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Abstract. The aim of the paper is to determine all free separable quadratic alge-
bras over the rings of integers of quadratic fields in terms of the properties of the
fundamental unit in the real case. The paper corrects some earlier published results
on the subject.

1. INTRODUCTION

Let K be a real quadratic field extension of the rational numbers and let R denote
the integers in K. In [T], Thérond gives a description of all separable quadratic
extensions S ⊃ R such that S is free as an R-module. His result is reproduced in
[H] (see pp.40 – 41). According to [T], the number of such extensions depends on
the residue modulo 4 of the discriminant d of K and on the residues modulo 4 of
u, v ∈ Z, where ε = u

2 + v
2

√
d is the fundamental unit of K. Unfortunately, when

d = 21 or 29, the residues of d modulo 4 are the same, and the fundamental units
are ε = 5+

√
d

2 , so they can not be differentiated in the given way. However, for
d = 21 there is a separable free quadratic extension of R, while for d = 29 such an
extension of the corresponding ring R does not exist (see Theorem 8).

The aim of the present paper is to give a correct version of the result and to
determine all free separable quadratic algebras over the rings of integers of quadratic
number fields. All separable quadratic algebras over the integers of quadratic fields
were studied in many papers (see e.g. [He], [GL] and [SW]), in particular, because
of their relevance to Gauss theory of genera of integral binary quadratic forms.
This relation was pointed out by Hasse (see [Ha]). The contents of the paper is the
following. In Section 2, we recall necessary notions concerning separable algebras.
In Section 3, we discuss the notion of quadratic defect, which we use in the proofs
in Section 4. Using this notion, we get easy alternative proofs of the results in [T]
and the new results concerning the most involved case when the discriminant of the
real quadratic field is congruent to 1 modulo 4. An interesting point is a relation
between the existence of free unramified extensions over the real quadratic integers
and the norm of the fundamental unit, which is a theme of several results of the
present paper.

1991 Mathematics Subject Classification. [2000] Primary 11R11, Secondary 11R04, 11R27,
11S15.

Key words and phrases. Quadratic separable algebra, quadratic defect, fundamental unit.

Typeset by AMS-TEX

1



2 J. BROWKIN, J. BRZEZIŃSKI

2. SEPARABLE QUADRATIC ALGEBRAS

Let now R denote the ring of integers in a global or a local field K and S an
R-algebra finitely generated and projective as an R-module. Recall that S is called
separable (or étale) over R if for every maximal ideal m in R, the algebra S/m is
separable over the field R/m (for a thorough treatment of separability see [KO],
Chap. III). It is clear that S is separable over R if and only if for each maximal
ideal m in R, the completion Sm is separable over the completion Rm with respect
to the m-adic topology. If L = K ⊗R S is a field, then S is separable over R if and
only if L is an unramified extension of K (at all finite primes of K).

Assume now that S is a quadratic separable R-algebra, that is, the rank of S as
a projective R-module equals 2. Then L = K⊗R S is either a quadratic unramified
field extension of K or L ∼= K × K. In the last case, S ∼= R × R, since S is the
maximal commutative R-order in L (see [KO], Chap. III, §4). In both cases, S is
the integral closure of R in L, that is, the ring of all elements of L integral over R.

Let now S = R + Re be a free quadratic R-algebra. This means that e2 =
pe + q, for suitable p, q ∈ R, so that S = R[X]/(X2 − pX − q). For more details
concerning (free) quadratic algebras see [H], Chap.1–3. Let ∆(S/R) = p2 + 4q be
the discriminant of S with respect to R.

Theorem 1. S = R + Re, where e2 = pe + q, p, q ∈ R is separable over R if and
only if ∆(S/R) ∈ R∗, where R∗ denotes the group of units in R. Moreover, two free
quadratic algebras S = R + Re and S′ = R + Re′ are R-isomorphic if and only if
their discriminants differ by a square of a unit in R, that is, ∆(S′/R) = η2∆(S/R),
where η ∈ R∗.

Proof. See [H], (2.2), p.23, for the first part, and (1.3), p.7 for the second one. ¤

This result shows that all R-isomorphism classes of the free separable quadratic
algebras S over R are classified by those units ε ∈ R∗, which can be represented
in the form ε = p2 + 4q, where p, q ∈ R, modulo squares of the units in R. It is
clear that the product of two units of this form (two discriminants of free separable
quadratic algebras) is again such a discriminant.

