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Abstract

When managing assets used for life insurance, an investor must make a trade-off between the
long-term goal of high return over the customers’ lifetime, and the short-term goal of fulfilling
government regulations. In order to facilitate making this trade-off we have developed an asset
liability management model for the Swedish set of laws and regulations. The most significant
difference between our model and other models from the literature is that in the Swedish case a
company’s actions will not only influence the asset allocation, but also the reserve requirements.
As the problem is dynamic in nature, we employ multi-stage stochastic programming to optimize
the asset allocation. In order to determine the usefulness of the system developed, we perform
tests using rolling horizon simulations, where the stochastic programming approach is compared
to a fix-mix benchmark. We further test different shapes of the scenario tree. The results from
these tests suggest that the practice of aggregating stages in an ALM model in order to tackle
problems with many stages will give the solution a significant bias.

Keywords: Stochastic programming; asset liability management; Optimization; Finance; Life
insurance

1 Introduction

The basic retirement benefit system in Sweden is tax-funded. Each employer pays a fraction of the
salary of their employees to the government retirement funds, which provide benefits for the retired
work force. Private insurance offered by life insurance companies exists as a complement to the public
system. On the Swedish market there exist different kinds of private pension insurances, but the only
one treated in this paper is the traditional type, where the company carries the main part of the
investment risk. Under such a traditional plan, the customer pays an amount each month, and upon
retirement he/she receives a monthly sum depending on the total amount paid and the success of the
company’s investments. However, there is a lowest level of return that the company must pay to the
customer; hence a traditional pension insurance policy may be viewed as a defined contribution plan
with an element of a targeted money purchase plan.

In most applications of financial asset management the investor tries to choose investments giving
good returns while minimizing the risk, where risk is measured as the variance or downside moments
of investment returns. For an insurance company, such risk measures ignore the purpose of the in-
vestments, which is to be able to honor the company’s liabilities. Hence, a more appropriate risk
measure for an insurance company is the expected deficit, measuring the risk that the company does
not own enough assets to cover the customers’ claims when they occur. Asset liability management
(ALM) deals with the unified administration of assets and liabilities, and may provide a strategy more
suitable for a life insurance company than the separate management of assets and liabilities.



In this paper we develop an asset liability management system for a Swedish life insurance company.
The system consists of a mathematical model of the company’s assets and liabilities, a mathematical
model of the surrounding economy and a stochastic programming solver capable of solving large in-
stances of the model. In Section 2 we give an overview of stochastic models for ALM, with a focus on
models used for retirement benefits. In Section 3 we provide an overview of the model of the company
and the surrounding economy. Finally, we present tests of the model in Section 4, and conclusions are
drawn from these tests in Section 5.

2 Overview of stochastic programming models for asset liability
management

Ever since Dantzig [11] first considered extensions of ordinary mathematical programming problems to
accommodate stochasticity in the data, a number of researchers have used stochastic programming to
address problems for which decisions have to be made from incomplete information. In most of these
models, the underlying stochasticity has a continuous distribution. As continuous distributions are
hard to handle computationally, the distributions are discretized in order to obtain a finite number of
possible outcomes. If this discretization is to accurately mimic the underlying continuous distribution,
a large number of discretization points are needed. Hence the resulting problems tend to be large and
require significant computational resources to find optimal solutions. This is especially true for multi-
period problems, for which decisions and observations are interspersed; the size of such problems grows
exponentially with the number of stages. This computational burden made applications of stochastic
programming few and far in between until computing power became more ubiquitous and affordable.

As risk and the stochasticity underlying risk is most central to the financial industry a large number
of stochastic programming models have been developed for financial applications. Bradley and Crane
[2] developed a model for managing bond portfolios as well as a decomposition solver for the (at the
time) large resulting stochastic linear programs. Kallberg, White, and Ziemba [21] created a two-stage
model to manage short-term cash flows; the model was later extended to several time periods by Kusy
and Ziemba [23]. Other uses of stochastic programming for financial problems include [6, 5, 7], where
the authors use stochastic programming to improve the asset liability management of a Japanese
insurance company, as well as a number of models dealing with ALM for pension funds and life
insurance companies, described further below.

2.1 Swedish life insurance rules

The problem faced by a life insurance company is to optimally manage its assets while at all times
complying with the current laws and regulations. Hence, a short description of these laws is needed in
order to formulate the company’s problem mathematically.

2.1.1 Rates of return

Under Swedish law there is a lowest rate of return that the holder of a life insurance policy must
receive on his/her savings. This guaranteed rate of return is set by the regulating authorities; its level
is however influenced by the long-term market interest rates. In addition to this lowest rate of return,
excess funds are distributed among the customers using a bonus rate of return, which is set by the
company. Hence, each contract may be viewed as an ordinary bank account accruing interest given
by the bonus rate. This means that the company itself influences its future reserve requirements by
setting their bonus rate. Since there is an element of guaranteed return, a Swedish life insurance policy
may be viewed as a target money purchase plan. The policy is however not entirely consistent with
such a plan, as the guaranteed rate of return may change during the plan’s lifetime.



2.1.2 Reserves

In order to guarantee the solvency of a life insurance company, laws require that a life insurance
company owns assets in excess of two reserve levels. The retrospective reserve is computed as the sum
of all payments made to the company, increased with the bonus rate of return accrued so far. If a
customer of age x makes a one-time deposit of Dy at time 0, the retrospective reserve V for this deposit
at time ¢ will be given by

V(t) = Do(1 — p)exp (/Ot 5+ (au(z + 1) — 38) d7> , (2.1)

where 0 is the bonus rate intensity, u(z) is the death intensity of a customer (the probability that a
customer will die in a short interval ¢ to ¢ + At is given by u(x)At), p is a deposit fee and « and 3
are security factors. When the reserves are calculated, an insurance policy is viewed as a collection
of one-time payments, and the reserve requirement for the company is found by summing the reserve
contributions from all payments to the company by their customers.

