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Abstract

We generalize the concept of pattern avoidance from permutations
to numbered polyominoes, and consider specifically the avoidance of
the most natural small polyomino patterns in binary matrices (rect-
angular numbered polyominoes). For all binary right-angled patterns
(0/1 labellings of the essentially unique convex two-dimensional poly-
omino shape with 3 tiles) and all 2 x 2 binary patterns, we deal with
the number of m X n binary matrices avoiding the given pattern, as
a function of m and n. In the case of 3 tiles, and the all zeros 2 x 2
pattern, we employ direct combinatorial considerations to obtain ei-
ther explicit closed form formulas or generating functions; in the other
cases, we use the transfer matrix method to derive an algorithm which
gives, for any fixed m, a closed form formula in n.

1 Introduction and Background

A polyomino is a finite subset of Z2. The elements of a polyomino are called
tiles. Given an element p € Z? we denote by z,,y, the first and second
coordinates of p. A column (row) of a polyomino P is a maximal set of tiles
of P all having the same first (respectively, second) coordinate. A line of a
polyomino is a row or a column.

Now let G be the graph with Z? as vertex set, and with p, ¢ adjacent if
and only if |z, — x4 + |yp — Y4l = 1. Then G is a self-dual planar graph and
a polyomino can be thought of equivalently as a set of vertices of G or a set
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of faces of a square tessellation of the plane, which is an embedding of G.
The latter interpretation gives the intuition behind the choice of the term
“polyomino”, in analogy with the word “domino”.

Given two polyominoes Pi, Py, a polyomino isomorphism is a bijection
from Py to P, such that, for every p,q € Pi, 7, < 24 & Zgp) < Tg(q)
and Y, < Yq © Ysp) < Ya(g)- Lhe width (height) of a polyomino P is the
maximum over all pairs {p, ¢} C P of |z, — x,| (respectively |y, —y,| ). The
reduction of P is the polyomino which minimizes the width and the height
among all polyominoes isomorphic to P in which all tiles have only non-
negative coordinates. A polyomino shape (or simply a shape) is a polyomino
which is its own reduction. The set of polyomino shapes constitutes a system
of distinct representatives for the set of equivalence classes of isomorphic
polyominoes. If the reduction of a polyomino is a certain shape C, we shall
also say that P has the shape C'. We shall denote shapes by a geometric

depiction of the relative positions of the tiles; for example stands for
]

the set {(0,2),(1,0),(2,1),(3,1)}, which is the reduction of, for example,
{(_57 8)7 (27 1)7 (6, 2)7 (77 4)}

A polyomino is connected if the corresponding induced subgraph of G is
connected. Connected polyominoes with various restrictions have received
much attention in the literature, although they are usually referred to sim-
ply as polyominoes or “animals”. The enumeration of connected polyomino
shapes seems to be hard. See [4] for an overview of results enumerating
small polyomino shapes by “area” (number of tiles) and “perimeter”; one
class of connected polyomino shapes which has been well-studied is that of
“polygons”, whose boundaries are closed self-avoiding walks.

Note that a shape can be characterized as a polyomino P satisfying the
following convexity-type property:

Vp,ge P, Ve,d ta2p<c<uzy yp <d<y, Ja,beP : z,=c,y =d.
In the literature, a polyomino is usually called:

o row-conves if it satisfies the condition:
Vp,g€P, a€Z? 7,<2, <%y, Yp=Ya =Y, = a € P;

e column-convex if
Vp,ge P, a€Z? yp<ya<Yg Tp=2Toa=2, = a€P;

e and conwvez if it is both row- and column-convex.



Connected convex polyomino shapes seem to be easier to enumerate; in
particular, a closed form expression enumerating them by perimeter was
given by Delest and Viennot [5]. For connected row-convex polyominoes, it
is well-known that the number of polyomino shapes with n tiles satisfies a
third-order linear recurrence relation; see, for example, [6].