Definition. By the group of separable free quadratic R-algebras, we mean the
group of all units in R of the form p2 + 4q, where p, q ∈ R, modulo the squares of
the units. Following [H], p.31, we denote this group by Quf(R).

Remark 1. The group Quf(R) may be defined in a more natural way. If S and
S′ are separable quadratic R-algebras, then they have canonical non-trivial R-
involutions σ and σ′. The fixed subring for the natural action of the tensor product
σ⊗σ′ on the R-algebra S⊗RS′ gives the (isomorphism class of) separable quadratic
R-algebra, which corresponds to ∆(S/R)∆(S′/R) if the two algebras S and S′ are
free. See [H], p.174. ¤

In Section 4, we compute the group Quf(R) for the rings of integers in quadratic
number fields, but in order to limit the computations, we discuss shortly a very
useful notion of the quadratic defect.
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3. QUADRATIC DEFECTS

In this section, we refer to [O’M], §63A. If x ∈ K and K is a discrete local field
with the ring of integers R, then the quadratic defect of x is the intersection of
all the ideals bR, where x = a2 + b for elements a ∈ K. We denote the quadratic
defect of x by d(x) and note that x is a square in K if and only if its quadratic
defect is (0). If π is any generator of the maximal ideal m in R and the quadratic
defect of a non-square x is mr, then we shall also say that x has quadratic defect
πr. Similarly, we say that squares in K have quadratic defect 0.

We note some important facts concerning the quadratic defect, which are proved
in [O’M]. If 2 is a unit in R (non-dyadic case), then the quadratic defects of the
units in R are (0) (squares) or R (non-squares). If 2 is not a unit in R (dyadic case)
and (2) = (πt), then (see [O’M], 63:2) the quadratic defects of the units in R are
the ideals in the chain:

(0) ⊂ (π2t) ⊂ (π2t−1) ⊂ (π2t−3) ⊂ · · · ⊂ (π3) ⊂ (π).

We shall repeatedly use the following result (see [O’M], 63:5 and 63:3):

Theorem 2. Let K be a discrete local field with the integers R whose maximal
ideal m has a generator π. Then:
(a) If ε = η2 + πrδ, where η, δ ∈ R∗ and 1 ≤ r ≤ 2t − 1 is odd, then d(ε) = πrR.
In any of these cases, K[

√
ε] = K(

√
ε) is a ramified field extension of K, that is,

the integral closure S of R in this field is not separable over R.
(b) If ε = η2 + 4α, where η ∈ R∗, α ∈ R, then d(ε) = 4R when α is a unit and (0)
when α is not a unit. Moreover, in the first case K[

√
ε] = K(

√
ε) is an unramified

field extension of K, and in the second one, K[
√

ε] = K ×K, so in both cases the
integral closure S of R in K[

√
ε] is a quadratic (free) separable R-algebra.

4. QUADRATIC INTEGERS

Let K = Q(
√

d) be a quadratic field over the rationals Q, where d is a square free
integer. As before, we denote by R the ring of integers in K. If p is a non-zero prime
ideal in R, we denote by |x|p or simply by |x|, when there is no danger of confusion,
the value of x ∈ Kp with respect to the (normalized) valuation corresponding to p.

Very often we shall use the following easy observation: Let L = K[
√

η], where
η is any unit in R. Then for all prime ideals p in R not containing 2 (non-dyadic
fields Kp), Lp = Kp[

√
η] is an unramified field extension of Kp or Lp = Kp ×Kp.

This means that in order to check whether the integers S in L form a separable
quadratic R-algebra, it is sufficient to check this property locally for the dyadic
completions of K. The proofs of Theorems 3 – 5 and a part of Theorem 6 below
can be found in [T] (see also [H], pp.39–40). For completeness, we give proofs using
a method based on the notion of quadratic defect.

Theorem 3. Let K = Q(
√

d), where d 6= 1 is a square-free integer and let R
denote the integers in K. Then −1 ∈ Quf(R) if and only if d ≡ 3 (mod 4).

Proof. We have to decide when L = K(
√−1) is an unramified extension of K.

Let d ≡ 3 (mod 4), and let p be the prime ideal containing 2. We have −1 =
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(
√

d)2 − 4d+1
4 , which shows that the quadratic defect dp(−1) = (0) or 4Rp. Thus

L is unramified over K.
If d ≡ 1 (mod 4), then the equality −1 = 1− 2 shows that dp(−1) = pRp, where

p is any prime ideal containing 2 (see Theorem 2 (a)). In fact, the ideal (2) in R
is either inert or splits into product of two different ideals, so |2|p = 1. Hence L is
ramified over K.

