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1 Introduction

Since the introduction of the concept of a proper code in [31], it has been accepted
in the literature that proper codes perform well in error control. This statement
is supported by the definition of a proper code and also by the fact that, as we
will see below, many codes known to be optimal in one sense or another turn out
to be proper as well.

The performance of a linear error detecting code over a symmetric memoryless
channel with symbol error probability ¢ is characterized by the probability that a
transmission error will remain undetected. This probability is a function of € and
depends on the weight distribution of the code. To find a code with the smallest
undetected error probability for a given channel, one has to use exhaustive search
since at the present time a general method for finding such a code does not exist.
But even if it did, the problem would still remain unresolved, since very often ¢ is
not known exactly, and a code with the smallest undetected error probability for
some ¢’ different from £ may not have the smallest undetected error probability
for €, even when &’ is very close to e.

The situation just described is the reason for the introduction of the property
of properness: A linear code is proper, if its undetected error probability is an
increasing function of €. Thus the smaller the symbol error probability of the



channel, the better a proper code performs in error detection. Goodness of a linear
code is a weaker version of properness: A linear code is good, if its undetected
error probability is as large as possible for the largest possible value of . Thus a
good code performs worst in the case of worst channel condition.

In order to establish properties like properness or goodness for a parametric
class of codes, one could of course attempt to study the undetected error prob-
ability analytically. Unfortunately, because of the complexity of the formulas
of the weight distribution and for other reasons, such a study has shown to be
effective only in a small number of cases. For example, it works well for the
Maximum Distance Separable (MDS) codes, shown in [26] to be proper, but does
not seem to work for the Near MDS codes. These latter codes have been stud-
ied in [17] by a different approach which was later generalized in [18] and [19]
to a method presenting discrete sufficient conditions for a code to be proper or
good. Although these conditions are not necessary, codes known at that time
to be proper, such as the MDS codes and the Hamming codes, have turned out
to satisfy them, and also other well-known parametric classes and subclasses of
codes, such as Maximum Minimum Distance (MMD) codes and their duals, some
Near MDS codes, and some Cyclic Redundancy-Check (CRC) codes have been
shown to satisfy these sufficient conditions, see [2]-[7], [15], [17], [21], [22], and
[27]. In particular, it has been shown in [27] that some non-standardized CRC
codes are proper, while some standardized CRC codes are not even good.

The sufficient conditions mentioned above for a linear code to be proper are
expressed in terms of certain numbers which, following [16], we refer to as the
extended binomial moments of the code. The extended binomial moments are
related synonymously to the code weight distribution and linearly to the binomial
moments of the code introduced in [36]. In contrast to the latter, the extended
binomial moments form a monotone sequence which, as we will see, makes them
very appropriate for study of the undetected error probability. We note that [18]
and [19] present sufficient conditions for goodness as well, also in terms of the
extended binomial moments of the code.

The situation with error detection described above remains essentially the
same when the code is used to correct errors over a symmetric memoryless chan-
nel with symbol error probability €. The probability that a code correcting at
most ¢ symbol errors will miss a transmission error is a function of ¢ involving
the code weight distribution together with the weight distributions of the cosets
of minimum weight at most . When the undetectable error probability is an in-
creasing function of €, the code is called t-proper. The MDS codes are examples
of t-proper codes, as shown in [26], and this seems to be the only case of effective
analytical study of ¢-properness. Another approach to this questions is the one of
[20], presenting discrete sufficient conditions for ¢-properness, efficiently used in
[2] and [7] for the study of some binary cyclic and ternary cyclic and negacyclic
codes.

The sufficient conditions for ¢-properness are formulated in terms of certain



numbers, determined by the code weight distribution and the weight distributions
of the cosets of minimum weight at most . Since these numbers become the
extended binomial moments when ¢t = 0, which is just the case of error detection,
we will refer to them as the t-extended binomial moments.

After some preliminary material in Section 2, the present paper presents
known sufficient conditions for properness with examples in Section 3, and in
Section 4 a list of codes that are known at the presents time to be proper, many
of which have been studied by the conditions in Section 3. In Section 5 special
attention is paid the CRC codes, which are of real practical interest in modern
communication.

For notions and results from Coding Theory used below we refer to the mono-
graphs [30], [33], and [36].