A polyomino is one-dimensional if it has only one row, or only one column;
it is two-dimensional otherwise. Given a non-negative integer n, [n] denotes
the set of non-negative integers less than or equal to n; a set of this form
is called an interval. A shape is rectangular if it is a cartesian product of
intervals; a polyomino is rectangular if its reduction is rectangular.

A numbering ¢ of a set T is a function from 7" into the set of integers.
If the range A of ¢ is finite, there exists a unique order-preserving bijection
¢ from A onto the interval of cardinality |A|. The reduction of ¢ is the
numbering ¢ o1, and a numbering is reduced if it is its own reduction. Also,

for any integer £ > |A|, ¢ is called a k-numbering. We shall extend our
notation for shapes to numbered shapes in the obvious way: e.g., n is a

1l-numbering of BD , and the reduction of F .
O B

Given a polyomino P, a subset @Q C P is a subpolyomino of P. A num-
bered polyomino is a polyomino equipped with a numbering. If ¢ is a num-
bering of P, the subpolyomino () inherits the numbering ¢|g. Given a poly-
omino )’ with a numbering ¢¢, @ is an occurrence of ) in P if there exists
a polyomino isomorphism g from @ to )’ such that the numberings ¢|g and
(o ¢g have the same reduction; if the two numberings are actually the same,
then the occurrence is literal.

Note that numbered rectangular shapes can be thought of as matrices.
Thus, for example, the sets' {(0,2),(1,0),(3,1),(4,1)} and {(1,2),(2,0),
(3,1),(5,1)} are respectively an occurrence and a literal occurrence of the

'For the sake of consistency with the definition of a polyomino, here we are indexing
the entries of a matrix starting with (0,0) at the bottom left corner and specifying the
column in the first coordinate, but in the later sections we shall follow the more common
convention of starting with (1,1) at the upper left corner and specifying the row first.



numbered shape n in the matrix

310000
000031
031000

If there are no occurrences of @' in P, P is said to avoid @'.

A numbered polyomino pattern (or simply a pattern) is a polyomino shape
equipped with a reduced numbering. We shall usually be concerned with
occurrences of patterns in numbered shapes. Given a positive integer k, a
shape C and a pattern P, Sgc ) denotes the set of k-numberings of C' such that
the corresponding numbered polyomino avoids the pattern P (the pattern P
is understood and not explicitly specified in the notation).

We remark here that given a polyomino pattern, for fixed k£ there are
only finitely many numbered polyomino shapes that are occurrences of the
pattern; avoidance of the pattern is equivalent to simultaneous avoidance of
literal occurrences of all of these polyomino shapes.

The analysis of avoidance of one-dimensional polyomino patterns can eas-
ily be reduced to that of avoidance of the pattern in each row (column) of
the given shape, and thus to the study of usual classical patterns, about
which a wealth of articles have been published. Hence in this paper we do
not attempt to deal with this case, and we assume that all patterns are two-
dimensional. With this restriction, if the shape C' under consideration is a
line of n tiles, then \Sgc)\ is just k™. Thus, we may also assume that the
shapes under consideration are themselves two-dimensional.

In this paper, we shall assume that £ = 2 and only examine avoidance
of polyomino patterns in (binary) matrices. Moreover, we shall assume that

the matrix C has m rows and n columns, and denote |S&| by ayp .

Remark 1. The operations of complementation (replacing ¢ with k£ — ) and
reflection about any one of the four axes of symmetry of the square lattice (the
vertical, horizontal and diagonal lines through the origin) are all involutions
on the set of numbered polyominoes which preserve occurrences, in the sense
that if x is one of the above operations, and P, () are numbered polyominoes,
then P occurs in @ if and only if x(P) occurs in x(Q). Clearly, the same
is true if x is any composition of these operations. Note that reflecting a
matrix about the line y = —z and reducing the shape corresponds to taking
the transpose of the matrix. As in classical permutation avoidance, these
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operations are often useful in reducing the enumeration of pattern-avoiding
polyominoes to a smaller number of cases (patterns).