The prospective reserve is given by the present value of the lowest allowed future payments given by
the guaranteed rate of return. In order to illustrate this reserve, we assume that we have a customer
of age x who has a policy giving a guaranteed continuous stream of 1 SEK per year. The stream will
be paid out m years from now and and continue for r years, given that the customer is still alive. The
present value of this stream will be

K(z,m,r) = / e rP(T, > 7)dr,

m

where § is the interest rate intensity of the guaranteed rate of return offered to the customer, and
P(T, > 7) is the probability that the remaining lifespan of a person of age x is larger that 7. If our
customer now makes a one-time deposit of Dy, this will buy her a guaranteed continuous stream of g
SEK per year, with g being defined by

Dy
1+ p)K(z,m,r)’

9=

although once she reaches her retirement age, the actual payment stream received may be higher, as
given by the bonus rate above. Here, again, p is a deposit fee. The prospective reserve for this one
time deposit will be

S =gK(xz,M,r),

but now the present value K has to be computed using the lowest allowed guaranteed rate of return.
The lowest allowed guaranteed rate of return is set by the regulating authority Finansinspektionen
(Swedish for the Finance Inspection), and it is affected by the long-term market rates. The promise
made to the customer, g, is fixed and independent of the rate used to compute it, which means that
if the guaranteed rate of return is changed, the present value of a future payment stream, K (z, m,r)
will change, and so will the prospective reserve. Hence there is a coupling between the asset prices and
the liabilities via the long-term market rates.

2.1.3 Reserve requirements

The consolidation of the company is defined as the sum of the value of all assets divided by the
retrospective reserve (defined above). The regulating authorities require that a life insurance company
keeps its consolidation between 100% and 120%. These limits are not strictly enforced: consolidation
levels below 100% are accepted for shorter periods of time. However, if this requirement is violated
during long periods of time, or by a significant amount, authorities may require the company to
retroactively lower the bonus rate of return. Retroactively reducing the bonus is perfectly legal, but
very undesirable from a public relations point of view.



In addition to covering the retrospective reserve, the company is required to own assets in excess
of the prospective reserve. Furthermore, just covering this reserve is not enough; there are limits on
which type of assets may be used to cover the reserve. For example, a company may cover at most
25% of the reserve using equity. (This does not limit the amount that a company may invest in equity,
as long as the company owns at least 75% of the value of the prospective reserve in other assets.)
As the prospective reserve deals with guaranteed benefits, the requirements related to this reserve are
enforced in a more stringent way than the requirements related to the retrospective reserve: breaking
these rules may result in the liquidation of the company.

2.2 Comparison to models under foreign rules

In order to highlight the differences and similarities between the model presented in this paper and
other models used for ALM, a short overview of rules and regulations of other countries is given next.

2.2.1 Dutch conditions

The Netherlands has a pension system based largely on funded assets. As a consequence, large assets
are held by Dutch pension funds (an estimated 25% of all the pension assets in the EU, according
to Boender [1]) and the massive funds held by Dutch funds have inspired much research into ALM
solutions under the Dutch set of rules.

Dert [13, 14] has developed an asset liability model for a Dutch pension fund, with chance constraints
regulating the probability of under-funding. The problem addressed is that of managing assets for a
fund set up by a group of companies (the sponsors of the fund) in order to provide retirement benefits
for the sponsoring companies’ employees. The benefits are dependent on the employees’ final and
average salary, and the job of the manager of the fund is to keep the fund sufficiently solvent while
keeping the contributions low and predictable. In order to do so the objective is to minimize the
expected present value of the contributions required to keep the fund sufficiently solvent, with an
added penalty for remedial contributions. The resulting model is a mixed integer linear problem,
which is solved via a heuristic method. Dert models the economy via a VAR (Vector Auto Regressive)
model, and the status of the beneficiaries of the fund is modeled by Markov chains.

In [17], Kouwenberg and Gondzio use the same framework, but replace the probability constraints
by penalties for under-funding, and impose restrictions on the yearly variations of payments made to
the fund. Again, the objective is to minimize the present value of the contributions, while penalizing
remedial contributions.

The same framework is used once again by Kouwenberg [22], where different scenario generation
models are examined. The model is identical to the one described by Gondzio and Kouwenberg [17]
with the exception of applying a quadratic penalty on the remedial contributions.

The most notable difference compared to the Swedish case is the fact that the Dutch funds ad-
minister a defined benefits scheme (that is, participants receive a pension based on their final salary,
and the contributions vary in order to achieve this), while the problem we address is mainly a defined
contribution scheme (the contributions are defined by the customer, and the customer gets a pension
dependent on the fund’s development).

2.2.2 The Norwegian problem

Hgyland and Wallace [20, 19] have treated the asset liability problem of a life insurance company in
Norway. It is similar to the Swedish case: individuals save up for their own retirements, as opposed to
the Dutch case, where the funding is provided by the employer. The case considered is hence a defined
contributions scheme. The major difference from the Swedish setting is that all reserve requirements
are considered to be exogenous variables (that is, they are not affected by the company’s actions).
Norway has a requirement of a lowest guaranteed rate of return on the assets, similar to the Swedish
case. These rules do however differ from the Swedish ones as the guaranteed rate of return has to



be given annually in Norway, as opposed to over the lifetime of the contract in Sweden. Requiring
annual yields is a very limiting constraint, severely reducing the possible investments. Furthermore,
Norwegian life insurance customers has the right to move their contract to a competing firm by paying
a nominal fee (i.e. the contract contains a surrender option), a right the Swedish customers lack.
Taking these rules into account, Hgyland models the problem by constructing a multi-stage stochastic
linear programming model, with a piecewise linear convex objective function.