2 Preliminaries

Let C be a linear [n, k, d|, code over the finite field of ¢ elements GF(q), i.e., a k-
dimensional subspace of the n-dimensional vector space GF(q)™ over GF'(q), with
minimum Hamming distance d. Suppose C'is used for error detection on a discrete
memoryless channel with ¢ inputs and ¢ outputs. Any symbol transmitted has
a probability 1 — € of being received correctly and a probability qET1 of being
transformed into each of the ¢ — 1 other symbols. It is natural to assume that
0 < e < 21 Such a channel model is called a g-ary symmetric channel and in
the case ¢ = 2 a binary symmetric channel.

Let z € C be the codeword transmitted and y = z+e € GF(q)" be the vector
received, where e = y — x is the error vector resulting from the channel noise. If
e ¢ C, then y ¢ C and the decoder will discover the presence of an error. When
e € C, then y = x +e € C as well, and in this case the decoder will accept y
as error free. Clearly, when e # 0 this decision is wrong, and such an error will
thus remain undetected. In this way, the probability that the decoder fails to
detect the existence of an error equals the probability that an undetectable error
occurs, called the undetected error probability and denoted by P,.(C,¢). This
probability is expressed in terms of the weight distribution {A;, 0 < i < n} of C
and the weight distribution {B;, 0 < i < n} of C*, the orthogonal (dual) code

of C, as

PuCa =3 () - @)

and




respectively (see, for example, [33], p.66).

To evaluate P, (C,¢) by use of (2.1) and (2.2) is equivalent to determine the
weight distribution of C'. This is known to be a hard computational problem for
large basic code parameters n, k, d, and ¢ (see [36], Ch. 5, and [9]), and the exact
weight distribution has been found only for a few classes of codes. A natural way
to decide if the code C' is suitable for error detection is to compare P,.(C, ) with
the average probability of undetected error P,.(e) for the ensemble of all g-ary
[n, k| codes. It is known that

Pue(e) = ¢ " Pl = (1 -¢)"]

(see [46], for binary codes and [37]).
—

For the worst channel condition, i.e., when ¢ = Tl, the above and (2.1) give

PM%) =q " P —gF=p, (C, %) (2.3)

for any g-ary [n, k] code C.

Definition 1. A code C'is proper for error detection if P, (C,¢) is an increasing
function of ¢ in the interval [0, %1]

Definition 2. A code C is good for error detection if P,.(C,e) < Py(C, %)
for all € in the interval [0, %].

Note that a proper code is good as well. As (2.3) shows, the probability of
undetected error of an [n, k, d], proper or good code does not exceed the average
undetected error probability for the ensemble of all g-ary [n, k] codes for the worst
channel condition.

The above ideas easily generalize to the case of error correction. Suppose an
[n, k, d], code C'is used to correct ¢t or fewer symbol errors over a g-ary symmetric
channel, where d > 2t + 1. For x € GF(q)", let V(t,x) denote the set of all
y € GF(q)" such that d(z,y) < t. Suppose =’ € C is sent and y € GF(q)" is
received. Then one of the following cases may occur:

(i) y € V(t,2") and the decoder correctly decodes y into z’.
(ii) y ¢ V(t,z) for all z € C and the decoder detects an error.

(iii) y € V(t,2") for some 2" € C, z" # 2', and the decoder incorrectly
decodes y into z”. In this case the error is undetected.

Denote by qu? the probability of an undetectable error. Note that

PO(C,e) = Pu(C,¢).



Definition 3. An error correcting code C'is t-proper if Pé? (C, ) is an increasing
function of € and t-good if

PO(C.e) < PR (0,271
q

1
for e € 0, ©=].

It is easy to check that

-1
PR(C) =@ P —a V), (2.4)

where V,(t) is the volume of the g-ary sphere of radius ¢ in GF(q)".

Remark 1. As it is well known there is a relationship between the probability
of undetected error for a linear code and for its dual code. In this regard an
interesting question is how a property such as properness reflects the undetected
error probability of the dual code. An example on p. 73 of the monograph [30] of
Klgve and Korzhik shows that the dual of an proper code may not even be good.