2 Right angled polyomino patterns

A polyomino is right angled if it contains precisely three tiles, two rows and
two columns. There are four different right angled shapes: H] ,H] ,[H and
[H , each of which can be numbered in 8 different ways. The operations
mentioned in Remark 1 give three equivalence classes here, that can be rep-
resented by ° , 1~ and g~ . We now go on to see that in terms of avoidance,
these three cases in fact reduce to two.

2.1 The pattern

We observe that since the pattern [ is its own transpose, a matrix avoids
if and only if its transpose does. So it is enough to consider matrices of
size m X n, where m > 2 and n > m.

Proposition 2. We have ay,, = 2" — 4 for n > 1; az3 = 16; az,, = 0 for
n>4; and apy =0 forn > m > 4.

Proof. Let A be an m X n matrix n > m, that avoids the pattern [ .

The case m = 2. If the first column of A is ((1)) or ((1)) then obviously
this column does not affect the rest of the matrix, and thus we have 2as,_;
possibilities to choose A in this case.

If the first column of A is (8) (the case G) can be dealt with in the same
way), then from the second entry onwards the first row of A can consist only
of 1s since otherwise we have an occurrence of the pattern [" with the first
column of A as the first column of the occurrence. Now, all the entries in the
second row, except possibly the last one, must be 0, since otherwise we have
a literal occurrence of the numbered shape [ , which is an occurrence of the
pattern [ , with the first row of the occurrence contained in the first row of
the matrix. Thus, in this case we can choose the first row in 2 ways and then
choose the leftmost bottom entry in 2 ways. Summarizing our considerations,

we get the following recurrence relation:

Qgn = 2&2,7,,71 + 4:



with as; = 4. This gives that ag, = 2% — 4.

The case m = 3. The fact that az3 = 16 is easy to check. Suppose
n > 4. Assume that the first row has three occurrences of the same letter
b € {0,1} in the positions i1, i and i3, where i; < i3 < i3. Then the i;-st
and 75-nd columns cannot have additional b’s since this would obviously give
an occurrence of [° in A with the first row of the occurrence contained in
the first row of the matrix. That means that the 7;-st and i3-nd columns
are both the column ( fz ), which leads to an occurrence of §° . Thus, if
n > 4, az, = 0 since we necessarily have at least three occurrences of the
same letter in the first row. Moreover, if n = 4, the only possible case is
when the first row consists of exactly two 0’s and two 1’s.

Let us now show that in this case A must contain the pattern , and
thus az 4 = 0. Indeed, suppose 1’s occur in the positions ¢; and g, 7; < 19,
and 0’s occur in the positions j; and js, j; < jo. The 7;-st column must be
( é ) (in order to avoid a literal occurrence of the numbered shape [j* with
the first row contained in the first row of the matrix) while the j;-st column

must be ( (}) ) (in order to avoid a literal occurrence of the numbered shape

with the first row contained in the first row of the matrix). Moreover,
the entry A, ;, is 1, since otherwise As;, A ;, Ao, forms the pattern g . The
entry A, j, is 0, since otherwise As j; Ao j, Ao ;, forms the pattern i . Now,
io must be less then j;, since otherwise Aj j, Ay j, Ag;, forms the pattern g .
Thus, 1 < j2 and Ag;, As; As j, forms the pattern [* , contradicting the fact
that A avoids [§” . So, ass = 0.

The case m = 4. Follows from the case m = 3 and n > 4. O

2.2 The pattern

Proposition 3. We have

Ty

1—(n+1
E am,nxmy” = E - (n )(?ifw)y .
m,n>0 m>0 Hj:() (-’1: + 1*]'_1/ )

Proof. Let A be an m X n matrix, that avoids the pattern 73" .

The case m = 2. If the first column of A is (J), (i), or (;) then obviously
this column does not affect to the rest of the matrix, and thus we have 3as,,_;
possibilities to choose A in this case.



