equa-
tion, the reason being that the distribution of free path lengths is not exponential in that
case. An asymptotic formula is given in [CG]. At a formal level, however, it can still
work as was shown by Golse [G].

As a way of deriving a linear Boltzmann equation starting from a periodic distribu-
tion of scatterers, Caglioti et al [CPR] considered scatterers of diameterε with centers
on a rectangular lattice with parameterε: in each lattice point, independently of the
other lattice points, the probability of finding a scatterer isε. In the limit asε tends to
zero, this distribution approaches a Poisson distribution, but one cannot immediately
infer from that, that the dynamics of scattered particles approach a Boltzmann process.
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In Caglioti et al, the convergence to the Boltzmann process is proven rigorously
for a third kind of process, a “Markovian” process, in which there is an obstacle on
every lattice point, but each time the test particle encounters an obstacle, there is an
independent random choice: with probability1− ε the test particle continues as if the
obstacle was not there, and with probabilityε the particle is scattered. They then prove
that in the limit all three processes are equivalent.

In this paper we consider a scaling which is intermediary between the case consid-
ered in [CPR] and in [BGW]: the scatterers still have radiusε, but the lattice parameter
is εν , where1/2 < ν ≤ 1. In order to achieve a proper Boltzmann-Grad limit, the
probability of finding a scatterer at a lattice site must beε2ν−1; we have found it conve-
nient to writeν = 1/(2− δ) whereδ is between zero (which corresponds to the purely
periodic case), and one, which corresponds to the scaling in [CPR].

The technique we use is in the spirit very close to that of [CPR], and in particular
we first study a “Markovian” process, in which each time a scatter is encountered a
random choice is made as to whether scattering takes place or not, and then this system
is shown to be equivalent (in the limit asε → 0) to the system where the scatterer
configuration is determined once and for all.

There is one major difference, however. Whenδ = 1, the number of scatterers
encountered along any line lies betweenε−1 and

√
2ε−1 per unit time, which makes it

comparatively easy to establish that in the limit, the mean free times are exponentially
distributed. According to [BGW], this is false whenδ = 0, and actually for anyδ
strictly smaller than one. Excluding a small set of initial directions it is rather easy to
show that if0 < δ < 1, then in the limit, thefirst free time is exponentially distributed,
and so the main problem is to prove that the same holds for the second flight (and the
third, and so on).

In the second section of the paper, we describe i detail each of the stochastic pro-
cesses, and state precisely the convergence theorems that are the main results of the
paper: first that the law corresponding to the Markovian process converges in the sense
of distributions, to theL1-solution of the Boltzmann equation, and then that in the
limit, all three processes (the fixed obstacle process, the Markovian process and the
Boltzmann process) are equivalent.

Section 3 then contains the proof of Theorem 2; this is rather elementary, but some-
what technical. For a fixedε, the probability to find a free flight, depends on the number
of obstacle sites that this trajectory meets. Hence the proof relies on a rather careful
estimate of the functions(x, v, L), which gives the number of times that a line segment
of lengthL, crosses obstacle sites, given that it starts fromx ∈ R2 in the directionv.
The relevant results are given in Section 4.

The proof of Theorem 1 relies on a stronger result from Section 5, where we prove
a that the stochastic process related to the Lorentz gas converge to the process related
the Boltzmann equation. More precisely, the trajectories of any one of the processes
belong with probability one to a Skorokhod space, and define a measure on this space;
we prove that the measure corresponding to the Lorenz gas converges to the measure
corresponding to the Boltzmann equation. One essential ingredient in the proof is an
estimate on the probability that a random trajectory returns to the same obstacle, which
is the most technical part of Section 5
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2 Three jump processes and their asymptotic
equivalence

In this section we will describe the three stochastic processes that are the subject of this
paper: the jump process associated to the scattering of a particle on a fixed but random
set of scatterers with finite radius (the lattice gas), the “Markovian” process given by
scattering on a set of obstacles with fixed positions, but where scattering takes place
with a given probability, independently of possible previous encounters with the same
obstacle, and finally, the jump process associated with the Boltzmann equation. Once
these processes are well described, we are ready to state Theorem 1, an asymptotic
equivalence between the three, and, as an important step on the way, Theorem 2, which
states that the Markovian model converges to the Boltzmann equation.

2.1 The lattice gas

Much of the content of this section is borrowed from [CPR]. LetZ2
λ be a two-dimensional

lattice whose cells have sizeλ:

Z2
λ = {(j1λ, j2λ) | ji ∈ Z, i = 1, 2}.

andC be the lattice formed by the centers:

C = {((j1 + 1/2)λ, (j2 + 1/2)λ)|ji ∈ Z, i = 1, 2}.

From here, the lattice parameter is set toλ = ε1/(2−δ). Next we consider an array of
random variables

{nc}c∈C

wherenc, the occupation number, is a random variable taking the value1 or 0 with
probability p ≡ εδ/(2−δ) and1 − p respectively, independently for allc ∈ C. The
“physical domain” for the problem is constructed by placing a circular obstacle (scat-
terer) of radiusε at the center of those lattice cells for whichnc = 1. For a given
scatterer configuration{nc}c∈C , the region occupied the set of scatters is

Λc =
⋃

nc=1

Bε(xc) , (2)

whereBε(xc) is a closed unit disc with radiusε and center atc ∈ C. The set of all
possible obstacles,

⋃
Bε(xc), is called the “obstacle sites”.

Consider now a test point particle with initial positionx ∈ R2 \ ∂Λc, and with
an initial velocityv ∈ S1. (This means that particles are allowed tostart inside a
scatterer; of course, in the limit asε goes to zero, the fractional volume of the scatterers
goes to zero, and so this is only a matter of convenience). The particle then moves with
constant velocity until it encounters a scatterer, i.e. when

t = min{τ > 0 | x + vτ ∈ ∂Λc, v · ω ≤ 0} ,
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whereω is a unit normal vector pointing out from the scatterer, intoR2 \ Λc. At this
point the velocity jumps according to a specular reflection, so that the new velocityv′

is given by

v′ = v − 2(v · ω)ω . (3)

We denote bỹzε(t) = T̃ t
ε (x, v) the flow constructed in this way. A typical path is

illustrated in Fig. 1. Note that this is well defined for allx ∈ R2, and that all the
stochasticity comes from the generation of the configuration of the scatterers.
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Figure 1: Typical path for the lattice gas model. The occupied obstacle sites are black;
the actual occupation of a lattice site is randomly determined once and for all.

Next we consider the evolution of a density of particles, when for each particle a
new configuration of scatterers is generated. Iff0 = f0(x, v) is the initial distribution
density for the particle, its distribution at timet > 0, denoted byf̃ε = f̃ε(x, v, t), is
given by the formula:∫

R2×S1
f̃ε(x, v, t)g(x, v) dxdv =

∫
R2×S1

f0(x, v) Ẽ(g(T̃ t
ε (x, v))) dxdv, (4)

whereg is any continuous function and̃E denotes the expectation with respect to
{nc}c∈C , the distribution of occupied sites. In Section 5 we shall prove:
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Figure 2: Typical path in the Markovian model. Note that in this case the trajectory
may pass through an obstacle on which it has previously bounced, and in the same way,
bounce off an obstacle that it once passed through.

Theorem 1 Let f0 : R2 × S1 → R+ be the initial probability density (so thatf0 is
assumed non-negative and inL1(R2, S1) with integral one). Then, for anyt > 0,
0 < δ ≤ 1:

lim
ε→0

f̃ε(·, t) = f(·, t) (5)

in D′
. The limiting functionf(·, t) is the unique solution of the transport equation (1):

(∂t + v · ∇x)f(x, v, t) =
1
2

∫
S−
{f(x, v′, t)− f(x, v, t)}|v · ω| dω (6)

whereS− = {ω ∈ S1| v · ω < 0}, v′ is the outgoing velocity after a collision
with outward normalω and in-going velocityv (see formula ( 3)) andf(x, v, 0+) =
f0(x, v).

2.2 The Boltzmann process

The transport equation (or linear Boltzmann equation (1)) corresponds to a stochastic
process for the motion of particles. Suppose thatf(x, v, t) is a weak solution of the
Boltzmann equation (1) with initial dataf0(x, v). Thenf(x, v, t) induces an evolution
g = g(x, v, t) on a test functiong0 ∈ C0(R2 × S1) by the following formula:∫

R2×S1
f0(x, v)g(x, v, t) dxdv =

∫
R2×S1

f(x, v, t)g0(x, v) dxdv.
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The functiong(x, v, t) can be expanded in a series,

g(x, v, t) := V tg(x, v) =
∑
n≥0

(V tg0)n(x, v) =
∑
n≥0

gn(x, v, t) (7)

whereV t is a linear semi-group. The first one isg0(x, v, t) = e−tg0(x + vt, v) and,
for n > 1,

gn(x, v, t) = (V tg0)n(x, v) := e−t2−n

∫ t

0

dt1

∫ t

t1

dt2 · · ·
∫ t

tn−1

dtn

∫
S−

dω1

· · ·
∫

S−
dωn

n∏
k=1

|ωk · vk−1|g(xn(t), vn).

Here

v0 = v ,

vk = v′k−1 = vk−1 − 2(ωk · vk−1)ωk ,

and

xn(t) = x + t1v + (t2 − t1)v1 + . . . (tn − tn−1)vn−1 + (t− tn)vn .

This defines a stochastic processz(t) = (x(t), v(t)), in which tk − tk−1 are indepen-
dent, exponentially distributed intervals between the jump timestk. At a jump time,
the particle changes velocity according tovk+1 = vk − 2(vk · ωk)ωk, whereωk ∈ S−

are randomly chosen. It is clear that

(xn(t), vn(t)) =
(
z(t)

∣∣ ( number of jumps in[0, t[ ) = n− 1
)
, (8)

and that(V tg0)n(x, v) corresponds to those particles that change velocity exactlyn
times in the time interval[0, t[.