2.2.3 Other nationalities

Asset liability management problems for pension management have been addressed by a number of
other researchers. Pflug et al. [25, 27, 26] consider the problem in an Austrian setting. The model is a
multi-stage linearly constrained problem, with different objective functions in different versions. It is
solved using interior point methods, taking advantage of the special structure of the constraint matrix
for efficient factorization.

A similar problem for a British fund is addressed by Dempster and Consigli [8], who formulated the
general purpose CALM model. This model differs from the other models described mainly by making
it possible to add capital gains taxes, which requires the model to keep track of not only how much
of each asset is owned, but also when it was purchased. Another difference is the absence of reserve
requirements; liabilities need only be covered when they occur. The model is a multi-stage stochastic
linear programming model, although versions with quadratic penalties exist.

An alternative to using multi-stage stochastic programming is explored by Brennan and Schwartz
[3], who treat investment for index-linked policies with guarantees, a situation slightly similar to
ours. In their framework, the payments made to the customers may be modeled as a combination
of a guaranteed amount and a call-option on the index, with the guaranteed amount as the strike-
price. under this framework, investment strategies are found by replicating the option. However, this
framework is not very appropriate for our problem, as the company in our case influences the amount
payed to a large degree, by setting the bonus rate of return.

3 The ALM model

In this section we describe the mathematical model of the company and the surrounding economy. In
order not to explicitly denote all dependencies of random information, parameters and variables which
vary between scenarios will be indicated with a boldface font.

3.1 Modeling of exogenous variables

We have modeled seven asset classes for the company to invest in, chosen based on our partner
company’s current asset classification. These assets are Swedish and foreign bonds, Swedish and
foreign stock, Swedish treasury bills, Swedish real interest rate bonds, and Swedish real estate.

Interest rates and bond prices In our model of a Swedish life insurance company, the interest rates
influence both the yield on bonds and the reserve requirements (see Section 2.1.1). This means that
the interest rates have a high impact on which decision is optimal. Hence, bond prices and interest
rates must be modeled in a consistent way. This is done by employing a version of the Brennan—
Schwarts interest rate model [4]. This model has two state variables: the instantaneous interest rate
and the rate of return on a console bond (a bond which never matures). These rates of returns are
simulated by time-stepping a stochastic differential equation, and the price of any zero-coupon bond
may be obtained by numerically solving the bond pricing equation (see Appendix B for details). This
procedure is used to obtain prices of treasury-bills and bonds consistent with the interest rates.

A two-factor model is chosen since preliminary studies indicated that the one-factor models tested
(the Vasicek model [9] and the Cox-Ingersoll-Ross model [10]) yielded too high correlations between



long and short interest rates. As console bonds are not traded on the Swedish market, we have used
the interest rate of the longest government bond on the Swedish market when fitting the model to
market data. The parameter values obtained are given in Table 6 in Appendix A.

Other asset prices Inspired by the capital asset pricing method, we assume that the expected
yield on assets other than Swedish bonds and treasury-bills are given by the risk-free rate of return
to which a risk premium is added. The only exception is long-term foreign bonds where the expected
yield is taken as the same as the expected yield on Swedish bonds, in effect assuming that the real
long-term interest rate in and outside of Sweden are comparable. We generate the returns for these
assets conditionally on the returns given on Swedish bonds and Swedish treasury bills, in order to get
the desired correlation between the different asset classes. The parameters used for scenario generation
in this study are given in Tables 7 and 8 in Appendix B.

The parameter values used in the simulation are a mixture of historical data and reasonable guesses,
as the parameters used should not reflect the past, but the company managers’ expectations about the
future. Hence, historical data is used only to estimate correlations. In this article we only compare
differences in performance between different configurations of the model itself. If the model is to be
used commercially, or if a comparison is to be made versus our partner company’s historical behavior, a
better estimation of these parameters is needed. Especially, the values concerning Swedish real interest
bonds and Swedish real estate are given by estimates from people within our partner company, and
not based on real-world data. This is currently not a serious problem, since company policies prohibit
trade in these assets, and hence trade in these assets is prohibited also in our model. The reason why
these assets are not entirely excluded from the model is that these assets may still be used to cover
the reserves, hence influencing which other asset allocations we may be interested in making.

Customers and liabilities As mentioned before in Section 2.1.3, the company needs to consider
two reserves, one influenced by the bonus rate of return, and one entirely exogenous. A complication is
that the retrospective reserve is not a linear function of the bonus rate, as may be seen from equation
(2.1).

In order to be able to retain a linear ALM model, the calculation of the retrospective reserve needs
to be slightly simplified. We do this by linearizing the retrospective reserve around an assumed value
of the bonus rate. We believe that linearizing the reserve computations in this way will not greatly
impact the solution, as the nonlinearity of the reserve is rather weak. As an example, we use one
value of the bonus rate for the first 6 months, and another value for the next 18 months. In this case,
the maximum difference between the linear approximation and the true reserve value will be less than
0.3% when the bonus rates are kept between 3% and 15%. (In previous trials, we have determined
the reserves in an iterative fashion, by solving the ALM-problem in order to obtain the bonus rate of
return for each node in the scenario tree, which have been used to update the expansion, after which
the problem was resolved. The solutions obtained in this fashion did not significantly deviate from the
solutions obtained without iterating.)

The prospective reserve is only influenced by the regulating authorities, and may be computed in
a straightforward way. It is still dependent on the state of the economy, as the size of this reserve is
determined by the guaranteed rate of return, which is influenced by the long-term interest rates.

For this study, we have used real-world data of the current stock of customers, augmented with our
partner company’s assumptions on the future inflow of customers. The customers have been aggregated
according to year of birth, and the number of customers is assumed to be so large that the fraction of
customers dying each year is exactly given by the mortality model.