If the first column of A is ((1)) then the first row of A must consist of 0s,
since otherwise we have an occurrence of the pattern * with the first column
of A as the first column of the occurrence. But in this case, the entries Ay,
for 2 <7 < n, may be arbitrary, since they obviously can not be involved in
an occurrence of % . This gives 2"~! possibilities to choose the matrix A.
Thus, asn = 3a2n—1 +2"1 and aso = 1, since the empty matrix avoids .
Hence, by induction on n it is easy to see that ag, =2-3" —2" for alln > 0.

The case m > 2. Assume first that A;; = 0. If all the entries in the first
row of A are 0’s, then the first row does not affect the rest of the matrix, and
thus can be removed. So, in this case the number of such matrices is a,, 1.
If the first row contains a 1, then the first column of A must consist of 0’s,
since otherwise there would be an occurrence of 7 in A involving the entry
Ay 1. But in this case, the first column does not affect the rest of the matrix
and can be removed. The number of such matrices is apmp—1 — Gm_150-1,
where we subtract the number of the m x (n — 1) matrices that have the first
row consisting of 0’s (we do this since A contains a 1 in the first row).

Suppose now that A;; = 1, and that the entries A;2A4;35...4;, give a
word of the form 11...100...0, where 0 < ¢ < n — 1. In this case, the first

—_—

i n—i—1
row does not affect the rest of A and therefore can be deleted. There are n
possibilities to choose the first row, and therefore n - a,, 1, ways to choose
the matrix A. The only remaining case to be considered is when the first
row of A has the following structure:

1W;101Ws,

where the length of W7 is 4, 0 < i < n — 3 (which implies that the length of
Wy is n—i—3), Wi has j 0’s, and Wj is a word of the form 11...100...0,
k n—i—k—3
where 0 < k < n—1i—3. We observe that those columns to the left of W5 that
have a 0 in the first position must consist entirely of 0’s, since otherwise we
would have an occurrence of the pattern involving the entry A, ;43 = 1.
These columns can be removed since their entries can not be involved in an
occurrence of the pattern 3" . After removing these j+1 columns, we are left
with an m X (n—j—1) matrix having the first row of the form 11...100...0,
% n—i—1
where 2 < i < n — 1. As was discussed before, this row can be removed.
Summarizing our considerations, the number of possibilities to choose A



with the first row of the form 1W;01W, described above is

ni i (;) (n—i—2)am—1,n-j-1,

i=0 j=0

because, once we fix 7 and j, we can choose the positions for the j zeros in
(;) ways, and the entries A; ;1441 45... A1, in (n—¢—2) ways. Taking into
account all the cases, we obtain the recursion:

Um,n = (n + 1)am—1,n + Umn—1 — Am—1,n—1

for allm > 3 and n > 1, with a,,0 = ap,, = 1 (since the empty matrix avoids
any non-empty pattern), a,; = 2™ and a;, = 2" (since one-dimensional
matrices avoid our pattern), ano = 2-3™ — 2™ and ay, = 23" — 2"
Rewriting the above in equivalent form, we obtain, for m > 1 and n > 3,

Umn = (’I’L + 1)am—1,n + Ummn—1 — m—1,n—1
+ E?;03 <Z?;z3 (I;) (n —2— 7’)) amfl,nflfia

whence, using the identity Z?;f (fl J(n—2-j)= (Z;;), we derive

n—3
n—1
Qmpn = (7’L + 1)am71,n + Omn—1 — Gm—1,n—1 + E (Z + 2>am1,n1ia
0

or equivalently, for m > 1 and n > 2,

n—1
n—1
Am,n = 2am—l,n + Umpn—1 — Qm—1,n—1 + § i Am—1,n4+1—i-
i=1

Let a(z,y) = >, 150 @mn2™y". We now translate this recursion into a
functional equation in the generating function a(z,y), by dealing with the
individual terms one by one. Using the facts that a0 = ao, =1, a1 = 2™,
a1y =2", Qpo =2-3" - 2", and ay, = 2-3" — 2", we obtain