2.3 The Markovian model

Here we consider again the periodic lattice

C = {((j1 + 1/2)λ, (j2 + 1/2)λ) | ji ∈ Z, i = 1, 2}.

with λ = ε1/(2−δ), but at contrast with the lattice gas, we assume that all lattice points
are occupied by a circular scatterer with radiusε. The phase space is then

(R2 \ Λc)× S1 ,

defined as before, but withnc ≡ 1. To obtain a “mean free path” of order one, we
assume that at each encounter with an obstacle, the particle performs an elastic collision
with probability p := εδ/2−δ or goes ahead with probability1 − p. After the first
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collision the procedure is iterated. This gives rise to a stochastic process which is
Markovian, when regarded as a discrete time process

Z 3 k 7→ zk ∈ ∂Λc × S1 ,

wherek enumerates the instances where test-particle encounters∂Λc. However, it is
not a Markov process in continuous time, because the time intervals between those
instances are not independent. Nonetheless, we insist on calling the processz̃ε : R →
(R \ Λc)× S1 “the Markovian model”. A typical path is illustrated in Fig. 2.

The distribution density for the particle at timet > 0, fε = fε(x, v, t), is given by:∫
R2×S1

fε(x, v, t)g0(x, v) dxdv =
∫

R2×S1
f0(x, v)E(g0(T t

ε (x, v))) dxdv, (9)

whereE denotes the expectation with respect to the processzε, and whereg0(x, v) is
an arbitrary (continuous or smooth) function. Just like in [CPR], we can compute an
exact formula forfε(x, v, t). The two observations needed are, first, that due to the
reversibility of an actual scattering event (the collisions are elastic), we have

P ε
t (x, v|y, w) = P ε

t (y,−w|x,−v) ,

whereP ε
t (x, v|y, w) denotes the transition probability associated with the process. This

means, that though the process is irreversible, the probability of finding a certain trajec-
tory fromA to B is the same as finding the reverse trajectory fromB to A. Moreover,
it is easy to compute the probability of realization of a given trajectoryΓt

ε(x, v):

q(Γt
ε(x, v)) = pk(1− p)h , (p = εδ/2−δ), (10)

wherek is the number of actual scattering events along the trajectory, andh is the
number of times that the trajectory crosses an obstacle without scattering. In summary
this gives

fε(x, v, t) = E[(Rf0)(T t
ε (x,−v))] =

∑
Γt

ε(x,−v)

q(Γt
ε(x,−v))(Rf0)(Γt

ε(x,−v))

(11)
where(Rf)(x, v) = f(x,−v), and where the sum is taken over all possible trajectories
starting at(x, v). Clearly this is a finite sum, because there is a maximal number of
obstacles in any finite time interval. A set of possible trajectories, and one realization
is shown in fig. 3.

For the evolution associated to this model we prove the following theorem:

Theorem 2 Let f0 : R2 × S1 → R+ be the initial probability density. Then, for any
t > 0, 0 < δ ≤ 1:

lim
ε→0

fε(·, t) = f(·, t) (12)

in M′

0, wheref(·, t) ∈ L1(R2 × S1) is the unique solution of the transport equation:

(∂t + v · ∇x)f(x, v, t) =
1
2

∫
S−
{f(x, v′, t)− f(x, v, t)}|v · ω| dω , (13)

7



PSfrag replacements
lξ

α
v
v′

v′′

φ
ζ

An

An−1

An−2

An−3

Γn

Γn+1

Γn

Γn−1

Γn−2

ln = |ξn|e
1/(2−δ)

ln−1

ln−2
φn

2
φn−1

2
φn−2

2

r = ε
ζn−2

{(x′−tv′′,v′′) |z∈∆z,v′∈∆v,t∈[0,∆t]}

{(x′−tv′,v′) |ζ∈∆ζ,v′∈∆v,t∈[0,∆t]}

x′

I
j = 1

j = 2; k = 1

j = 8; k = 2

I ′

z
v
v′

β

L
1

3

4

y1

y2

y3

−1/2
1/2

α
I

Ψε

ε(1−δ)/(2−δ)

I2

Figure 3: Possible trajectories leaving a given point, and one realization.

whereS− = {ω ∈ S1|v · ω < 0}, v′ is the outgoing velocity after a collision with out-
ward normalω and in-going velocityv (see formula ( 3)) andf(x, v, 0+) = f0(x, v).

The proof of this result is given in Section 3. It is somewhat technical, and as a
preparation, we give here some definitions related to the evolution ofzε(t) =

(
xε(t), vε(t)

)
.

Similarly to the Boltzmann process already discussed, the evolution ofzε is de-
scribed by a semi-groupV t

ε , as defined in (9):

gε(x, v, t) = V t
ε g0(x, v) := E

[
g0(T t

ε (x, v))
]

This semi-groupV t
ε can be expanded as a sum of terms, each one taking into account

the case of exactlyn collisions with obstacles the given time interval in the following
way:

For a fixed initial condition(x, v) andt > 0, let

S1(t) =
{
τ ∈ (0, t) | x + vτ ∈ ∂Λc, v · ω ≤ 0

}
, (14)

i.e. the set of times when a trajectory starting atx with directionv enters an obstacle,
assuming that no scattering takes place, or in other words,S1(t) is the set of possible
times for the first scattering event of a trajectory. Given that this first event takes place
at t1 ∈ S1(t), and that the outcome of the scattering gives the new velocityv1, we can
then define the set of possible times for the second scattering event, and then for the
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third, and so on:

S2(t, t1) =
{
τ ∈ (t1, t) | t1 ∈ S1(t), x + t1v + (τ − t1)v1 ∈ ∂Λc, v2 · ω ≤ 0

}
...

Sn(t, t1 . . . tn−1) =
{
τ ∈ (tn−1, t) | ti ∈ Si, i = 1 . . . n− 1,

x + t1v · · ·+ (τ − tn−1)vn−1 ∈ ∂Λc, vn · ω ≤ 0
}

Sn+1(t, t1 . . . tn) =
{
τ ∈ (tn, t) | ti ∈ Si, i = 1 . . . n,

x + t1v · · ·+ (τ − tn)vn ∈ ∂Λc, vn+1 · ω ≤ 0
}
.

Of course all theSn depend on the initial position, and so it would be more correct,
perhaps, to writeSn(t, t1 . . . tn−1;x, v). Given the initial position and velocity, the
sets of scattering events completely determines the trajectory, because there is no other
randomness in the process but the choice whether a scattering takes place or not. We
denote

sn := |Sn(t, t1 . . . tn−1)| (15)

the cardinality of the setSn, and also

k(n) = |Sn+1(t, t1 . . . tn)|+
n∑

j=1

|Sj(ti, t1 . . . tj−1)| ,

which counts the number of encounters with an obstacle which did not result in a
scattering event, given that scattering did occur at att1...tn. Then

gε(x, v, t) =
∑
n≥0

(V t
ε g0)n(x, v, t) =

∑
n≥0

gε,n(x, v, t) (16)

wheregε,0(x, v, t) = (1− εδ/2−δ)s1g0(x + vt, v) and, forn > 1,

gε,n(x, v, t) =
∑

t1∈S1(t)

· · ·
∑

tn∈Sn(t,t1...tn−1)

pn(1− p)k(n)

g0(x + t1v + (t2 − t1)v1 + . . . (tn − tn−1)vn−1 + (t− tn−1)vn, vn) ,

wherev0 = v andvi = v′i−1 is the post collisional velocity with incoming velocity
vi−1, and, as before,p = εδ/2−δ.

To prove Theorem 2 we shall show that, for any functiong0 ∈ C0(R2 × S1) and
for all t > 0,∫

R2×S1
(fε(x, v, t)− f(x, v, t))g0(x, v) dx dv → 0 as ε → 0. (17)

9



3 Convergence of the Markovian model to the Boltz-
mann equation

From the very definition offε and the weak definition off ,one can see that proving (17)
is equivalent to showing that given the initial dataf0(x, v),∫

R2×S1
f0(x, v)

(
V tg0(x, v)− V t

ε g0(x, v)
)

dxdv → 0 (18)

when ε → 0, for fixed t (but uniformly for any interval0 < t < T , and for all
g0(x, v) ∈ C0). That it is enough to consider test functions with compact support,
follows from the fact that

∫
{|x|>R}×S1 f(x, v, t) dxdv → 0 asR →∞ (also this holds

uniformly in a bounded time interval, because of the bounded velocities), and thatV t
ε

andV t are bounded operators inL∞. Moreover∣∣∣∣∫
R2×S1

f0(x, v)
(
V tg0(x, v)− V t

ε g0(x, v)
)

dxdv

∣∣∣∣ ≤
‖g0‖L∞

∫
{f0>M}

f0 dxdv + M‖V tg0 − V t
ε g0‖L1 . (19)

The first of the terms in the right hand side go to zero asM increases to infinity (this
is one point where we use in an essential way thatf0 ∈ L1). The rest of the section is
devoted to proving that the second term goes to zero whenε → 0.

To study this second term, we rely on the semi-group property ofV t andV t
ε , and

that‖V t‖L∞ = ‖V t
ε ‖L∞ = 1. The semi-groups are also bounded inL1: ‖V t‖L1 =

‖V t
ε ‖L1 ≤ 1. Dividing the interval[0, t] into N intervals gives

V tg0(x, v)− V t
ε g0(x, v) =

N−1∑
j=0

V
j t

N
ε

(
V

t
N − V

t
N

ε

)
V (N−1−j) t

N g0(x, v) .