A further assumption needed to make the model linear is that the customers do not react to the
actions of the company, although the savings level of the customers may be related to other exogenous
economic variables. It would be possible to treat the effects of customer behavior by linearizing how
the consumer collective reacts to a change in the bonus rate of return, but as we have no data on the
customers’ reaction to a change in bonus rate, no such effort has been made.



Implementation of the economy model One of the goals when implementing the model of the
economy was to make it easy to change or replace it if it was found to be insufficient, for instance by
replacing the Brownian motions driving the model by a database of historical samples. In order to
make this possible, the stochastic model is implemented in a black-box fashion as a pair of subroutines.
The first of these routines take the two interest rates and a time length as input and return a pair of
antithetic sample-paths of the desired time length, where the starting state is given by the two interest
rates. The second routine returns the first four moments and the covariances of how the random
variables develop over the given time length. If these moments are not explicitly available, they are
found by simulation, by using a large number of samples from the first routine.

Antithetic samples are used as we wish to lower the errors in the sample means. As described
earlier, the scenarios are generated using a stochastic differential equation, driven by an uncorrelated
multivariate Brownian motion X . If we have a sample-path z of this Brownian motion, used to generate
a sample-path y(z) of the economic variables, an equally probable outcome of X is —z. We may use
this sample to generate another sample-path y(—z) from the distribution of economic variables. As
y(x) and y(—x) are negatively correlated the sample mean gets a lower variance. The effects of using
sample means for scenario tree generation have been investigated by Higle [18], who report that the
method provided significantly better solution stability than ordinary random sampling.

3.2 Constraints

The model of the company is implemented as a multi-stage stochastic linear programming problem,
having the following constraints:

Time linking constraints The development of the assets held are given by the time linking con-
straints, the assets owned in the first stage are given by what is held initially, corrected according to
the first buy and sell decision:

a =y~ + 3, el (3.1)

Here, the different asset classes into which we may invest are given by I, and the assets held at time
0, 7, are given as the initial assets Z; to which we add what is bought, y?H-, and deduct what is sold,
y%,. In the same fashion, the asset inventory at later stages are given by

o=y, —yl + (L+n)al, ielteT\{0}, (3.2)

where the price development of asset class i since the last trading time is given by n!.
In order to simplify the constraints regarding the reserves, we also introduce a variable giving the
total value of what the company owns

T =Y @, tel. (3.3)

el

Cash balance Naturally, the sum of all transactions in a period must add up to 0, which is guaran-
teed by the cash balance constraint:

Pin - Pout - etmiot
+> (W —m) — Y+ m) + ) plalTt =0, teT. (3.4)
el el

Here, the payments to the customers, P, the payments from customers, Pj;,, the tax payments
and the net of the transactions and direct income (given by p!) must add up to 0. The taxes paid by a
life insurance company in Sweden is proportional to the assets owned and a benchmark interest rate,



the state borrowing rate (a weighted average of long-term government bonds). According to Swedish
rules, each year the company pays 15% of what they would have earned as capital gains, had their
assets been invested at the state borrowing rate. This is modeled by the factor 8", which is defined
as the length of the period leading up to time ¢ times 0.15 times the average state borrowing rate
during this period. Furthermore, transaction costs for asset ¢ are given by ~;, and transaction costs
are assumed to be proportional to the amount bought or sold. Furthermore, the direct yield of asset i
during the period leading up to time ¢ is given by p!.

Bonus rate The bonus rate given to the customers is the primary way in which the different life
insurance companies compete. Hence the company whish to hold this rate high, and preferably even
over time. Right now we do not enforce the requirement that the rate should be even, but only
try to avoid low rates of bonus return. As having a life insurance policy should be an attractive
alternative compared to using a high interest account, we define offsets from the long-term interest
rate as Aryerq,a € A, and add penalties for having bonus rates below these levels:

rt 42l > rief + Arpeta, t€T,a€ A (3.5)

Prospective reserve requirements The rules for a life insurance company specify that it must
at all times be able to cover the prospective reserve using the correct types of assets, as described in
Section 2.1.3. There is a limit to how much of the reserve may be covered using assets of a specified
type. For instance, a maximum of 25% of the reserve may be covered using stock. In order to capture
these requirements, we introduce variables ﬁ:f stating how much of each asset class is used to cover
the prospective reserve, (naturally we have ﬁrf < z!). Right now only constraints on two sets of asset
classes are relevant for the model, but we formulate these requirements more generally should the
company decide to expand the model later on (for instance by including corporate bonds). Here K
represents the set of rules. For each rule k there is a set I of assets affected by this rule, and a
maximum fraction of the reserve, ¢, which may be covered by these assets. We hence get the upper
bound on assets used to cover the reserve as

d @i <aS', teTkek', (3.6)

i€y,

where S' is the value of the prospective reserve at time t.

Failure to cover the reserve using the correct assets is a grave violation of the regulations, and will
lead to the liquidation of the company. As liquidation is an alternative, although not a pleasant one,
we do not strictly enforce this rule. We do instead add a steep penalty for failing to cover the reserve

using the correct assets, a penalty given proportionally to the violation zfgz

S ai+zh>8 tel (3.7)
el

As failing to cover the prospective reserve is a grave violation of the rules, almost failing to cover
the prospective reserve is undesirable. We hence add a set of increasing penalties for almost failing
to cover the reserve. In order to enforce avoiding violating this reserve requirements, we introduce a
set of security levels f;,q € Q, where f, ranges from 1.15 down to 0.9. We add levels below 1 even
though the company goes bankrupt if the condition is violated, as the company may ask for extra
contributions from the owners in order to avoid bankruptcy, and these contributions should be held
small. The degree to which the security levels are violated are given by zfz, defined by

ol + 2L =[S, teT,qeq. (3.8)



Note that this expression uses the total assets ! ,, not the sum of &!. If the assets &, were used
in the expression (3.8) this would force us to cover 115% of the reserve using the correct asset classes,
something which is not required by law.