If d ≡ 2 (mod 4), then the the equality

−1 = (1 +
√

d)2 − [2
√

d + (d + 2)]

shows that dp(−1) = p3Rp, where p is the only prime ideal in R containing 2. In
fact, |2

√
d + d + 2|p = 3, since |2

√
d|p = 3 and |d + 2|p ≥ 4. Thus L is ramified over

K. ¤

The description of the group Quf(R) for non-real quadratic number fields is very
easy. If d < 0 and d 6= −1,−3 then the group Quf(R) may contain at most two
elements represented by ±1, and according to Theorem 1, it has 2 elements if and
only if d ≡ 3 (mod 4). Since for d = −3 ≡ 1 (mod 4), R∗/R∗2 = {1,−1}, so
the group Quf(R) is trivial in this case. If d = −1, then R∗/R∗2 = {1, i} and
i = 12 + (i− 1), which says that the quadratic defect dp(i) = p, where p = (1− i).
Hence Quf(R) is also trivial when d = −1. Thus we have:

Theorem 4. Let d < 0 be a square-free integer and let R be the ring of integers in
Q(
√

d). Then

Quf(R) =
{ Z/2 = 〈−1 〉 if d ≡ 3 (mod 4), d 6= −1,

1 otherwise.

¤

Assume now that d > 0 and let ε denote the fundamental unit in K. The group
Quf(R) may contain at most four elements represented by ±1,±ε. For simplicity,
we consider these numbers as the possible elements of Quf(R). We shall study this
group in three cases depending on the residue of d modulo 4 beginning with d ≡ 3
(mod 4), then d ≡ 2 (mod 4) and finally, d ≡ 1 (mod 4), which was the starting
motivation for this paper.

Theorem 5. Let K = Q(
√

d), where d ≡ 3 (mod 4) and let ε = u + v
√

d be the
fundamental unit in R. Then Nr(ε) = 1 and

Quf(R) =
{ Z/2× Z/2 = 〈−1 〉 × 〈 ε 〉 if 2 | v,

Z/2 = 〈−1 〉 if 2 - v.

Proof. Since Nr(ε) = u2−dv2 = ±1, u and v have different parities. Considering u
odd and v even or vice versa, we get ±1 = u2 − dv2 ≡ 1 (mod 4), so u2 − dv2 = 1.

Let p = (2,
√

d + 1) be the prime ideal in R containing 2. As we already know,
−1 ∈ Quf(R). If 2 - v, then u2 − dv2 = 1, says that u must be even. Hence
ε = 1 + (u − v − 1) + v(

√
d + 1) gives |u − v − 1|p ≥ 2 and |v(

√
d + 1)|p = 1, so
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|u − v − 1 + v(
√

d + 1)|p = 1, that is, dp(ε) = p. Thus ε 6∈ Quf(R). Since −1 is in
this group, −ε can not be its element either.

If 2 | v, then u must be odd, so u2 ≡ 1 (mod 8). Hence u2 = dv2 + 1, implies
that 4 | v. If now u ≡ 1 (mod 4), then ε = 1 + (u − 1) + v

√
d gives dp(ε) = 4Rp

or (0). If u ≡ −1 (mod 4), then ε = (2 +
√

d)2 + (u − d − 4) + v
√

d and again
dp(ε) = 4Rp or (0). Thus ε ∈ Quf(R). Also −ε ∈ Quf(R), since −1 belongs to this
group. ¤
Remark 2. Notice that according to the proof above, 2 | v implies 4 | v.

Theorem 6. Let K = Q(
√

d), where d ≡ 2 (mod 4) and let ε = u + v
√

d be the
fundamental unit in R. Then

Quf(R) =
{ Z/2 if Nr(ε) = 1,

1 if Nr(ε) = −1.

Moreover, Nr(ε) = 1 iff 2|v, and in this case either ε or −ε is in Quf(R). More
precisely, ε ∈ Quf(R) iff (u, v) ≡ (1, 0), (3, 2) (mod 4) and −ε ∈ Quf(R) iff (u, v) ≡
(1, 2), (3, 0) (mod 4).

Proof. According to Theorem 3, −1 6∈ Quf(R), so this group may consist of one or
two elements. Since u2−dv2 = ±1, u is odd. We have (2) = p2, where p = (2,

√
d).