Hence it is enough to show that for some suitably chosenN = Nε,

Nε ‖V
t

Nε g0(x, v)− V
t

Nε
ε g0(x, v)‖L1 → 0 (20)

asε → 0, because then, for anyε0 > 0, one can chooseM so large that∫
{f0>M}

f0 dxdv ≤ ε0

2‖g0‖L∞
,

and then takeε so small thatNε‖V
t

Nε g0(x, v) − V
t

Nε
ε g0(x, v)‖L1 < ε0/2M . Let

τε = t/Nε. Now,∣∣∣V τε
ε g0(x, v)− V τεg0(x, v)

∣∣∣ = ∣∣∣ ∞∑
n=0

((
V τε

ε g0
)
n

(x, v)−
(
V τεg0

)
n

(x, v)
) ∣∣∣

≤
∣∣(V τε

ε g0
)
0
(x, v)−

(
V τεg0

)
0
(x, v)

∣∣
+
∣∣(V τε

ε g0
)
1
(x, v)−

(
V τεg0

)
1
(x, v)

∣∣
+
∣∣∣∑

n≥2

(
V τε

ε g0
)
n

(x, v)
∣∣∣+ ∣∣∣∑

n≥2

(
V τεg0

)
n

(x, v)
∣∣∣
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It is clear from the definition of
(
V τεg0

)
n

(x, v), that∥∥∥∑
n≥2

(
V τεg0

)
n

(x, v)
∥∥∥

L1
≤ ‖g0‖L1τ2

ε . (21)

Moreover, the following propositions hold true:

Proposition 3 Letg0(x, v) ∈ C0(R2 × S1). Suppose thatg0(x, v) = 0 if |x| > R (so
R is the diameter of the support ofg0). Assume thatt ≥ 2ε1/(2−δ). Then∥∥∥∑

n≥2

(
V t

ε g0
)
n

(x, v)
∥∥∥

L1
≤ CR‖g0‖L∞t2

Proposition 4 Let g0(x, v) satisfy the same conditions as in Proposition 3. Assume
also thatt ∼ pα, with 0 < α < 1.

1. If α < 1/3, then

‖
(
V t

ε g0
)
0
(x, v)−

(
V tg0

)
0
(x, v)‖

≤ CR||g0||L∞t1+
1
4 ( 1

α−3)
√

log(1/t) . (22)

2. Letλg0(w) be the modulus of continuity ofg0, i.e. a function such that|g0(x1, v1)−
g0(x2, v2)| ≤ λg0(|x1 − x2| + |v1 − v2|) for all x1, x2, v1 andv2. There is a
γ > 0 such that

‖
(
V t

ε g0
)
1
(x, v)−

(
V tg0

)
1
(x, v)‖ ≤

CRt λg0(tγ/4) + CR||g0||L∞t1+γ . (23)

What this says is that, in a short time interval, the probability that a trajectory has
more than two velocity jumps is very small, and that trajectories with at most one
velocity jump have essentially the same distribution in the limit asε go to zero.

This is enough to prove Theorem 2, because, returning to the expression (20), and
usingNετ = t, we then have

Nε‖V
t

Nε
ε g0(x, v)− V

t
Nε g0(x, v)‖L1 ≤ Nετo(τ) = t o(τ) ,

whereo(τ) is a function converging to zero withτ . We can conclude, by taking for
exampleN ε = ε−δ/(8−4δ), which implies that the conditions forτ in Proposition 3 and
Proposition 4 are satisfied. �

The proofs of Proposition 3 and Proposition 4, both depend very much on Proposi-
tion 5, and its corollaries. Consider a line segment of lengthL starting from the point
x in the directionv, and denote bys(x, v, L) the number of obstacle sites that this
segment crosses. Then Proposition 5 says essentially that

s(x, v, L) = Lε−δ/(2−δ) + rD,ε(x, v, L) and

s(x, v, L) ≤ cLε−δ/(2−δ) + rF ,ε(v, L) ,
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where the error termsr may be very large, but are small with respect toLε−δ/(2−δ)

after integration overv; the second error one actually bounded, but at the cost of the
constantc in front of Lε−δ/(2−δ).

Proof of Proposition 3: From (16), we have∣∣(V t
ε g0)(x, v, t)− (V t

ε g0)0(x, v, t)− (V t
ε g0)1(x, v, t)

∣∣
=
∣∣∣∣ ∞∑

n=2

P (nco = n) E
[
g(T t

ε (x, v))
∣∣nco = n

]∣∣∣∣ , (24)

whereP (nco = n) is the probability that there are exactlynco scattering events in the
trajectory, and whereE

[
A
∣∣ B] denotes the conditional expectation ofA givenB. The

right hand side of (24) is then bounded by

sup
(y,w)∈R2×S1

|g(y, w)|
∞∑

n=2

P (nco = n) , (25)

where actuallyP (nco = n) depends on the initial value(x, v). It remains to estimate∫
A×S1

P (nco ≥ n) dx dv , (26)

whereA is a subset ofR2 sufficiently large to contain the support ofg.
The probability that there are at least two scattering events is∑

n≥2

P (nco = n) = P (nco ≥ 1)
s1∑

k=1

P (scattering atk) P (nco ≥ 2|k)

=
s1∑

k=1

p(1− p)k−1(1− (1− p)s2) ; (27)

in this expression,s1 is the number of obstacle sites crossed by a segment of lengtht
starting in the directionv from the pointx, p(1− p)k−1 is the probability that the first
scattering event takes place exactly at thek-th encounter with an obstacle, ands2 is the
number of encounters with obstacles at the second lap,given the starting position for
the first lap, the direction, and the numberk. This corresponds to the number of crossed
obstacle sites along a segment of lengtht− t1, starting at pointx1 in the directionv1.
Note thatt1, x1 andv1 are all well defined, given the random numberk and the starting
positionx andv.

The probabilityp is supposed to be small (and actually converge to zero), so one
can assume thate−

3
2 ≤ (1− p)1/p, for all p sufficiently small. Then

1− (1− p)s2 < 1− e−
3
2 ps2 . (28)

Next we writebk = p(1 − p)k−1/ (1− (1− p)s1), so that
∑s1

k=1 bk = 1. Because
1− e−

3
2 τ is concave inτ , one can then use Jensen’s inequality to deduce that

s1∑
k=1

bk(1− e−
3
2 ps2) ≤

(
1− e−

3p
2

Ps1
k=1 bks2

)
. (29)

12



Integrating overA while keeping the initial directionv fixed, and again using the Jensen
inequality gives the estimate (|A| denotes the area of the setA)∫

A

∞∑
n=2

P (nco = n) dx ≤ |A| 1
|A|

∫
A

(
1− (1− p)s1

)(
1− e−

3p
2

Ps1
k=1 bks2

)
dx

≤ |A| sup
x∈A

(
1− (1− p)s1

)(
1− e−

3p
2

1
|A|

R
A

Ps1
k=1 bks2 dx

)
. (30)

There is no loss of generality in assuming thatA is rectangular, with sides aligned with
the directionv, and we can then choose a coordinate system so thatx = (y, z) where
y = x · v (recall that|v| = 1). ThenA = I1 × I2 with y ∈ I1 andz ∈ I2, and the
exponent in (30) becomes

3p

2
1
|A|

∫
A

s1∑
k=1

bks2 dx =
3p

2
1

|I1| |I2|

∫
I1

∫
I2

s1∑
k=1

bks2 dz dy . (31)
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lξ

α
v
v′

v′′

φ
ζ

An

An−1

An−2

An−3

Γn

Γn+1

Γn

Γn−1

Γn−2

ln = |ξn|e
1/(2−δ)

ln−1

ln−2
φn

2
φn−1

2
φn−2

2

r = ε
ζn−2

{(x′−tv′′,v′′) |z∈∆z,v′∈∆v,t∈[0,∆t]}

{(x′−tv′,v′) |ζ∈∆ζ,v′∈∆v,t∈[0,∆t]}

x′

I

j = 1
j = 2; k = 1 j = 8; k = 2

I ′

z

v

v′

β

L

1

3

4

y1

y2

y3

−1/2
1/2

α
I

Ψε

ε(1−δ)/(2−δ)

I2

Figure 4: The figure shows a stripJt with t in an interval of lengthL andz ∈ I2

In what follows, we shall consider the integral with respect toz (see fig. 4, which
shows a strip of this domain, with lengthL = t and width|I|, whereI denotes a
segment of constanty). In the figure, all scatterers whose centers belong to the strip
are enumerated with the symbolj, andcj ∈ R2 denotes the center of thej-th scatterer.
Similarly, zj then denotes the second component ofcj in this coordinate system. Sup-
pose now that a line segment starting fromz ∈ I in the directionv is scattered on the
j-th obstacle, and that the scattering angle isβ. Then the relation

z − zj = ε sinβ/2 (32)

13



holds. Letk = k(β, j) denote the number of scatterers that this line segment crosses
on the way fromI to the scatterer, and writez = z(β, j). The other way around,
one can follow a line fromz ∈ I, and count the number of crossed obstacles, and
stop on thekth one along the trajectory. This identifies uniquely an obstaclej and a
scattering angleβ, and so there is a one to one correspondence between a couple(z, k)
and(β, j). If we denote the exact time of scattering against thekth obstacle along the
way by t1 = t1(z, k), and the point at which this takes place byx1 = x1(z, k), then
the expression fors2, including all variables, in (31) is

s2 = s(x1(z, k), β(z, k), t− t1(z, k)) ,

wheres(x, v′, t), in general, is the number of times a segment of lengtht starting atx in
the directionv′ (the directionafter the scattering, which is identified with the scattering
angleβ in a natural way). The inner integral in (31) then becomes

p

|I2|

∫
I2

s1∑
k=1

bks(x1(z, k), β(z, k), t− t1(z, k)) dz ≤ p

|I2|

∫
I2

s1∑
k=1

bk sup
x

s(x, β(z, k), t) dz .

becauses is increasing int. Using the identification of(z, k) with (β, j), and (32), one
can then write the integral and sum as∫ 2π

0

pε

|I2|
∑

cj∈Jt

bk(β,j) sup
x

s(x, β, t)
1
2

cos(β/2) dβ , (33)

whereJt = [y, y + t[×I is a strip of lengtht as denoted in the figure. Let

s̄ε(β, t) = sup
x

s(x, β, t) , and

Bε(β, t) =
ε

|I|
1
2

cos(β/2)
∑

cj∈Jt

bk(β,j) .