Retrospective reserve requirements The retrospective reserve is defined in order to guarantee
that the company is on track to live up to the bonus rate promises given to the customers, as described in
Section 2.1.3. We model failing to cover the retrospective reserve in the same fashion as the prospective
reserve, using progressively steeper penalties. Hence we define a set of lower limits, Kmin,m, m € M
for a set M of penalties, and define the violation as previously by:

miot + Zm = Hmin,mvt, t e T, m € M. (39)

In addition to preventing a too low consolidation, the regulating authorities wish a company to
keep the consolidation under 120%, although this is not strictly enforced. (The idea is that gains made
should be distributed to the policy-holders, and not retained in the company.) Hence we add a small
penalty for having a too high consolidation as

miot — 2z < Hmaxvt; tefT. (310)

Trading restrictions Our partner company has a policy of not actively trading real interest bonds
and real estate. As for other assets, the company is small enough not to affect the market, and hence
no trading restrictions are needed for other assets. However, for model generality, we still add upper
bounds u; for the trade of all assets, and set maximum trade high for all assets but real estate and
real interest bonds.

Yyl <wu, ie€lteT, (3.11)
y, <w, ieltel. (3.12)

As the rules for life insurance companies does not allow short selling, we add lower limits for all assets.

xt >0, iclteT. (3.13)

Expansions The value of the retrospective reserve, and the sum paid to the customers, are affected
by past values of the bonus rate of return. As mentioned previously, we linearize the reserve and the
payments, giving us the following expressions:

t—1 —t
_ ov
Vi=vV'y —(r" —77), teT, (3.14)
=0 87“
t—1 =
_ oP
Pt —P' Zout (T _pT) teT 3.15
out out + 7;0 07’“7 (7" r )7 S ( )

In this expression, V' is the value the retrospective reserve would have if the bonus rates at previous
periods had been #7,7 < t. In the same fashion, met is the payments to the customers computed
using the assumed values of the bonus rate of return.

3.3 Objective of the optimization

According to a recently abolished law, all Swedish life insurance companies had to be mutual companies,
dividing all their profits among the customers. As our partner company does not plan to change their
status from being a mutual company, we may assume that this restriction still applies. Since the



company is mutual, a reasonable view is that the customers own all the money inside the company.
Hence it is appropriate to maximize the expected value of the assets held by the company, as it is the
customers’ money. To the value of the company, benefit payments made to the customers must be
added. In order not to skew the results and favor high inflation scenarios over low inflation scenarios,
all results are discounted using the rate of inflation. In addition to maximizing the present value of the
participants’ money, the management of the company must take into account the rules and regulations
imposed by the authorities. This is captured in the model by penalizing the deviations from certain
goals, as described above.

As expressed above, there are rules that the assets owned must cover two reserve levels, with
increasing penalties for increasing violations. Hence the objective will be a concave function of the
total assets owned, making the company act in a risk-adverse fashion.

Thus we get the objective function, shown in equation (3.16), as the expected present value of all
payments made to the customers, plus the expected terminal value of the company’s assets reduced
with penalties for violating different rules and regulations. The objective of the optimization is to
maximize

w(z,z,r) :=Ed =L, + z:dtPgut + thdt(—spz; - Z sazfl‘_/t—
teT teT acA

SEZE — Z SmZm — Z SqZq)]- (3.16)

meM qeQ

In this expression, the parameter [* gives the length of the period following time ¢, which is used to
scale the penalties. Penalties for the constraint violations defined in equations (3.5)—(3.10) above are
given by sp, Sa, Sk, Sm, Sq- Now the optimization problem may be stated as the maximization of (3.16)
under the constraints (3.1)—(3.15).

4 Numerical tests

4.1 Rolling horizon simulations

Naturally, we wish to determine if our proposed model gives useful advice on how to run a life insurance
company. As observing objective values does not give any information on how good a solution process
is when used iteratively, we use rolling horizon simulations similar to Kouwenberg [22], Fleten, Hgyland
and Wallace [15], and Golub et al. [16], to test the performance of the method. The major difference
between our tests and the ones performed in the cited articles is that they all treat tests performed
where the number of stages in the test scenarios and the scenario trees are the same. (Kouwenberg
uses a five period (six stage) tree whereas Fleten et al. use a three period tree). We use test scenarios
with ten periods, forcing us to aggregate time-stages in the ALM model. This makes it possible for
us to test if there is any performance difference between trees with few stages and many branches per
stage, and trees with many stages but few branches at each stage.

Rolling horizon simulations work by applying the decision given by the optimization routine to our
model of the company, letting some simulated time pass, an apply optimization again to obtain a new
decision. The process is repeated and thus simulates how well the company actually fares when it is
governed by the optimization model. These simulations are carried out as follows: First we generate
a set of sample-paths which will be used for the evaluation, with all these sample-paths originating in
a common state of the world. In order to run a scenario of length 7', where the solution is evaluated
each n time-steps, we apply the following procedure to each path.

0: Set t = 0 and go to step 2.

1: Use the sample-path and the state of the company just after the decision at time ¢ —n to generate
the state of the company just before a decision is made at time t.
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2: Use the state of the world of the current sample-path at time ¢ to generate a scenario tree.
Note that this tree is independent of the future realization of the sample-path, and hence that
information does not leak into the scenario generation procedure.

3: Optimize over the tree, generating a decision for the company at time ¢. Use this decision to
determine the state of the company after the decision is made at time ¢. Store information about
the state of the company just after the decision.

4: if t <T,set t =t+n and go to 1.