1.
m,,n —_ m,,n n
Yo Umat™Y" = D ™Y — D2 G0y
m>1,n>2 m>0,n>2 n>2
_ _ .y 1y
= a(z,y) 12z 1-z 1y



3.
m,n
Z am,n—lx Yy =Y Z A, nxmyn - Z CLO,ny
m>1,n>2 m>0,n>1 n>1
— 1 y
- y (a'(x’ y) - 1—x - 1—y>
4.
Y Gmo1a1Z™Y" =1y A" Y"
m>1,n>2 m>0,n>1
— 1
= zy (a(z,y) — 23)
d.

n
> Z (nz_l) Um—1n4+1—i 2" Y"

m>1,n>2 i=1
n
— n m,n
=xy Y, Z(i)am,nw—ifﬂ Y
m>0,n>11:=1
n
— n m,,n
o1 (a0 s
m>0,n>1 \i=0
— ym™t m—1 n
=T Z a'n,m ((1_y)m—1 -y ) x
n>0,m>2

_ z(1-y) z
— 200 o (o, 1%5) ~ gt — ] £ [alwy) - £ - ).

Combining 1-5 and the recursion on a,,, we conclude that

a(z,y) = y + v a (ac, Y ) )
I-y)z+(1-2)y z+(1-2)y 1—y
The result follows by repeatedly applying this recursion and taking the limit.
O

2.3 The pattern

One can apply the same considerations made in Subsection 2. The only
difference between these cases is that instead of 0’s below each 0 in the



first row, we have 1’s. This gives a recursive bijection between the matrices
avoiding the pattern ;i and those avoiding the pattern ;* . Thus we obtain
the following analogous result.

Proposition 4. We have

Ty
m, n __ 1—(n+1)y
Z Umnl Y = Z m (1-=z)y
m,n>0 m>0 Hj—O (Jf + 1—jy )

3 Square polyomino patterns

The square shape is the one with precisely four tiles, two rows and two
columns. The operations in Remark 1 subdivide the sixteen square patterns
into four equivalence classes, which can be represented by the patterns ,

,,and.

3.1 The pattern

We make the same observation made in Section 2, i.e. a numbered polyomino
avoids the pattern 1§} if and only if its transpose avoids the transpose of {5 ,
which is [gg itself. So, it is enough to consider matrices of size m x n with
m > 2 and n > m. Moreover, the pattern (g has the following properties
that are easy to see:

1) A numbered polyomino avoids {§j if and only if its complement does.

2) Permuting columns and rows of a numbered polyomino M produces a
matrix M; that avoids the pattern qgg if and only if M does.

3) Permuting rows of a matrix M produces a matrix M; that avoids the
pattern g if and only if M does.

Proposition 5. We have that ay,, = (n>+3n+4)2""2 forn > 0; a3 3 = 168;
azs = 408; as 4 = 3240; a3, = asy = 720 for n = 5,6; azy = a4, = 0 for
n > 6; and apy, =0 forn >m > 5.

Proof. Let A be an m x n matrix, that avoids the pattern {39 .
The case m = 2. We consider only the case A;; = 0, since the case
A; 1 =1 gives the same number of matrices avoiding |gg by property 1 above.
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If A1 =1 then the first column of A does not affect the rest of the matrix,
and therefore we have ay ,_; possibilities to choose A in this case. If Ay; =0
then no column of A other than the first can be (g) since this leads to an
occurrence of g in A. On the other hand, A obviously cannot contain two
columns which are both copies of G) So, either A does not contain (}) or it
contains precisely one such column. In the first case we have 2"~! possiblities
for A, since any column except the first one is either ((1)) or ((1)) In the second
case, we can choose the position in which we have (;) in (n — 1) ways, and
then choose all other columns in 2"~ 2 ways. Thus we get the recurrence

Ao =2+ (agn_1 + (n+1)2"7?),

which gives the desired result.