We then use Proposition 6 withL = t, to see that̄sε(β, t) ≤ c1tε
−δ/(2−δ) + rF ,ε(β, t),

where ∫ 2π

0

|rF ,ε(β, t)| dβ ≤ c3 ,

and where|rF ,ε(β, t)| ≤ c2tε
−1/(2−δ), for some constantsci. By the very construction,∫ 2π

0
Bε(β, t) dβ = 1 independently oft (just carry out the sum and integral in (31)

without the functions2; for this to be exact, one has to define thebk(β,j) to be zero
when this corresponds toz /∈ I). It is also clear that

Bε(β, t) ≤ ε

|I|
#{cj ∈ Jt} ,

where#{·} denotes the cardinality of a set. Here, with a rough estimate, ift >
2ε1/(2−δ), then#{cj ∈ Jt} ≤ 2t|I|ε−2/(2−δ), and then

Bε(β, t) ≤ Ctε−δ/(2−δ) = Ct/p .

14



Thus the expression (33) is bounded by

p

∫ 2π

0

Bε(β, t)s̄ε(β, t) dβ ≤

≤ p

∫ 2π

0

Bε(β, t)c1tε
−δ/(2−δ) dβ + p sup

β
Bε(β, t)

∫ 2π

0

|rF ,ε(β, t)| dβ

≤ c1t + Ct

∫ 2π

0

|rF ,ε(β, t)| dβ ≤ Ct . (34)

Similarly, we estimate the factor(1− (1− p)s1) in (30) as

1− (1− p)s1 ≤ 1− e−
3
2 ps1 ≤ 1− e−C(t+p rF ,ε(v,t)) .

Now 1− e−(y1+y2) ≤ min(1, y1) + min(1, y2), and hence(
1−e−C(t+p rF ,ε(v,t))

)(
1− e−Ct

)
≤ C

(
t + min(1, p rF ,ε(v, t))

)
min(1, t) . (35)

We conclude the proof by integrating overv, and inserting the relations betweenε, t
andp:∫

A×S1
P (nco ≥ n) dx dv ≤ CR

∫
S1

(
t + min(1, p rF ,ε(v, t))

)
min(1, t) dv

≤ CRt2 ;

the only condition needed is thatt > 2ε1/(2−δ). �

Proof of Proposition 4: The idea of the proof of this proposition is similar to the the
corresponding one in [CPR], though here we make direct use of the counting lemma
from Section 4, just in the proof of Proposition (3).
Proof of (22):

g0(x, v, t) =
(
V tg0

)
0
(x, v) = e−tg0(x + vt, v), and

gε,0(x, v, t) =
(
V t

ε g0
)
0
(x, v) = (1− p)s1(x,v,t)g0(x + vt, t) ,

and so

‖g0(·, ·, t)− gε,0(·, ·, t)‖L1 ≤ ‖g0‖L∞

∫
A×S1

∣∣e−t − (1− p)s1(x,v,t)
∣∣ dxdv

= ‖g0‖L∞ e−t

∫
A×S1

∣∣1− et(1− p)s1(x,v,t)
∣∣ dx dv , (36)

where, like before,A ⊂ R2 contains the support ofg0. Next,

et(1− p)s1(x,v,t) = et+log(1−p)s1 ,

15



and using Corollary 5.1 below, we find that|s1−t/p| ≤ r1,ε(v, t), where on the average
r1,ε(v, t) is small. Moreover,log(1− p) + p < Cp2, and so

|t + log(1− p)s1| ≤ C (p r1,ε(x, v, t) + pt) .

Now, with t ∼ pα, ( which means thatp ∼ t1/α, andε ∼ t(2−δ)/δα), the estimate on
r1,ε(v, t) from Corollary 5.1 implies that

p

∫
S1

∣∣ r1,ε(x, v, t)
∣∣ dv < c1t

1/δα + c2

(
t1+1/α log

(
t1−1/δα

))1/2

Then, for smallt,

meas({v ∈ S1
∣∣ p |rD,ε| > t1+γ}) ≤ C

√
log(1/t)t

α+1
2α −1−γ ,

for some constantC. On the complementary set,

|t + log(1− p)s1| ≤ C
(
t1+γ + t1+1/α

)
,

and so the integral in (36) is smaller than

C|A|
(
t1+γ + t1+1/α

)
+ C

√
log(1/t)t

α+1
2α −1−γ .

If α < 1/3, then the estimate (22) follows by takingγ = 1
4 ( 1

α − 1).

Proof of the estimate (23):We need to compare

g1(x, v, t) =
(
V tg0

)
1
(x, v) = e−t

∫ t

0

∫
S−

g0(x + vt1 + (t− t1)v′, v′)
|(v, ω)|

2
dω dt1,

(37)

and

gε,1(x, v, t) =
(
V t

ε g0
)
1
(x, v) =

∑
t1∈S1(t)

p(1− p)s1+s2g0(x + t1v + (t− t1)v1, v1) ,

(38)

whereS1(t) are the instances where a trajectory encounters an obstacle site, as defined
in (14); the corresponding points of encounter, and deflected velocity are denotedx1

andv1. Also,s1(x, v, t) ands2(x, v, t; t1) are the number of encounters with obstacles
sites on the first and second lap of the trajectory, as described before.

Consider first (37). The integral overω can be parameterized by the scattering
angleβ, or equivalently byz = sin(β/2), and so it can be written

e−t 1
2

∫ t

0

∫ 1

−1

g0(x + vt1 + (t− t1)v′, v′) dz dt1 .

16



We then write the argumentX(t1, z;x, v, t), andv′ = v′(z; v). For the momentv, x
andt are considered as parameters, and they will only be written out when needed. We
cut the integral into pieces, and write

e−t 1
2

j0∑
j=1

∫
Tj

m0∑
m=−m0+1

∫
Zm

g0(X(t1, z), v′(z)) dz dt1 , (39)

whereTj = [ t(j−1)
j0 , tj

j0 [ andZm = [m−1
m0

, m
m0

[ . The positionX(t1, z1;x, v, t) corre-
sponding to the endpoints of the intervals, are denoted

Xj,m(x, v) = x + (t(j − 1)/j0)v + (t− t(j − 1)/j0) v′
(
(m− 1)/m0, v

)
.

In any one of the subsets of the integral (39), we have0 ≤ t1 − t(j−1)
j0 ≤ t/j0, and

|v′(z)− v′(m−1
m0

)| < 2
√

1/m0. Also, obviously,|v − v′| ≤ 2, and so

|X(t1, z)−Xj,m| = 2t/j0 + 2
√

1/m0 .

Becauseg0 is continuous and compactly supported, it is uniformly continuous, which
means that there is a functionλg0(w) which tends to0 asw tends to0, such that
|g0(x1, v1)− g0(x2, v2)| ≤ λg0(|x1 − x2|+ |v1 − v2|). Then,

g1(x, v, t) =e−t 1
2

t

j0

1
m0

j0∑
j=1

m0∑
m=1−m0

g0(Xj,m, v′
(
(m− 1)/m0

)
) (40)

+ g̃1,m0,j0(x, v, t) ,

where

g̃1,m0,j0(x, v, t) ≤ tλg0(2t/j0 + 2
√

1/m0) .

Similarly we write

gε,1(x, v, t) = p

j0∑
j=1

m0∑
m=1−m0

∑
t1∈S1(t)

(
1− p

)s1+s2

× 11t1∈Tj
11z1∈Zm

g0
(
X(t1, z1;x, v, t), v′(z1; v)

)
wherez = z(t1) = sin(β)/2), andβ(t1) is the deflection angle betweenv and the
outgoing velocityv1(t1). Just as in the continuous case, one can replaceX(t1, z1) by
Xj,m, and use the uniform continuity ofg0. With

g̃ε,m0,j0(x, v, t) ≤ p s(x, v, t)λg0(2t/j0 + 2
√

1/m0)

≤ C
(
t + p rF ,ε(v, t)

)
λg0(2t/j0 + 2

√
1/m0) ,
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one can write

gε,1(x, v, t) = p

j0∑
j=1

m0∑
m=1−m0

g0(Xj,m, v′((m− 1)/m0))

×
∑

t1∈S1(t)

11t1∈Tj
11z1∈Zm

(
1− p

)s1+s2 (41)

+ g̃ε,m0,j0(x, v, t) .

It remains to compare the sums in (40) and (41). For this we use again Proposition 5
and its corollaries, to see that∣∣t + log(1− p)s(x, v, t1)+s(x1, v1, t− t1)

∣∣
≤ p r1,ε(v, t1) + p r1,ε(v1, t− t1)

and so, the sums differ by at most

te−t ‖g0‖L∞
1

2m0j0

∑
j,m

∣∣∣1− 2p m0j0
t

∑
t1∈S1(t)

11t1∈Tj 11z1∈Zmet+log(1−p)(s1+s2)
∣∣∣

≤te−t ‖g0‖L∞

(
1

2m0j0

∑
j,m

∣∣∣1− 2p m0j0
t

#
{
t1 ∈ S1(t)

∣∣ t1 ∈ Tj , z1 ∈ Zm

}∣∣∣
+

p

t

∑
t1∈S1(t)

∣∣1− et+log(1−p)(s1+s2)
∣∣)

The cardinality of the set in the first sum, is given by Corollary 5.2 withL = t/j0 and
κ = 1/2m0, so that each of the terms in the sum is bounded by∣∣∣1− 2p m0j0

t

( tε−δ/(2−δ)

2m0j0
+ r1,ε(v, t/j0, 1/2m0)

)∣∣∣ ≤ 2p m0j0
t

r1,ε(v, t/j0, 1/2m0)

Summing all the terms, we find that

‖g1(·, ·, t)−gε,1(·, ·, t)‖L1 ≤ C |A| t λg0(2t/j0 + 2
√

1/m0)

+ C |A|
∫

S1
p rF ,ε(v, t) dv λg0(2t/j0 + 2

√
1/m0)

+ C |A|‖g0‖L∞p m0j0

∫
S1

r1,ε(v, t/j0, 1/2m0) dv

+ e−t ‖g0‖L∞

∫
A×S1

∑
t1∈S1(t)

p
∣∣1− e−p

(
r1,ε(v,t1)+r1,ε(v1,t−t1)

)∣∣ dx dv .