If 2 - v, then the equality ε = 1 + [(u− 1) + v
√

d] says that the quadratic defect
dp(ε) = p, since |u− 1|p ≥ 2 and |v

√
d|p = 1. Thus the extension Kp(

√
ε) of Kp is

ramified and the group Quf(R) is trivial.
Assume now that 2 | v. We consider four cases corresponding to u ≡ ±1 (mod 4)

and v ≡ 0, 2 (mod 4).
If u ≡ 1 (mod 4) and 4|v, then ε = 1 + (u− 1) + v

√
d gives |u− 1 + v

√
d|p ≥ 4,

so the quadratic defect dp(ε) = 4Rp or (0), while u ≡ 1 (mod 4), v ≡ 2 (mod 4)
and −ε = (1 +

√
d)2 − (d + u + 1)− (v + 2)

√
d show that dp(−ε) = 4Rp or (0).

If u ≡ −1 (mod 4) and 4 | v, then −ε = 1− (u + 1)− v
√

d gives dp(−ε) = 4Rp

or (0), while u ≡ −1 (mod 4), v ≡ 2 (mod 4) and the equality ε = (1+
√

d)2 +u−
1− d + (v − 2)

√
d show that dp(ε) = 4Rp or (0).

Finally notice that considering the equality u2 − dv2 = ±1 modulo 4 shows that
if 2 | v, then u2 − dv2 = 1, while 2 - v implies u2 − dv2 = −1. ¤

Assume now that d ≡ 1 (mod 4) and let ε = u+v 1+
√

d
2 be the fundamental unit

in K = Q(
√

d) with the ring of integers R.

Theorem 7. Let K = Q(
√

d), where d ≡ 1 (mod 4) and let ε be the fundamental
unit in R. Then

Quf(R) =
{ Z/2 if Nr(ε) = 1,

1 if Nr(ε) = −1.

Moreover, in the first case either ε or −ε is in Quf(R).

Proof. By the definition of Quf(R), ε or −ε belongs to this group if and only if
ε ≡ ±p2 (mod 4R), where p ∈ R. Let H = {±p2 : p ∈ (R/4R)∗}. We consider two
cases.
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Case 1: d ≡ 5 (mod 8). Then 2 is inert in K, and the residue field R/2R is
F4. Therefore every element of (R/4R)∗ can be written in the form α0 + α1 · 2
(mod 4), where α0, α1 ∈ R represent elements of F∗4 and F4, respectively. Hence
#(R/4R)∗ = 12. Consequently

(R/4R)∗ = 〈−1 〉 × 〈
√

d 〉 × 〈 ξ 〉,
where ξ is an element of order 3. Here we used the fact that (

√
d (mod 4))2 = d

(mod 4) = 1, and
√

d 6≡ ±1 (mod 4). It follows that H = 〈−1, ξ 〉 is a subgroup of
index 2. Representatives of the cosets modulo H are 1 and

√
d.

If ε ∈ H, then ε ≡ ±p2 (mod 4), p ∈ R. Consequently σ(ε) ≡ ±σ(p)2 (mod 4),
where σ is the nontrivial automorphism of K. Then

Nr(ε) = ε · σ(ε) ≡ (±p2)(±σ(p)2) = Nr(p)2 ≡ 1 (mod 4),

since Nr(p) is an odd integer. From Nr(ε) = ±1 and the above congruence, it
follows that Nr(ε) = 1.

If ε ∈
√

dH, then proceeding similarly as above we get ε ≡ ±p2
√

d (mod 4),
σ(ε) ≡ ±σ(a)2 · σ(

√
d) = ±σ(p)2 · (−

√
d) (mod 4). Hence

Nr(ε) = ε · σ(ε) ≡ −Nr(p)2 · d ≡ −1 (mod 4),

which implies Nr(ε) = −1.

Case 2: d ≡ 1 (mod 8). Then 2 splits in K, (2) = p1p2. Consequently

R/4R = R/p2
1p

2
2 = R/p2

1 ×R/p2
2 = Z/4× Z/4.