The case m = 3. To deal with this case we make use of the following four
facts.
Fact 1. There are no columns in A that are equal to each other. This is
easy to see, since otherwise we have an occurrence of the pattern .

Fact 2. If both of the columns ( § ) and ( i ) appear in A, then A cannot

have more than two columns. Indeed, using the fact that permuting the

columns of A does not affect avoidance of the pattern 3, we can assume
1

that the first two columns of A are ( § ) and < ! ) Adding one more column

will introduce an occurrence of the pattern g , since it will contain either
two 1’s or two 0’s. . .

Fact 3. If A contains either the column ( 0 ) or the column ( ! ) then
the other columns can only be chosen from a set consisting of three columns,

without repetitions. In the first case these columns are ( (}J ), ( <1> ), and

( z ), whereas in the second case they are ( é ), ( 2 ), and ( g ) This is
easy to see, since otherwise we obviously have an occurrence of the pattern
.

Fact 4. If A does not contain ( § ) or ( i ) then the columns of A can be

chosen among all the other six binary columns of length 3 without repetitions.
This follows from the fact that once such a column contains the same letter
in two positions, the third entry is uniquely determined, and thus any two
such columns will give an occurrence of [y if and only if they are equal.

11



As a corollary of Facts 1-4 we have the following:

6! 6!
a3,3:24‘+§:168, a3,4:24l+§:408’

azs = Q36 = 6! = 7207 a3 = 0ifn > 6,

where, for instance, to count a3 3 we first count the number of those matrices
that have either ( § ) or ( i ) as a column (of which, according to Fact 3,

there are precisely 2 - 4!), and then we add the number of matrices that do
not contain ( § ) or ( i ) (of which, according to Fact 4, there are as many

as there are permutations of three columns chosen from six columns).
The case m = 4. Suppose first that n > 5. If a column of A has either
at least three 0’s or at least three 1’s, then we can consider the three rows

that form a matrix having the column ( § ) or ( i ) The length of such

a matrix, according to Fact 3, does not exceed 4, and the columns of A in
this case are those that have exactly two 0’s and two 1’s. It is easy to see
that any combination of such columns gives no occurrences of the pattern
, and there are six such columns. Thus, ass = as6 = 6! = 720.

Now let n = 4. If any column of A has exactly two 0’s and two 1’s, the
number of ways to choose A in this case is g—i = 360. If some column has only
0’s or only 1’s, say only 0’s, then the number of columns does not exceed 2,
since the other columns cannot have more than 1 zero, and two such columns
must have an occurrence of the pattern . So, we need only consider the
case when there is a column in A having three 0’s or three 1’s. Suppose there
is a column with three 0’s. In this case we can assume, permuting rows or
columns if necessary, that A; ; = Ay; = A3; = 0and Ay; = 1. If we consider
the submatrix that is formed by the first three rows and the four columns,
then according to the considerations of the case m = 3, this submatrix is a

permutation of the columns ( (f ), ( 0 ), and ( (}) ) Obviously, the entries

1
Ay0A43A44 form a word that has at most one 1. Thus, there are 4 ways

to choose this word, and then we can permute columns and rows in 4! - 4!
ways to get different 4 x 4 matrices avoiding [§§ . So, in this case we have
4-24-24 = 2304 different matrices. Finally, we need to count the number of
matrices that have a column with three 1’s and have no columns with three
0’s. We use the same considerations as in the case of three 0’s, but now we
observe that the entries A42A4 3444 can only form the word 111 (otherwise
we have a column with three 0’s or an occurrence of the pattern [gj ). Thus

12



this case gives us 4! - 4! = 576 different matrices. So the total the number of
4 x 4 matrices avoiding the pattern g is given by 360 + 2304 + 576 = 3240.