(42)

We assume as before, thatt ∼ pα for someα < 1, and moreover, we setm0 ∼ ε−γ1

andj0 ∼ ε−γ2 , for some positive numbersγ1 andγ2. Then after integrating, the second

18



term in (42) is absorbed by the first one. By Corollary 5.2, the third term is bounded by

|A| ‖g0‖L∞

(
c1m0j0ε

1/(2−δ) + p m0j0c2

( t

m0j0
ε−δ/(2−δ) log

(
tε−1/(2−δ)/j0

))1/2
)

≤ C|A| ‖g0‖L∞

(
m0j0ε

1/(2−δ) + c2 (m0j0t p )1/2
(
log
(
tε−1/(2−δ)/j0

))1/2
)

≤ C|A| ‖g0‖L∞

(
t

1
αδ−γ1−γ2 + t

1
2 (1+ 1

α−γ1−γ2)( log(1/t)
))

.

Here any choice ofα < 1 makes it possible to chooseγ1 andγ2 so that this term is
smaller thant1+γ for γ = γ1 + γ2.

The last term in (42) is estimated in a different way. First of all, the factor

e−p
(

r1,ε(v,t1)+r1,ε(v1,t−t1)
)

is bounded byet < 2, say, for smallt, simply because
s1 + s2 ≥ 0. We keep the same relations betweent, p, m0 and j0 as before. By
Corollary 5.1, ∫

S1
p |r1,ε(v, t1)| dv ≤ C t1/α log(1/t) ,

and so, for anyγ < 1/α,

meas
{
v
∣∣ p |r1,ε(v, t1)| > tγ

}
≤ C t

1
α−γ log(1/t) .

Also, just like in the proof of Proposition 3,∫
A×S1

∑
t1∈S1(t)

p |r1,ε(v1, t− t1) | dx dv ≤ CR

(
t1/αδ + t

1
2 (1+ 1

α )
√

log(1/t)
)

;

this follows like in equation (34), by replacingrF ,ε with r1,ε, and then integrating over
the remaining space variable and overv. Then (this is again the Tjebychev inequality)∫

A×S1

∑
t1∈S1(t)

11p |r1,ε(v1,t−t1) |≥tγ dx dv ≤ CR

(
t

1
αδ−γ + t

1
2 (1+ 1

α )−γ
√

log(1/t)
)

.

This all means that the last term in (42) is bounded by

C‖g0‖L∞
∣∣1− etγ ∣∣ ∫

A×S1
p
∑

t1∈S1(t)

dx dv

+ CR‖g0‖L∞
(
t

1
αδ−γ + t

1
2 (1+ 1

α )−γ
√

log(1/t)
)

≤ CR‖g0‖L∞

(
t1+γ + t

1
αδ−γ + t

1
2 (1+ 1

α )−γ
√

log(1/t)
)

,

and so we can conclude by choosingγ > 0 suitably. And so all the terms in (42) go to
zero faster thant, whent → 0. �
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4 Counting encounters with obstacle sites

In this section we compute a formula that gives the number of times that a trajectory
of lengthL starting at a given pointx ∈ Ωε and in a given directionv ∈ S1 meets an
obstacle. This is calculated in a very classical way, using the Fourier series, and we
refer to [D, BGW] similar estimates. Setting the starting point at the edge of a lattice
cell results in an error of at most one, and this will be insignificant in the end. We now
refer to Figure 5. The line segment of lengthL is assumed to start at a pointy0 along
the left side of the lattice cell, and we assume that thev meets the horizontal line with
angleα. There is no loss of generality in assuming that0 ≤ α < π/4. As in the
figure we denotey1 the point at which the line intersects the next cell (modulo the cell
sizeε1/(2−δ)), and so on, for{yk}M

k=1, whereM = bL cos(α)/ε1/(2−δ)c. Clearly the
number of times that the line segment crosses the scatterer is the same as the number
of yk:s that are in the segmentI, the oblige projection of the scatterer on the left side of
the cell. We can then write an almost exact formula fors(x, v, L), the number of times
that the trajectory crosses a scatterer (we assume here thatM is an even number):

s(x, v, L) =
M∑

k=0

11I(yk)
(
± 1
)

=
M/2∑

k=−M/2

11I(yk+M/2)
(
± 1
)

(43)

where11I denotes the characteristic function of the intervalI, andyk is given by the
formula

yk = y0 + kε1/(2−δ) tan(α) mod ε1/(2−δ) . (44)

A first observation is that the average ofs(x, v, L) overx is independent ofv: For
any setA ⊂ R2,

1
|A|

∫
A

s(x, v, L) dx =
M−1∑
k=0

1
|A|

∫
A

11I(yk) dx = M |I| ± 1 , (45)

that is

1
|A|

∫
A

s(x, v, L) dx =
L cos(α)
ε1/(2−δ)

· ε

ε1/(2−δ) cos(α)
= Lε−δ/(2−δ) ± 2 . (46)

Obviously this can’t hold uniformly for allx; for α = 0, for example, the value one
finds is eithers(x, v, L) = 0 or s(x, v, L) = Lε−1/(2−δ) depending onx. To compute
a more precise estimate for a givenx, we change scale so as to make the lattice size one,
and and make a translation so that11I(y) looks like in figure 5. The support of11I(y)
is then an interval of lengthε(1−δ)/(2−δ). In the following we will also replace the
characteristic function11I(y) by a regularized version, which we write

Ψε(y) = Ψ(
y

ε(1−δ)/(2−δ)
) , (47)

whereΨ is a smooth function which approximates the characteristic function for[− 1
2 , 1

2 ].
The regularization can be chosen to give an arbitrarily good approximation, either from
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below or from above. As in [D, BGW] we make use of the Fourier series forΨε when
estimating the sum in (43). Writing

Ψ̂(ξ) =
∫ ∞

−∞
e−2πiξxΨ(x) dx ξ ∈ R ,

and then

Ψ̂ε,α(ξ) =
ε(1−δ)/(2−δ)

cos α
Ψ̂
(

ε(1−δ)/(2−δ)

cos α
ξ

)
ξ ∈ Z . (48)

The sum is then

s(x, v, L) =

M
2∑

k=−M
2

∞∑
ξ=−∞

Ψ̂ε,α(ξ)e2πi(y0+
M
2 tan(α)+k tan(α))ξ

= (M + 1)Ψ̂ε,α(0) + rD,ε(x, v, L) , (49)

where

rD,ε(x, v, L) =

M
2∑

k=−M
2

∑
ξ 6=0

Ψ̂ε,α(ξ)e2πi(y0+
M
2 tan(α)+k tan(α))ξ

=
∑
ξ 6=0

Ψ̂ε,α(ξ)e2πi(y0+
M
2 tan(α))ξ

( M
2∑

k=−M
2

e2πik tan(α)ξ
)

. (50)

The factor within parenthesis in the last member is nothing but the Dirichlet kernel
DM (w) = sin(π(M+1)w)

sin(πw) , evaluated at the pointw = tan(α)ξ; it follows that

|rD,ε(x, v, L)| ≤
∣∣∣∣∑

ξ 6=0

Ψ̂ε,α(ξ)e2πi(y0+
M
2 tan(α))ξDM (tanαξ)

∣∣∣∣
≤
∑
ξ 6=0

|Ψ̂ε,α(ξ)| |DM (tanαξ)| . (51)

Because of (48), ifΨ is sufficiently smooth, then for any integera, there is a constant
Ca such that

|Ψ̂ε,α(ξ)| ≤ s
Ca

1 +
∣∣ξs∣∣a ,

wheres = ε(1−δ)/(2−δ)

cos(α) , and then the sum is bounded independently ofε andα when-
evera > 1:

∑
ξ 6=0

|Ψ̂ε,α(ξ)| ≤ s
∑
ξ∈Z

Ca

1 + |sξ|a
≤
∫ ∞

0

sCa

1 + |sξ|a
dξ < Ca . (52)
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Proposition 5 For a givenx ∈ R2, v ∈ S1, andL > 0, let s(x, v, L) be the number
of times a line segment of lengthL, starting atx in the directionv, crosses an obstacle
site (see also formula (43)). LetΨ be a smooth approximation of the characteristic
function11[−1/2,1/2] (see fig. 5). Then

s(x, v, L) = Lε−δ/(2−δ) + Aε + BLε−δ/(2−δ)(Ψ(0)− 1) + rD,ε(x, v, L).