The group of units of this ring

(Z/4)∗ × (Z/4)∗ = Z/2× Z/2

is generated by −1 and
√

d, by an argument similar to the above. Consequently,
H = 〈−1 〉, and cosets modulo H are represented by 1 and

√
d. The same argument

as in the previous case leads to the same result. ¤
Now we can characterize the non-triviality of Quf(R) when d ≡ 1 (mod 4) in

terms of the fundamental unit in R:

Theorem 8. Let d ≡ 1 (mod 4) and let ε = u + vω, where ω = 1+
√

d
2 , be the

fundamental unit in R. Assume that Quf(R) 6= 1.
(a) If v is even, then

Quf(R) = 〈 ε 〉 iff (u, v) ≡ (1, 0) (mod 4),

Quf(R) = 〈−ε 〉 iff (u, v) ≡ (−1, 0) (mod 4).

(b) If v is odd, then

Quf(R) = 〈 ε 〉 iff d ≡ 5 (mod 16), (u, v) ≡ (1, 1) or (2, 3) (mod 4),
or d ≡ 13 (mod 16), (u, v) ≡ (0, 3) or (3, 1) (mod 4).
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Quf(R) = 〈−ε 〉 iff d ≡ 5 (mod 16), (u, v) ≡ (3, 3) or (2, 1) (mod 4),
or d ≡ 13 (mod 16), (u, v) ≡ (0, 1) or (1, 3) (mod 4).

Proof. By the assumption Quf(R) 6= 1, from Theorem 7 it follows that

(1) Nr(ε) = u2 + uv +
1− d

4
v2 = 1.

(a) If 2 | v, this equality is possible only if u is odd. Hence u2 ≡ 1 (mod 4), so
4 | v, since otherwise, uv ≡ 2 (mod 4) and we get a contradiction.

If now u ≡ 1 (mod 4), then ε = 1+(u−1)+vω implies that the quadratic defect
dp(ε) at any p containing 2 is equal to 4Rp or (0).

If u ≡ −1 (mod 4), then by the above −ε represents the non-trivial element of
Quf(R).

(b) Assume now that v is odd. Since (1) is equivalent to (2u+ v)2−dv2 = 4 and
(2u + v)2 ≡ v2 ≡ 1 (mod 8), we get 1− d ≡ 4 (mod 8), that is, d ≡ 5 (mod 8).

We have two cases.
If d ≡ 5 (mod 16), then the equality (1) modulo 4 is equivalent to u2+uv−v2 = 1.

We have ω2 ≡ ω + 1 (mod 4). If now v ≡ 1 (mod 4), then we easily get u ≡ 1 or 2
(mod 4). Similarly v ≡ 3 (mod 4), gives u ≡ 2 or 3 (mod 4). Notice now that if
(u, v) ≡ (1, 1) (mod 4), then

ε = u + vω ≡ 1 + ω ≡ ω2 (mod 4),

so the quadratic defect dp(ε) = 4Rp or (0) for the only dyadic prime ideal p = (2)
in R. Similarly, (u, v) ≡ (2, 3) (mod 4), gives

ε = u + vω ≡ 2 + 3ω ≡ (ω + 1)2 (mod 4),

with the same result as regards dp(ε). Observe now that the remaining pairs (3, 3)
and (2, 1) give the quadratic defect dp(−ε) = 4Rp or (0).

If d ≡ 13 (mod 16), then the equality (1) modulo 4 is equivalent to u2+uv+v2 =
1. We have ω2 ≡ ω + 3 (mod 4). This time v ≡ 1 (mod 4), implies u ≡ 0 or 3
(mod 4), and v ≡ 3 (mod 4), gives u ≡ 0 or 1 (mod 4). Notice now that if (u, v) ≡
(0, 3) (mod 4), then

ε = u + vω ≡ 3ω ≡ (ω + 1)2 (mod 4),

while (u, v) ≡ (3, 1) (mod 4), gives

ε = u + vω ≡ 3 + ω ≡ ω2 (mod 4).

In both cases, the quadratic defect dp(ε) = 4Rp or (0) for both prime ideals p in
R containing 2. Finally observe that the remaining pairs (0, 1) and (1, 3) give the
quadratic defect dp(−ε) = 4Rp or (0). ¤
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The table below shows that all the possibilities for (u, v) (mod 4) mentioned in
Theorem 8 (b) really occur.

TABLE

d d (mod 16) u (mod 4) v (mod 4) ε

21 5 2 1 2 + ω

69 5 3 3 11 + 3ω

357 5 1 1 9 + ω

805 5 2 3 698 + 51ω

77 13 0 1 4 + ω

93 13 1 3 13 + 3ω

205 13 0 3 20 + 3ω

221 13 3 1 7 + ω

Taking into account Theorems 5, 6, 7, we get the following result:

Corollary 1. Let K = Q(
√

d), where d > 1 is squarefree. Then there exists an
unramified quadratic extension of K, whose ring of integers is a free module over
the integers of K if and only if the fundamental unit in K has norm 1.