The case m > 5. The first row of A has either at least three 0’s or at least
three 1’s. In either case, if we consider the three rows of A that begin with
the same letter, we have that, according to Fact 3, the length of these rows
does not exceed 4, since otherwise they will contain the pattern . Thus,
A must have less than or equal to four columns in order to avoid [gg - O

The fact that only a finite number of matrices avoid the pattern [JJ can
be generalized to the case of an arbitrary rectangular pattern consisting of
0’s only. Let Oy denote the rectangular pattern whose numbering is the
constant 0, and having ¢ rows and k columns. In particular, Oz =g . The
following proposition holds.

Proposition 6. Let ap,, denote the number of matrices that avoid the pat-
tern Opy. We have that ay,, = 0 form >20—1 and n > 2(k — 1) (21521)-

Proof. Suppose m = 2¢ — 1 and A is an m x n matrix that avoids Q. By
the Dirichlet Principle, each column of A has either at least £ 1’s or at least £
0’s. We encode each column of A by an ¢-tuple (ay, as, ..., ap), where a;, for
1 <1 < ¢, is the position in which the column under consideration has the
same letter (0 or 1). Also, we assume that a; < as < --- < ay. In the case of
more than ¢ equal letters, we choose any ¢ of them. Thus, for instance, the
column (11011)" (the superscript “t” denotes the operation of transposition)
can be encoded by (1,2,4) as well as by (1,3,4) or by (2,3,4).

Suppose we have 2(k — 1) copies of all (%;1) different ¢-tuples, of which
(k—1) copies correspond to the columns with at least £ 1’s, and the remaining
(k—1) copies correspond to the columns with at least £ 0’s (since the columns
are of length (2¢ — 1) there are no problems with separating copies into
those corresponding to 1’s and those corresponding to 0’s). We now collect
all the columns corresponding to these ¢-tuples (in any order) to build a
(20—1) x2(k—1)(*;") matrix B. If we add any column to B and encode the
columns of B, we will get k£ identical /-tuples corresponding to occurrences
of either at least ¢ 1’s or at least ¢ 0’s. But in this case we will get an
occurrence of the pattern Opy. So, for the matrix A, n < 2(k — 1) (2‘5@_1).
This bound cannot be improved since if we assume that each column among
the 2(k — 1) (%1) columns has exactly ¢ entries equal to 1 or 0 then the

¢
matrix B avoids the pattern Oy, , (this is easy to see). ]
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3.2 The patterns [JJ, @, and

In this section we see how the transfer matrix method can be used to give a
complete answer for finding the formula of the number of binary matrices of
size m x n avoiding a pattern from the set S = {[{9 ,[% ;[ }, for any given
m > 1.

For fixed m > 1 and p € S, we denote by B™* (B™") the set of all binary
matrices with m rows (m rows and n columns respectively), and define an
equivalence relation ~, on B™* by: A ~, B if for all vectors u € B™! we
have

Alu avoids p if and only if B|u avoids p

where the notation A|u stands for the matrix obtained by concatenating the

1 01
vector u to the matrix A. For example, if pis 3, m =2, A= 0 1 1
0 00
10
and B = 0 1 |, then A ~, B, since the third column in A is never
0 0

contained in an occurrence of p. Let &, be the set of equivalence classes of
~p. We denote the equivalence class of a binary matrix A by A. For example,
the equivalence classes of ~, for p =g3 and m are

_ 0 0 0
€, ( 0 ), and ( 01 )
where € stands for the empty matrix.

Definition 7. Given a positive integer k£ and a pattern p we define a finite
automaton?®, A, = (€,,0,€,E, \ {P}), by the following:

e the set of states, &y, consists of the equivalence-classes of ~p;
o §:&, x B™! — &, is the transition function defined by §(A,u) = Alu;
e ¢ is the initial state;

e and all states but p are final states.

2For a definition of a finite automaton, see [2] and references therein.
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We want to enumerate the number of binary matrices of size m x n
avoiding the pattern p. We shall identify A, with the directed graph® with
vertex set &€, \ {p} and with a (labelled) edge — from A to B if Alu ~, B.
Note that, whenever we have an edge from A to B, the outdegree of B, that
is, the number of binary vectors u € B™! such that B|u ¢, B but Blu still
avoids p, is strictly less than the outdegree of A. Hence, we may choose binary
matrices {A®}¢_, as representatives of the vertices (equivalence classes),
indexed in such a way that if ¢ < j there is no edge from AU) to A®); in
particular there are no directed cycles in the graph, and AM) = & The
transition matriz, T,, of A, is the e x e -matrix,

[T,)i = {u € B™ : 6(AD, u) = AD}|.