Here |Aε| ≤ 2ε(1−δ)/(2−δ), |B| ≤ 2. Moreover, there is a constantCΨ, depending
only on the regularization ofΨ, such that∫

S1
sup

x
|rD,ε(x, v, L)| dv ≤ CΨ log

(
Lε−1/(2−δ)

)
. (53)

Proof: By dividing the circle into eight octants, it is possible to reduce the problem to
integrating over0 ≤ α ≤ π/4, and thus the computations leading to (49) and (50) are
valid. Doing the change of variableτ = tan(α) gives∫ π/4

0

sup
x
|rD,ε(x, v, L)| dα

≤ sup
0≤α≤π

4

(∑
ξ 6=0

|Ψ̂ε,α(ξ)|
)

sup
ξ 6=0

∫ 1

0

|DM (τξ)| 1
1 + τ2

dτ . (54)

The first sum is bounded by a constantCa, as we have seen above, and the integral of
the Dirichlet kernel is itself bounded by∫ 1

0

|DM (τξ)| 1
1 + τ2

dτ =
1
|ξ|

∫ |ξ|

0

|DM (τ)| 1

1 +
(

τ
|ξ|
)2 dτ ≤ C log(M) ;

the last estimate can be found e.g. in [Ed]. The result then follows, becauseM =
Lε−1/(2−δ) ± 1. �

Corollary 5.1 Let s(x, v, L) be defined as in Proposition 5. Then there is a function
r1,ε(v, L), and constantsc1 andc2 such that∣∣∣ s(x, v, L)− Lε−δ/(2−δ)

∣∣∣ ≤ r1,ε(v, L) ,

where∫
S1
|r1,ε(v, L)| dv ≤ c1ε

(1−δ)/(2−δ) + c2

(
Lε−δ/(2−δ) log

(
Lε−1/(2−δ)

))1/2

.

Proof: TakeΨ = (2ε1)−111[− 1
2−ε1, 1

2+ε1] ∗ 11[−ε1,ε1], i.e the convolution of the charac-
teristic functions of two intervals. ThenΨ ≥ 11[− 1

2 , 1
2 ], and

Ψ̂(ξ) =
sin(ξ( 1

2 + ε1))
πξ

sin(ε1ξ)
2ε1πξ

.
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With this choice ofΨ (which gives anupperbound for the number of crossed obstacles;
replacingε1 by −ε1 in the first characteristic function gives, with exactly the same
estimates, a lower bound), one thus has

Ψ̂(0) = 1 +O(ε1) ,

and, for an absolute constantC,

|Ψ̂(ξ)| ≤ C

ε1

1
1 + |ξ|2

.

For any choice ofε1 > 0, the equations (48) and (49) give∫
S1

sup
x

∣∣∣s(x, v, L)−Lε−δ/(2−δ)
∣∣∣ dv

≤c1ε
(1−δ)/(2−δ) + c̃Lε−δ/(2−δ)ε1 +

c3

ε1
log
(
Lε−1/(2−δ)

)
(55)

where thec’s are fixed (not very large) constants. The result now follows by choosing
ε1 optimally. �

Corollary 5.2 Let s(x, v, L, γ) be defined as in Proposition 5, except that only those
encounters with obstacles sites are counted, which fall into a subintervalI ′ of the
crossection (see fig 4). Assume that the length of the interval isκε, whereκ < 1. Then∣∣∣ s(x, v, L, κ)− κLε−δ/(2−δ)

∣∣∣ ≤ r1,ε(v, L, κ),

where∫
S1
|r1,ε(v, L, κ)| dv ≤ c1ε

(1−δ)/(2−δ) + c2

(
Lκε−δ/(2−δ) log

(
Lε−1/(2−δ)

))1/2

.

Proof: All that changes from before, is that equation (48) is replaced by

Ψ̂ε,α(ξ) =
κε(1−δ)/(2−δ)

cos α
Ψ̂
(

κε(1−δ)/(2−δ)

cos α
ξ

)
ξ ∈ Z .

Then all calculations can be carried out as before, to obtain the result. �

Proposition 6 Let s(x, v, L) be defined as in Proposition 5. Then there are constants
c1, c2 andc3, and a functionrF ,ε(v, L), such that

s(x, v, L) ≤ c1Lε−δ/(2−δ) + rF ,ε(v, L) ,

and where

|rF ,ε(v, L)| ≤ c2Lε−1/(2−δ) and
∫

S1
|rF ,ε(v, L)| dv ≤ c3 .
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Proof: Starting at equation (43), we first note that

M/2∑
k=−M/2

11I(yk+M/2) ≤
2

M + 1

M/2∑
j=−M/2

M/2∑
k=−M/2

11I(yj+k+M/2) ,

which then changes (49) and (50) into

s(x, v, t) ≤ 2(M + 1)Ψ̂ε,α(0) + rF ,ε(x, v, L) , and

rF ,ε(x, v, L) =
∑
ξ 6=0

Ψ̂ε,α(ξ)e2πi(y0+
M
2 tan(α))ξ 2

M + 1

( M
2∑

k=−M
2

e2πik tan(α)ξ
)2

.

What was before the Dirichlet kernel is here the Féjér kernel:

FM (w) = 1
M+1

sin2(πw(M+1))
sin2(πw)

, and the result follows in exactly the same way as be-

fore, because0 ≤ FM ≤ (M + 1) and
∫ 1

0
FM (w) dw = 1. �

Remark. The estimates in Proposition 5 and Proposition 5.1 are considerably easier
here than the ones carried out in [BGW], because here we are interested averages over
free path lengths (or rather the inverse of the free path lengths) rather than their max-
ima. And this is one of the fundamental reasons why the main result of this paper, the
convergence of the billiard dynamics towards a Boltzmann equation, holds here while
it fails in [BGW].
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Figure 5: A line, step by step covering the torus; the obstacle radius isε, the size
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The figure to the right shows a smooth approximation from above, of the characteristic
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5 Asymptotic equivalence of the stochastic processes

We have previously described three stochastic processes,z̃ε(t), the process coming
from the “diluted Lorentz gas”,zε(t), the Markovian process, and finallyz(t), the
jump process which is associated with the Boltzmann equation. In this section, we shall
see that with probability one, each of these processes belong to the Skorokhod space
D[0,T ](R2 × S1), that each process induces a measureµ̃ε, µε, andµ on D[0,T ](R2 ×
S1), and that each ofµε and µ̃ε converge toµ whenε → 0. Theorem 1 is a direct
consequence of the statement thatµ̃ε → µ asε → 0.

We begin with some basic definitions, and then the proof thatµε → µ.
The Skorokhod space is the space of right continuous functions with left limits

(càdlàg):

D[0,T ](R2 × S1) =
{
z : [0, T ] → R2 × S1

∣∣∀t ∈ [0, T ]z(t) = lim
s→t+

z(s) ;

z(T ) = lim
t→T−

z(s) ;

∀t ∈ [0, T ],∃z(t−) = lim
s→t−

z(s)
}

,

equipped with the distance

dS(x, y) = inf
λ∈Λ

{
sup

t∈[0,T ]

‖x(t)− y(λ(t))‖
R2×S1

+ sup
t∈[0,T ]

|t− λ(t)|
}

,

Λ =
{
λ ∈ C([0, T ]) : t > s ⇒ λ(t) > λ(s), λ(0) = 0, λ(T ) = T

}
.

It is clear that all the three processes considered here belong toD[0,T ](R2 × S1) with
probability one. A timet∗ ∈ [0, T ] is called a jumping time forz if limt→t∗− z(t) 6=
limt→t∗+ z(t); it is enough to verify that with probability one, any one of these pro-
cesses have only finitely many jumping times. Actually, whenδ = 0, which was
considered in [CPR], it can happen that a trajectory is trapped in the corner between
two obstacles for the Lorentz model, and bounce infinitely many times in a short time
interval, and then an argument is needed to show that this happens with zero probabil-
ity, if the initial data is taken from an initial distributionf0 ∈ L1(R2 × S1); as soon as
δ > 0, this is impossible.

We consider now the Boltzmann processz(t), where the initial dataz(0) is dis-
tributed according tof0 ∈ L1(R2 × S1). This induces a measure onD[0,T ](R2 × S1),
which first is defined on cylindrical, continuous functionsF : D[0,T ](R2 × S1) → R,
i.e. functions of the formF (z) = Fn(z(t1), z(t2), . . . z(tn)), whereFn ∈ C

(
(R2 ×

S1)n
)
, and where0 ≤ t1 < t2 < . . . < tn ≤ T is any sequence of times. For such

functions a measureµ is defined by,∫
F (z) µ(dz) =

∫
f0(z0)Pt1,0(z1

∣∣z0)Pt2,t1(z2

∣∣z1) · · ·Ptn,tn−1(zn

∣∣zn−1)

×F (z1, z2, . . . , zn)dz0dz1 · · · dzn ,

wherePtn,tn−1(zn

∣∣zn−1) is the probability of a transition from the statez1 to the state
z2 in the interval fromt1 to t2. The measure is then extended to all continuous functions
F : D[0,T ](R2 × S1) → R .
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Exactly the same construction is valid for all the three processes considered here,
and we denote bỹµε, µε, andP̃ε andPε the corresponding measures and transition
probabilities. Moreover, we writeµ∗ etc. in equations that are true for all of these
processes.

We now wish to prove that the processzε converges toz asε → 0, in the sense that
the corresponding measures converge:

Proposition 7 For each continuous functionF : D[0,T ](R2 × S1),

lim
ε→0

∫
F (z)µε(dz) →

∫
F (z)µ(dz) . (56)

Proof: All the processes considered here belong with probability one toD[0,T ](R2 ×
S1). We equipR2 × S1 with the metricd(z1, z2) := min(‖z1 − z2‖R2×S1 , 1). First
we recall a result from [GS, p. 431], which adapted to our case says that for such
processes, if

1. the marginal distributions ofzε(t) converge to the marginal distribution ofz(t),
and

2. there is a constantC, such that for allε > 0, and all choices of0 ≤ t1 < t2 <
t3 ≤ T ,

E
[
d
(
zε(t1), zε(t2)

)
d
(
zε(t2), zε(t3)

)]
≤ C(t3 − t1)2 , (57)

then for all continuous functionalφ : D[0,T ](R2 × S1) → R, the distribution ofφ(zε)
converges to the distribution ofφ(z), which is exactly the statement of the proposition.
(Note that (57) is a stronger statement than the condition required in [GS]).