5: Use the stored states of the company to determine total penalties and the terminal value of the
company, which are used to evaluate the success of a method on a particular scenario.

Test scenarios ;

|
|
N ‘
N
A A A A A A= |
I P | /\ I I
— — — — — — Q — |
— — — — — — 1
— —] — — — — 7\ |
(e s Tt s st |
W @ -G
Scenario Scenario Scenario
generation generation generation
Initial Solver || Company | Solver L~ Company | _ Solver
state state state
Merit Penalties, Dis- Penalties, < | Dis- | <_| Penalties,
function payments counting payments counting payments
and assets

Figure 1: Testing system.

This procedure is repeated for each strategy tested, and the results are compared on a scenario to
scenario basis. An illustration of the testing procedure is given in Figure 1.

The success of the method for a specific scenario is measured by taking the terminal value of the
assets held by the company, to which we add all payments made to the customers, and subtract the
penalties incurred. All values are discounted using the rate of inflation. Comparing the performance
of two methods for one scenario will give us one sample of a random variable defined as the difference
between using the two methods on a random scenario. As each scenario will give us one sample, we
may use these samples to test whether the average value of the difference significantly differs from 0.

4.2 Scenario tree generation

In this work we employ two techniques for generating scenario trees: fitting and random sampling.
When random sampling is used, the tree is generated recursively by sampling possible outcomes for the
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children of a node, using the model of the economy. In order to improve the sampling procedure, we
use antithetic sampling and translate the samples obtained so that they will have the same expected
mean as the sampled distribution.

When we do fitting the tree is again generated recursively, but by simultaneously optimizing the
values of interest rates, asset prices and probabilities of the children of a specified node, in order to
match the statistical properties of the underlying distribution. The variables fitted are the long and
short interest rate, as well as asset prices for all assets except Swedish bonds and treasury-bills. Prices
for Swedish long and short bonds are later given by the values of the interest rates. When using an
optimized scenario tree generation, we fit the mean, variance, skewness and kurtosis of each variable,
as well as the covariances between the different variables.

4.3 Optimization of fix-mix strategies

The current method used by our partner company to determine their operating strategy is hard to
describe in mathematical terms. The board meets with even intervals to determine which asset mix
the company should hold, and how high the bonus rate should be. The asset mix is given as a lower
and upper bound on the fraction of the total wealth invested in different asset classes. When deciding
on which asset mix to choose one naturally considers the consequences of keeping this asset mix for an
extended period of time. Hence an approximation of this strategy is to choose the fixed mix of assets
which will give the best yield over the period in question.

4.3.1 Fix-mix evaluation

In order to evaluate the effects of keeping one fixed asset mix, we add constraints to the model described
in Section 3 and solve it. These constraints are

QiThogea =18, iel, i=1,...,T (4.1)
where we use the following notation.

xl . qeq total assets owned at time ¢, except assets invested in real estate and real interest bonds,
I Set of all assets except real interest bonds, real estate and Swedish bonds,

; fix-mix fraction of asset i, a; > 0,>,.;a; < 1.
No prescribed fraction is set for Swedish bonds in order to avoid linearly dependent constraints. With
this setup, Swedish bonds will absorb the remainder of the funds invested, whenever >, _;a; < 1.

This extended model is solved using the same procedure as the ordinary ALM model. Naturally,
there are more efficient methods to evaluate a fixed mix. Our method however has the advantage of
using the same method to determine the bonus rate of return in both models.

The fix-mix asset fractions are optimized using a gradient descent algorithm. Gradients with respect
to asset fractions are obtained from the dual variables corresponding to the constrains (4.1), in the
manner described in Dantzig and Thapa [12] on page 196. These gradients may only be obtained
if 2! 4eq is @ basic variable. The total assets owned will most probably always be positive, and we
indeed encountered no case for which 2!, , = 0 occurred (which otherwise would have resulted in
the evaluation being aborted).

Note that finding a fixed asset mix is not necessarily a convex problem (see Maranas et al. [24]),
but in our case the method converges to the same solution for all starting points, when a large number
of starting points are used.

4.4 Questions

In order to estimate the usefulness of the model, we ask a number of questions which we will try to
answer using numerical experiments.
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Case Split Length, months | Size (rows/cols/scenarios)
Case 1,2 | 30¥10¥10 | 6,12,24 164179/197823 /3000
Case 1, fix | 30*10*10 6,12,24 180834,/201154 /3000
Case 3:1 | 10%8%8%8 | 6,12,12,12 294639,/353883 /5120
Case 3:2 10*6*4*4*4 | 6,6,6,12,12 264079/316463 /3840
Case 3:3 | 8%6%4%4%4 | 6,6,6,12,12 211273/253183,/3072
Case 4, fix | 8*%6*4*4*4 | 6,6,6,12,12 231718/257272/3072

Table 1: Scenario tree sizes.

As the current strategy of our partner company is similar to a fixed mix strategy, we would like
to investigate if using dynamic asset allocation in the model will improve its performance. Although
dynamic asset allocation have been found to outperform a fix-mix approach (See Kouwenberg [22] and
Fleten, Hgyland and Wallace [15]), we still perform these tests in order to make sure that this is true
also for our chosen methods, as well as for establishing a reference value against which performance
differences depending on scenario tree shape may be compared.

Other researchers (Hgyland and Wallace [15], Kouwenberg [22], and Higle [18]) have made clear
that the way scenario trees are generated is most important for the performance of the system. As
the generation of scenario trees by fitting of the stochastic properties is rather expensive (creating a
scenario tree takes significantly longer than solving the resulting problem), we would like to see if this
difference is significant for our problem.

Finally we perform a study to determine if changing the shape of the scenario tree (making it longer
but more narrow) will affect the performance.