An interesting consequence of Theorems 6 and 7 is a relation between the norm
of the unit and its residue in the finite group (R/4R)∗.

Corollary 2. Let ε be any unit in K = Q(
√

d), where d > 1 is squarefree and
d 6≡ 3 (mod 4). Then Nr(ε) = 1 if and only if ε ∈ H = {±p2 : p ∈ (R/4R)∗}.
Proof. It follows directly from Theorems 6 and 7 noting that in the actual cases,
Nr(ε) = 1 if and only if the group Quf(R) is non-trivial and contains either ε or
−ε, which is equivalent to ε ∈ H. Since these statements were proved by different
methods for d ≡ 1 (mod 4) (in Theorem 7) and d ≡ 2 (mod 4) (in Theorem 6), we
present also a proof in the second case, which is parallel to the argument given in
the first case, since the result seems to be interesting on its own rights.

Let d ≡ 2 (mod 4). Then 1,
√

d is the integral basis of R and 2 ramifies in this
ring, so

(R/4R)∗ = {a + b
√

d (mod 4) : a = ±1, b = 0,±1, 2}

= {±1, ±1±
√

d,±1 + 2
√

d (mod 4)}.
Moreover 1 +

√
d (mod 4) has order 4. Consequently

(R/4R)∗ = Z/2× Z/4 = 〈−1 〉 × 〈 1 +
√

d 〉.
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Therefore H = 〈−1, (1 +
√

d)2 〉 = 〈−1, 1 + 2
√

d 〉, and representatives of cosets
modulo H are 1 and 1 +

√
d.

If ε ∈ H, then ε ≡ ±p2 (mod 4), σ(ε) ≡ ±σ(p)2 (mod 4). Hence Nr(ε) ≡
Nr(p)2 ≡ 1 (mod 4), so Nr(ε) = 1.

If ε ∈ (1 +
√

d)H, we proceed analogously to the above taking into account that
Nr(1 +

√
d) = 1 − d ≡ −1 (mod 4), and get Nr(ε) ≡ Nr(p)2 Nr(1 +

√
d) ≡ −1

(mod 4), hence Nr(ε) = −1. ¤
Along the same lines one can prove

Corollary 3. Let ε be any unit in K = Q(
√

d), where d > 1 is squarefree. Then
Nr(ε) = 1 if and only if ε ∈ {±p2 : p ∈ (R/3R)∗}.

¤
Remark 3. Let us observe that in the case d ≡ 3 (mod 4), we have

(R/4R)∗ = {±1, ±
√

d, ±1 + 2
√

d, 2±
√

d (mod 4)},
and (

√
d)2 = d ≡ −1 (mod 4). Hence

√
d (mod 4) has order 4 and −1 is a square.

Consequently

(R/4R)∗ = Z/4× Z/2 = 〈
√

d 〉 × 〈 1 + 2
√

d 〉,
and H = 〈−1 〉. Therefore there are four cosets modulo H, and in general ε (mod 4)
does not belong to H. E.g. for d = 7, and ε = 8 + 3

√
7 ≡ −√7 (mod 4), we have

ε (mod 4) /∈ H. ¤

Finally note that each quadratic unramified extension L of K = Q(
√

d) (if such
exists) must be biquadratic over the rational numbers according to the well-known
result of Hasse about the genus fields of the quadratic number fields (see [Ha] and
compare [He], Theorem 1, p.VII-6 and [SW]). In fact, in our case, let ε = u + vω,
where ω =

√
d if d ≡ 2 or 3 (mod 4) and ω = 1+

√
d

2 if d ≡ 1 (mod 4) be a unit with

Nr(ε) = 1 such that L = K(
√

ε). Then L = Q
(√

d,
√

u−1
2

)
= Q

(√
d,

√
u+1

2

)
,

when d ≡ 2 or 3 (mod 4), while L = Q
(√

d,
√

2u+v−2
2

)
= Q

(√
d,

√
2u+v+2

2

)
,

when d ≡ 1 (mod 4). These equalities follow easily from the identity:

√
a +

√
b =

√
a + c

2
+

√
a− c

2
,

where a2 − b = c2 (here c = 1, a = u when d ≡ 2 or 3 (mod 4) and a = (2u + v)/2
when d ≡ 1 (mod 4)).
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