That the one dimensional marginals converge is essentially the content of Theo-
rem 2. To see that (56) holds for cylindrical functions that factorize as

F (z) =
n∏

i=1

Fi

(
z(ti)

)
, Fi ∈ C∞

0 (R2 × S1)

one can do very much as in the proof of Theorem 2. We have∫
µ∗(dz)F (z) =

∫
f0(z0)P ∗

t1(z|z1)P ∗
t2−t1(z1|z2) . . . P ∗

tn−tn−1
(zn−1|zn)

× F1(z1)F2(z2) . . . Fn(zn)dz0dz1 . . . dzn

=
∫ [

V t1
∗ F1V

t2−t1
∗ F2 . . . F2V

tn−tn−1
∗ Fn

]
(z)f0(z0) dz0 .

Let

Gn
ε = V t1

ε F1V
t2−t1
ε F2 . . . Fn−1V

tn−tn−1
ε Fn

Gn = V t1F1V
t2−t1F2 . . . Fn−1V

tn−tn−1Fn

and recall from Section 2 that
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1. ‖V t
∗F‖L1 ≤ ‖F‖L1 (both semi-groups are contractive) ,

2. ‖(V t
ε − V t)F‖ ≤ Ct o(τ) ,

3. Gn
∗ = V t1

ε F1G
n−1
∗ ,Gn−1

∗ = V t2−t1
ε F2G

n−2
∗ ,. . . .

Thus we obtain the bound∣∣∣ ∫ µε(dz)F (z)−
∫

µ(dz)F (z)
∣∣∣ ≤

≤ (sup
i
‖Fi‖∞)‖Gn−1

ε −Gn−1‖L1 + C1 t1 o(τ) ≤ . . .

≤ C̃t o(τ) .

The convergence on the set of general cylindrical functions is then follows by a density
argument.

It remains to check that (57) holds. This can be done exactly like in [CPR]:

d(zε(t1), zε(t2))d(zε(t2), zε(t3)) ≤ ‖zε(t1)− zε(t2)‖R×S1‖zε(t2)− zε(t3)‖R×S1

≤ ‖xε(t1)− xε(t2)‖R2‖xε(t2)− xε(t3)‖R2

+ ‖xε(t1)− xε(t2)‖R2‖vε(t2)− vε(t3)‖S1

+ ‖vε(t1)− vε(t2)‖S1‖xε(t2)− xε(t3)‖R2

+ ‖vε(t1)− vε(t2)‖S1‖vε(t2)− vε(t3)‖S1 .

If there is at least one jumping timēt ∈ (t1, t2), then‖vε(t1)− vε(t2)‖S1 = O(1), and
if there are at least two jumping times̄t1 ∈ (t1, t2) and t̄2 ∈ (t2, t3), then‖vε(t1) −
vε(t2)‖S1‖vε(t2) − vε(t3)‖S1 = O(1). We denote byχ1(t1, t2) andχ2(t1, t2, t3) the
characteristic functions of the sets

A1(t1, t2) = {z ∈ D[0,T ](R2 × S1) : ∃ts ∈ (t1, t2) s.t. v(t−s ) 6= v(t+s ))}
A2(t1, t2, t3) = {z ∈ D[0,T ](R2 × S1) : ∃ts1 ∈ (t1, t2), ts2 ∈ (t2, t3)

s.t. v(t−si
) 6= v(t+si

))} .

Because

‖xε(ti)− xε(ti+1)‖R2 ≤ |ti − ti+1|
‖vε(ti)− vε(ti+1)‖S1 ≤ 2

χ2(t1, t2, t3) = χ1(t1, t2)χ1(t2, t3),

we have

E[d(zε(t1), zε(t2))d(zε(t2), zε(t3))] ≤ |t2 − t1||t3 − t2|+ 4E(χ2(t1, t2, t3))
+2[|t2 − t1|E(χ1(t2, t3)) + |t3 − t2|E(χ1(t1, t2))]
≤ |t3 − t1|2 + 4C1|t3 − t2||t2 − t1|+ 4C2|t3 − t2||t2 − t1| ≤ C3|t3 − t1|2 ,

which is nothing but the estimate (57). This concludes the proof of Proposition 7.�
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Next we wish to prove that̃µε is close toµε. This is done in [CPR] by defining
a “bad” subset ofD[0,T ](R2 × S1), which is small forµε, because it is small for the
measureµ, and then the result follows by proving the statement on the complement of
this bad set.

Because of a technical difficulty in defining the bad subset, we here take a some-
what different path.

First we note that the two measuresµ̃ε and µε are concentrated on subsets of
D[0,T ](R2 × S1) which consist of trajectories that have constant velocity, or change
velocities at a finite set of points, namely the points where the trajectory meets an
obstacle site; moreover, the two measures differ only on subsets where the trajectory
meets with the same obstacle site more than once. Whenδ = 1, i.e. the case con-
sidered in CPR, this happens with positive probability for both measures; though not
a proof, an explanation is that there is a positive probability that a trajectory crosses
itself, and fraction of the area occupied by obstacle sites isπ/4 independently ofε; this
is not a real obstruction for obtaining the desired result, as we shall see, but we begin
by proving that for0 < δ < 1, the probability that a trajectory loops back to the same
obstacle site converges to zero withε.

Consider thus a trajectory that somewhere along its path makes a loop, i.e. one that
meets the same obstacle site a second time. It might have several loops, but here we
always consider a fixed one. Such a trajectory can be indexed by a sequenceξj ∈ Z2,
0 → ξ1 → ξ2 · · · → ξn → 0, where the0 in the beginning and the end indicates the
starting point, and where theξj denote the relative integer coordinates of the obstacle
sites where the trajectory changes direction. We can assume that the absolute coordi-
nates of the obstacles are distinct, i.e. that the loop is a “simple loop”, but of course the
ξj need not be distinct.

Let ξξ = (ξ1, ...ξn) ∈ (Z2)n denote this sequence. Note that the real length of such

a loop is approximatelyε1/(2−δ)
(
|
∑n

j=1 ξj |+
∑n

j=1 |ξj |
)

, and that this length must

be less thanT .

Let A0 denote the obstacle site where the loop starts; the trajectory could have
traversed the site, or it could have been reflected on∂A0, the boundary ofA0. In either
case, the trajectory meets∂A0 in a unique point(x0, v0) that satisfiesv · ω > 0, where
ω is the outward normal toA0. In this setting,∂A0 is part of the boundary of the
billiard table,∂Λc, as defined in Section 2. Thebilliard map is a transformation of
∂Λc × S1

+ to itself, defined by(x0, v0) 7→ (x1, v1), wherex1 ∈ ∂Λc is the next point
where the trajectory hits the boundary, and wherev1) is the reflected velocity.

Let now ds denote the length measure on the∂Λc; in the present case all of the
boundary consist of circular arcs with the same radius,r, and this measure can be
written rdω, whereω can be identified with the outgoing normal at the pointx. Let θ
be the angle betweenv andω. Then thebilliard measureis defined ascos(θ)r dωdv.
Below it is more convenient to parameterize∂A0 × S1

+ by v and ζ whereζ is the
distance between the center ofA0 and the line containing the trajectory defined by
(x0, v0). With this parameterization, the billiard measure becomesdζdv. Now it is a
fact that this measure is preserved under the billiard map (see eg. [BS1, P] for classical
and more recent results concerning billiards and their asymptotic behavior).
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Consider a fixed trajectory that starts at(x0, ω0), and then returns toA0 after being
reflected on a sequence of other obstaclesAj ; consider also the corresponding sequence
ξξ = (ξ1, ..., ξn). We define the setΩξξ ⊂ ∂A0 × S1

+ as the set of all trajectories going
out from∂A0 that can return toA0 via the sequenceξξ. Note that this is a well defined
set, that does not depend on whether a trajectory is realized or not.

Lemma 1 There are constantsC0 andC1 such that

dζdv-meas(Ωξξ) ≤ CoC
n
1 rn+2 1

ε1/(2−δ)|
∑n

j=1 ξj |

n∏
j=1

1
|ε1/(2−δ)ξj |

. (58)

Proof: In Figure 6, we denoteAj the j-th obstacle along the path. This is always an
obstacle where the trajectory changes direction. The calculation is not carried out in
full detail, although it is easy to see how to make each step completely rigorous.
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Figure 6: Part of a looping trajectory

The notation in the figure should be clear, except perhaps forζn−2, et.c.; in general
ζk denotes the distance between the line segmentΓn and the center ofAn. This means
that fork = 1, ..., n,

sin(
φk

2
) =

ζk

r
,

and that ifφk belongs to an interval∆φk of size|∆φk|, thenζk belongs to an interval
that satisfies|ζk| ≤ r

2 |∆φk|. We setlk = |ε1/(2−δ)ξk

From the figure we note that the length of thek-th lap is|Γk| = e1/(2−δ)|ξk| ± ε.
Moreover,Γk is almost parallel toξk; more precisely, ifβk denotes the angle between
these two lines, thenβk = o(r/lk), asε → 0.
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Now, if the trajectoryΓn+1 is to join obstacleA0, thenφn must belong to a set
∆φn which satisfies

|∆φn| ≤
r

|Γn+1|
(1 + o),

whereo denotes a rest term which is small compared to the first term, and vanishing
whenε goes to zero. But thenζn must belong to a set∆ζn such that

|∆ζn| ≤
r

2
| cos(

φn

2
)| |∆φn| ≤

r

2
r

|Γn+1|
(1 + o)

Continuing backwards, this requires thatφn−1 belongs to a set∆φn−1 that satisfies

|∆φn−1| ≤
|∆ζn|
|ln|

(1 + o) ,

where the rest termo results from the fact thatΓn−1 andξn−1 are not exactly parallel,
and do not have exactly the same length; theo goes to zero asε goes to zero, uniformly
in |ξ|. This gives

|∆ζn−1| ≤ r
r

2ln

r

2|Γn+1|
(1 + o)2 ,

and inductively,

|∆ζn−k| ≤ r
r

2|Γn+1|
(1 + o)k+1

n∏
j=n−k+1

r

2lj
.