4.4.1 Fix-mix versus SP

In order to determine if the stochastic programming solution fares better than the fix-mix approach
we apply both methods to 150 scenarios 5 years in length, with the portfolio being re-balanced every
6 months. All scenario trees for this test is generated by fitting the statistical properties of the
underlying distribution. We report results from these simulations in Table 3 as Case 1. We report
the difference and the standard deviation of the difference, as a large portion of the variability in
the solutions is explained by differences between the scenarios. The scenarios are generated using
antithetic sampling, in order to reduce the variance of the sampled mean, and we hence report two
values for the standard deviation: the value obtained from all samples, and the value obtained when
we average over each antithetic pair before calculating the standard deviation. If we assume that the
two methods of generating scenario trees are equivalent, each scenario (or pair of scenarios) is a sample
of the random variable defined as the merit function difference of the two methods used on a random
scenario. As the number of runs is fairly large, we may assume that the mean of these variables has a
normal distribution with standard deviation

Osample

Omean — \/ﬁ

with n being the number of samples. Observing that 0.8198/v/75 = 0.0947 we see that the mean
difference of the two methods equals approximately 1.6 times the standard deviation. More specifically
we see that the probability of getting a larger deviation from 0 given that none exists is 10.8%, which
is the strength of the test of our claim. The resulting asset fractions are reported in Table 2 together
with their standard deviations (only the actively traded assets are reported.
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Swedish | Foreign | Swedish | Foreign Swedish

bonds bonds stock stock t-bill
Fix-mix | 0.62/0.0 | 0.04/0.0 | 0.13/0.0 | 0.09/0.0 | 0.005/0.0
SLP 0.67/0.04 | 0.0/0.0 | 0.12/0.03 | 0.09/0.03 | 0.0/0.0

Table 2: Asset fractions owned in Case 1 (fraction/std.).

Method | Mean (BSEK) | Std (BSEK)
Case 1
Sp 22.2606 4.0778/1.9555
Fix-mix 22.1085 3.3445/1.4798
Difference 0.1521 1.1525/0.8198
Case 2
Fitted tree 22.2606 4.0778/1.9555
Random tree | 22.2641 4.179/1.88719
Difference -0.0035 1.2585/0.8981
Case 3
30*%10*10 22.2641 4.179/1.88719
10*8*8*8 22.3193 4.8865/2.1128
Difference -0.0552 2.4121/1.8296
30*%10*10 22.2641 4.179/1.88719
10*6*4*4*4 22.6856 4.5646/1.9961
Difference -0.4215 2.1907/1.5004
30*10*10 22.2641 4.179/1.88719
8*6*4*4*4 22.5202 4.9785/2.1256
Difference -0.2561 2.4331/1.5880
Case 4
SpP 22.5202 4.9785/2.1256
Fix-mix 22.1168 3.4093/1.5139
Difference 0.3489 2.8009/1.7033

Table 3: Merit function values.

4.4.2 Random versus optimized scenarios

Partly because the price of constructing scenario trees by optimization is rather high (constructing
the scenario tree takes significantly longer than solving the resulting SLP with our implementation),
we wish to determine if constructing scenario trees by fitting the properties of the underlying random
distribution will give a significantly better performance compared to constructing trees by anthitetic
random sampling with adjusted means. We run 150 scenarios using both randomly generated scenario
trees and fitted trees. The results from this test are reported in Table 3, as Case 2. Using the same
methods as earlier, we see that the probability of getting a larger deviation from 0, given that no
difference exists, is 97%, and we may hence not draw the conclusion that a difference exists between
the methods. Hence the rest of the trials will be carried out using scenario trees generated by random
antithetic sampling with correction.

If we look at the asset fractions obtained by the two methods, as reported in Table 4, we see
(not surprisingly) that the first-stage solutions obtained from randomly generated trees have a larger
standard deviation. More important is the fact that there exists a statistically significant bias: when
using a random tree, a larger fraction of the wealth is invested in stock.

14



Swedish | Foreign Swedish | Foreign Swedish

bonds bonds stock stock t-bill
rand. tree | 0.64/0.08 | 0.005/0.02 | 0.13/0.5 | 0.11/0.05 | 0.0/0.0
opt. tree | 0.67/0.04 | 0.0/0.0 0.12/0.03 | 0.09/0.03 | 0.0/0.0

Table 4: Asset fractions owned in Case 2 (fraction/std.).

4.4.3 Tree size

In this study we have used rather wide and short trees compared to other studies, mainly to compensate
for the larger number of assets. In order to see if this choice affects the performance of the method,
we try other shapes of trees, which are more narrow and deep, as this kind of shape is more common
in other researchers’ tests. For instance, Dempster and Consigli [8], having 5 assets, uses a 10 stage
tree divided as 7,3, 27 (the first stage splits into seven nodes, each splitting in three in the next stage,
each splitting in 2 in the next seven stages). Kouwenberg [22], having 4 assets, uses a configuration of
10,6%,4% | and Hgyland and Wallace [20], having 4 assets, uses a configuration of 60, 62.

In order to test if changing the shape of the tree will affect the efficiency of our method, we test three
sizes of trees. The trees of each size are all generated by antithetic random sampling with corrected
means. The sizes of these trees are given in Table 1, as Case 3. The length of the stages in the trees
are adjusted to give the tree the same overall length in time, as we otherwise may not rule out that
a difference in performance stems from different time horizons. We use 3 different trees, one with five
stages and two with six stages in addition to the base case with four stages. As may be seen from Table
3, the two longer trees used, having 6 stages, perform significantly better than the base case with 4
stages. Also well worth noting is that the trees with 6 stages both outperform the tree with 5 stages,
despite having a lower total number of scenarios. If we perform the same statistical test as before, we
see that the probability of getting a larger deviation from zero when comparing Case 3:3 to the base
case is 16%, suggesting that using longer and deeper trees does actually improve performance. In this
comparison the trees have essentially the same number of scenarios, 3000 vs. 3072, but the size of
the deterministic equivalent problems differ, as a longer tree will give more variables and constraints.
When comparing Case 3:1 and 3:2, the probability of obtaining a larger difference given that none
exists is 8%, again suggesting that deeper and more narrow trees perform better. Worth noting in this
case is that the longer tree has significantly fewer scenarios (3840 versus 5120), although the difference
in the size of the deterministic equivalent is smaller.