Thus [T});; counts the number of edges from A¢ to A7, and with the above
choice of indices T}, is upper triangular.

Example 1. Let p =37 and fix m = 3; then it is easy to see that a possible
choice of representatives is

1 0 0
AV =¢ A@D =1 0 |, A®=111], AW =1 0 |,

0 0 1
01 0

A®) — 10 and A®) = 0
00 0

The transition matrix 7, is

411101
040011
004011
00040 2
0 00041
000 0O 4

Given a matrix A let (A;4,7) be the matrix with row ¢ and column j
deleted. Using the transfer matrix method (see [1, Theorem 4.7.2]) together
with the automaton A, we obtain our main result in this section.

3Here we are allowing loops and multiple edges, and following the terminology of [3].
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Theorem 8. Let p be a pattern of a matriz of size 2x2. Then the generating
function for |B™"(p)| is

m,n n __ Z;:l (_1)j+1 det(I - .’L‘T,j, 1) _ det B(.’E)
RZZO |B™"(p)|2" = 0= - T =33

where )\; is the number of loops at state A® | and B(z) is the matriz obtained
by replacing the first column in I — xT with a column of all ones.

Theorem 8 provides a finite algorithm for finding the generating function
for the sequence {B™"(p)},>o for any given m > 0 and a pattern p which is
matrix of size 2 x 2. The algorithm has been implemented in C and Maple.

Corollary 9. For alln > 0,
(i) B> (8 )| = (3 +mn)3"2,

(i) [B> ([ )| = 5(2+ n)(96 + 31n + n?)4"~3,

(ili) (B~ (8 )| = 35(2812500 + 3963450n + 1862971n* + 339300n° +
21265n* + 510n° + 4n®)5"7,

(iv) B> ([ )| = 13z (1371372871680-+2829503247984n+2174816371140n+
785515085820m3+139879643143n*+123070903201°+579047595n5+15070860n"+
218757n8 + 1656n° + 5n'0)6m 13,

Corollary 10. For alln > 0,
(i) B> (8 )| = (3 +n)3"~2,
(ii) [B>" (i )| = 5(2 +n)(96 + 31n + n?)4" 2,

(i) [B* (B )| = (2812500 + 39634500 + 186297102 + 339300n% +
21265n* + 510n° + 4nf)5"~7,

(iv) 1B ([ )| = 55 (4571242905600+-9431397663120n+7249916118636n+
2618093085240n3+466294991825n+41039857215n°+1926425298n°+50381010n+

729825n% + 5415n° + 16n'0)6"~13.

Corollary 11. For all n > 0,
(i) B> ({1 )| = (3 +n)3"~2,
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(ii) [B>"(H )] = (16 + 13n + 3n?)4"~2
(iii) |B*" (i )| = (25 + 34n + 18n? + 3n?®)5" 2,

(iv) [B>™([ )| = (216 + 418n + 361n2 + 1400 + 17n*)6™3.

Note that no two patterns in S give the same formulas, although the
distinction between the patterns [JJ and 19 does not become apparent before
m = 5. We also remark that our approach can be generalized to matrices on
k letters and simultaneously avoiding different configurations of polyomino
patterns. For example, the following result is true.

Corollary 12. We have that:
(1) the number of matrices of size 3 x n on 3 letters avoiding the pattern

1§ given by

%(1582178 — 269829n + 6241n?)13"2
— (673920 — 61130n — 4427n* — 106n> — n*)12"2,

(i) the number of binary matrices of size 2 X n simultaneously avoiding
the patterns and fiy s given by

2-3"=2"
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