In summary

dvdζ-meas(Ωξξ) ≤ r

|l1|
r

r

2|Γn+1|
(1 + o)n

n∏
j=2

r

2ln−j

=
(

1 + o

2

)n

rn+1 r

2|Γn+1|

n∏
j=1

1
lj

.

This is exactly our claim, once one has setlj = ε1/(2−δ)|ξj |, and similarly withΓn+1.
�

Next we prove that̃µε converges weakly toµ.

Proposition 8 For each continuous functionF : D[0,T ](R2 × S1),

lim
ε→0

∫
F (z)µ̃ε(dz) →

∫
F (z)µ(dz) . (59)

Proof:Fix ε0 > 0 arbitrarily. Using Proposition 7,∫
F (z)µ̃ε(dz) =

∫
F (z)µ(dz) (60)

+
(∫

F (z)µε(dz)−
∫

F (z)µ(dz)
)

+
(∫

F (z)µ̃ε(dz)−
∫

F (z)µε(dz)
)
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where ∣∣∣∣∫ F (z)µε(dz)−
∫

F (z)µ(dz)
∣∣∣∣ ≤ ε0/2 ,

provided thatε is sufficiently small. Also,∣∣∣∣∫ F (z)µ̃ε(dz)−
∫

F (z)µε(dz)
∣∣∣∣ ≤

≤
∣∣∣∣∫

Kε

F (z)µ̃ε(dz)−
∫

Kε

F (z)µε(dz)
∣∣∣∣+
∣∣∣∣∣
∫

Kc
ε

F (z)µ̃ε(dz)−
∫

Kc
ε

F (z)µε(dz)

∣∣∣∣∣
whereKε ⊂ D[0,T ](R2 × S1) is the set of trajectories that contains at least one loop,
as defined above. On the complementary set,Kc

ε , the measures̃µε andµε are identical,
so the last term vanishes, and∣∣∣∣∫

Kε

F (z)µ̃ε(dz)−
∫

Kε

F (z)µε(dz)
∣∣∣∣ ≤ sup |F |

(
µ̃ε(Kε) + µε(Kε)

)
. (61)

Each trajectory in the setKε contains at least one simple loop. LetA0 denote the
obstacle site where the loop starts, and letξξ be the index sequence for the loop. Then
let Ωξξ be the set of all(v, ζ) giving trajectories that have the same index sequence.
The probability that a given loop is realizedgiven that the trajectory starts inΩξξ is

pn(1 − p)
Pn+1

j=1 sj ≤ pn, wheresj is the number of obstacles sites that the trajectory
crosses along the path between thej − 1:th and thej:th reflection, and wheren is the
length of the sequenceξξ. Hence

Pξξ,n ≡ Pr(there is a loop of typeξξ along a randomly chosen trajectory)
≤ pn Pr( there is at ∈ [0, T ] such thatT t(x, v) ∈ Ωξξ)

≤ pn T dv dζ-meas(Ωξξ)
2πε2/(2−δ)

, (62)

i.e. pn times the probability that a trajectory starting at the random initial position(x, v)
at some timet has evolved toA0, the first obstacle of the loop, and leavesA0 in the
setΩξξ. The last expression can be derived as follows. Because of the periodicity, we
consider a random choice of a starting point(x, v), wherex is chosen i a lattice cell with
areaε2/(2−δ); hence the denominator. Consider(v′, ζ ′) ∈ Ωξξ, and the corresponding
point (x′, v′) ∈ R2 × S1. We consider the history of an infinitesimal set∆v × ∆ζ
around(v′, ζ ′); there are two possible histories, also if we assume that there are no
other encounters with an obstacle before the one at the starting point(x′, v′): either
the trajectory continues backwards in the direction−v′, or it continues backward in
the direction−v′′, where the latter corresponds to a reflection (see the figure). The
probability that a trajectory reaches the set∆v ×∆ζ within a time interval∆t is

p dxdv-meas({(x′ − tv′′, v′′) |ζ ∈ ∆ζ, v′ ∈ ∆v, t ∈ [0,∆t]})
+(1− p) dxdv-meas({(x′ − tv′, v′) |ζ ∈ ∆ζ, v′ ∈ ∆v, t ∈ [0,∆t]})

= dxdv-meas({(x′ − tv′, v′) , ζ ∈ ∆ζ , v′ ∈ ∆v , t ∈ [0,∆t]}) ;
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this is because the reflection leaves the measuredvdζ invariant. And the same then
holds for all possible histories, which shows the claim in the inequality (62). Obviously
the full history should be mapped into one lattice cell, hence the normalization with
2πε2/(2−δ).
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Figure 7: Different histories leading to starting points inΩξξ

But then each of the measures in the right hand side of (61) can be estimated by sum-
ming over alln and over allξξ with lengthn:

µ̃ε(Kε) ≤ 1
2πε2/(2−δ)

∞∑
n=1

∑
ξξ∈Ξn

TCoC
n
1 pnrn+2 1

ε1/(2−δ)|
∑n

j=1 ξj |

n∏
j=1

1
|ε1/(2−δ)ξj |

(63)

where the setΞn is defined by

Ξn =

(ξ1, ..., ξn)
∣∣ |∑n

j=1ξj |+
n∑

j=1

|ξj | ≤ ε−1/(2−δ) T ; ξj ∈ Z2 \ {0}

 .

Because we consider here only loops that are simple, i.e. all the velocity jumps take
place at distinct obstacles, exactly the same estimate holds forµ̃ε(Kε) andµε(Kε).

We can approximate the sum overΞn by an integral:

∑
Ξn

1
ε1/(2−δ)

n∏
j=1

1
|ε1/(2−δ)ξj |

≤

≤ Cn+1

∫
x∈Xε,T

1
ε1/(2−δ)|

∑n
j=1 xj |

n∏
j=1

1
ε1/(2−δ)|xj |

dx1 · · · dxn ,

whereXε,T =
{
x = (x1, ..., xn) ∈ (R2)n , xj ∈ R2 , |xj | ≥ 1 ,

∑n
j=1 |xj | ≤ ε−1/(2−δ) T

}
.

With a change of variables,yj = ε1/(2−δ)xj , one getsdx1 · · · dxn = ε−2n/(2−δ)dy1 · · · dyn,
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and then∑
Ξn

1
ε1/(2−δ)

n∏
j=1

1
|ε1/(2−δ)ξj |

≤

ε−2n/(2−δ)Cn+1

∫
y∈Y

1
|
∑n

j=1 yj |

n∏
j=1

1
|yj |

dy1 · · · dyn , (64)

for some setY ⊂ (R2)n, which particular satisfiesε1/(2−δ) < |
∑n

j=1 yj | < T ,

ε1/(2−δ) < |yj | < T , and
∑n

j=1 |yj | < T . We have

1
|
∑n

j=1 yj |

n∏
j=1

1
|yj |

≤ 1
2

(
1

|
∑n

j=1 yj |2
+

1
|y1|2

)
n∏

j=2

1
|yj |

,

(note that this expression also holds forn = 1), and then the integral in (64) is smaller
than ∫

ε1/(2−δ)<|y1|<2T

1
|y1|2

dy1

∫
Pn

j=2 |yj |<T

n∏
j=2

1
|yj |

dy2 · · · dyn ,

which, expressed in polar coordinates for eachyj ∈ R2 is

(2π)n

∫
ε1/(2−δ)<r1<2T

1
r1

dr

∫
(Pn

j=2 rj)<T

dr2 · · · drn ,

≤ (2π)n
(
log(2T )− log(ε1/(2−δ)

)
Tn−1/(n− 1)!

Now we put this back into (63):

µ̃ε(Kε) ≤ 1
2πε2/(2−δ)

(
log(2T )− log(ε1/(2−δ)

)
×

∞∑
n=1

TCoC
n
1 pnrn+2ε−2n/(2−δ)Tn−1/(n− 1)!

= C0T
(
log(2T )− log(ε1/(2−δ)

)
p r3ε−4/(2−δ)

×
∞∑

n=1

(
C1Tp r ε−2/(2−δ)

)n−1

/(n− 1)!

= C0T
(
log(2T )− log(ε1/(2−δ)

)
ε2(1−δ)/(2−δ)eC1T (65)

Here, in the last line,C0 andC1 are new constants independent ofT andε, and the last
expression follows by settingr = ε, andp = εδ/(2−δ); thenp r ε−2/(2−δ) = 1. Clearly,
when0 < δ < 1, µ̃ε(Kε) → 0 whenε → 0, and because this calculation holds in the
same way forµε, we can chooseε so small thatsup |F |

(
µ̃ε(Kε)

)
+
(
µε(Kε)

)
≤ ε0/2

so that finally the last two terms in (60) together are smaller thanε0, and this concludes
the proof of the proposition, becauseε0 was arbitrary. �
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This proposition also concludes the proof of Theorem 1. Note that the proof of
Proposition 8 really says something more than what is needed: that if trajectories cross
itself, this will very rarely happen inside an obstacle site, and hence the trajectories
don’t get a chance to test the difference between the two measuresµ̃ε andµε. The
trajectories actually onlydo test this difference, if there is a real collision the starting
point A0 of a loop. This gives another factorε, and so the measure of this restricted
set converges to zero, also whenδ = 1 as in [CPR], and so this calculation would
give a proof also in that case. However, one would then need to make a more careful
calculation when proving Lemma 1.
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