The fractions of available assets invested into different asset classes at time-stage 0 is given in Table
5. As may be seen from this table, the longer but more narrow scenario trees yields solutions with a
higher fraction of the wealth invested in stock. This means that aggregating time-stages in the scenario
tree will give the solution a bias, and that this bias is large enough to make longer but more narrow
trees outperform shorter and wider trees, despite a significantly larger instability in the solutions.

Swedish | Foreign Swedish Foreign Swedish
bonds bonds stock stock t-bill
base case | 0.64/0.08 | 0.005/0.02 | 0.13/0.5 | 0.11/0.05 | 0.0/0.0
case 3:1 0.60/0.12 | 0.02/0.05 | 0.15/0.09 | 0.12/0.09 | 0.003/0.02
case 3:2 | 0.58/0.12 | 0.03/0.08 | 0.18/0.09 | 0.10/0.08 | 0.002/0.02
case 3:3 | 0.51/0.18 | 0.07/0.13 | 0.19/0.09 | 0.11/0.09 | 0.01/0.07

Table 5: Asset fractions owned (fraction/std.).
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4.4.4 Fix-mix versus SP revisited

As the performance seems to improve when using deeper, more narrow trees, we again try the fix-mix
version of our model, using the trees given in Case 3:3. This test is reported as Case 4 in Table 3.
Here, the difference between the two methods is bigger compared to test Case 1, and the probability
of getting such a big difference given that none exists is approximately 8%. This is not surprising, as
being required to keep the same asset mix is more of a handicap in a deeper tree, which has a higher
number of opportunities to re-balance the portfolio.

5 Conclusions

In this paper we have developed an ALM model for a Swedish life insurance company, including a
model of the surrounding economy. Two procedures for constructing scenario trees from the economy
model are implemented and tested. We perform rolling horizon simulations to compare the different
scenario generation techniques, and compare if having different shapes of the scenario trees impacts
the performance of the model, when applied to out of sample scenarios.

By comparing different shapes of the scenario tree, we see that trees with many stages but few
branches at each stage clearly outperform shorter, wider trees, despite the fact that the solutions
obtained using these trees are very unstable (the fractions invested in different asset classes vary
significantly between different scenario trees). In fact, the gain in out of sample performance gained
by going from a four stage scenario tree to a six stage scenario tree was significantly larger than the
gain from going from a fixed-mix approach to a stochastic programming approach using four stages.

In this work we have used anthitetic random sampling with correction as the method to generate
scenarios, as our tests indicated no difference in performance between the two scenario tree generation
methods used. However, the solution obtained by using random-corrected trees not only had a larger
variability in the solutions, these solutions also had a larger investment in stock than the solutions
obtained using fitted trees. Hence random sampling will not only give the solutions a larger variability,
it will introduce a bias as well. When comparing different shapes of the scenario tree, we found that
long,narrow trees performed better, while investing even more in stock. Hence it seems as if the
relatively good performance of the random sampling technique (compared to Kouwenbergs findings
[22]) may be explained by the fact that the random sampling introduces a bias which counteracts the
bias from using scenario trees with aggregated stages.
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A Bond pricing
In our version of the Brennan—Schwartz two-factor model, two state variables are used: the return on

a console bond (a bond that never matures), and the instantaneous rate of return. The movements of
these returns are given by the stochastic differential equation

dr =a,. (Il — s —r)dt + o,rdz,,
dl =ay(l = r)dt + oyldzy,

where

r instantaneous interest rate,

l console rate,

oy, mean reversion strength for the two processes,
O standard deviation parameter,

! mean reversion level of console rate,

S difference between long and short rate,

p instantaneous correlation of dz; and dz,,

A market price of short-term interest rate risk,
c continuous coupon payed by bond,

T time to maturity,

B(l,r,c, ) price of bond as a function of the state variables and bond properties.

Bonds are priced by numerically solving the partial differential equation

BTTU$T2/2 + Brporrogl + BHJ?ZQ/2 + B (a.(l —s—1)— dopr)+
Bi(o?lod(l—1)2+1> —7l) — By +¢— Br =0,

with the boundary condition B(l,r,¢,0) = k, where k is the face value of the bond (stating that the
bond must yield its face value at maturity). For a derivation of this formula, see [4].
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B Data

o | 1.2492
a; | 0.1884
or | 0.1555
o; | 0.1874
l 0.0523
S 0.0131
P 0.5808
A | -04

Table 6: Parameter values for interest rate model.

Risk premium | Standard deviation
Swedish bonds (SB) - 0.0644
Swedish T-bills (ST) - 0.0212
Swedish stock (SS) 0.07 0.2487
Foreign bonds (FB) - 0.0951
Foreign stocks (FS) 0.06 0.1805
Swedish real estate (ES) | 0.07 0.1805
Swedish real bonds (RB) | 0.03 0.0355

Table 7: Means and standard deviations for asset model (yearly).

SB ST SS FB FS ES
ST | 0.54
SS | 0.4643 | 0.1130
FB | 0.2600 | 0.1848 | 0.2313
FS | 0.3332 | 0.0641 | 0.6914 | 0.5801
ES | 0.6 0.4 0.2 0.1 0.05
RB | 0.2 0.1 0.2 0.2 0.1 | 0.2

Table 8: Correlations for asset model.
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