Remark 2. A (t—1)-proper or (t—1)-good code may not be t-proper or ¢-good,
as shown on pp. 98-99 of [30]. One may expect that a code that is ¢-proper or
t-good is also (t — 1)-proper or (¢t — 1)-good, respectively, but this has not been
shown to be true.

Remark 3. For a given matrix G, let Cz denote the code generated by G. The
problem of computing P,.(Cg,p) as a function of a rational number p, and a
generator matrix G, is an NP hard problem, as shown in [30], Theorem 3.9.1.

3 Discrete sufficient conditions for properness

As mentioned in the introduction, analytical study of the undetected error proba-
bility for properness or goodness has seldom been effective. It works for instance
for the MDS codes, but not for the Near MDS codes. These latter and other
classes of codes have been studied by using the discrete sufficient conditions for
properness or goodness, obtained by Dodunekova and Dodunekov in [18] and [19].

The sufficient condition for properness or goodness of an [n, k, d|, code C are
expressed in terms of certain numbers {Af, A7,..., A%}, synonymously related
to the code weight distribution {Ag, Ay,...,A,} of C as

Y4
£
Ap=0, A=Y 24, r=12..n (3.1)
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where j(;) denotes the i-th factorial moment j(j —1)...(j — ¢+ 1). Since

1 K fn—i Al
A= — Ai=5 1=1,2,...,n,
=gl
where A, £ =1,2,...,n, are the binomial moments of the code weight distribu-
tion, introduced in the monograph of MacWilliams and Sloane [36] (but see also
the works of Ashikhmin and Barg [1] and [8]), we refer to the numbers A} as the
extended binomial moments of the code, following [16].

Clearly, A; =0 for £ =0,...,d — 1, and the rest of the extended binomial
moments are monotone, i.e.,

A;> A, t=dd+1,...,n

In fact, the monotonicity of the extended binomial moments makes them ap-
propriate for study of the undetected error probability, and the work [16] takes
advantage of this.

We can now give the following sufficient conditions for properness.

Theorem 3.1 Let C be an [n, k, d], error detecting code. If the extended binomial
moments Ay of C satisfy

A >qA;_, L=d+1,...n, (3.2)
then C' is proper [18].

Equivalently, the above sufficient conditions may be stated in terms of the
extended binomial moments of the dual code.

Theorem 3.2 Let C be an [n, k,d|, error detecting code. If the extended binomial
moments By of the dual code C* satisfy

B:L—Z > B:),—f—kl - qn_k_£+17 t=d+ 1a R L2 (33)
then C' is proper [19].

When the code distance of C* or the number of non-zero weights in it is
small, conditions (3.3) are technically more convenient to use than (3.2).

We notice that the works [18] and [19] mentioned above present also sufficient
conditions for goodness, in terms of the extended binomial moments as well.

The proof of Theorem 3.1 is based on the next two lemmas from [18]. The

first one expresses the undetected error probability in terms of the functions
n . .
Ri(z) = < ,)z’(l -2 i=1,2,...,n, z€]0,1],

]

and

Ly(2) = ZRj(z), t=1,2,...,n, z€][0,1].



Lemma 3.1 Set z = q%la. Then

P(C,e) = P(C, ),

where
P(C,2) =) ¢ ‘A;R(z)
t=d
= ¢ A;La(2) + Y a7 (A; — qA 1) L(2).
t=d+1
Lemma 3.2 The functions Ly(z), ¢ =1,2,...,n, are strongly increasing
in z € [0,1].

It is now easily seen that Theorem 3.1 is a direct consequence of Lemma
3.1 and Lemma 3.2. Theorem 3.2 follows from Theorem 3.1 and the following
relationship between the extended binomial moments of a code and its dual,
shown in [19].

Lemma 3.3 The extended binomial moments of C and C+ are related by
Ay +1=¢"""*B: ,+1), £=0,1,...,n,
or, equivalently, by
By +1=¢""(A;_,+1).

We now give some short examples.

Example 1. The MDS codes are proper, as shown by analytical methods in
Kasami and Lin [26]. In this case

P(C,2)=(g-1)> ¢ 'L(2)

and, obviously, the properness of the MDS codes follows as well from Lemmas
3.1-3.2 above.

Example 2. The Near MDS codes, introduced by Dodunekov and Landgev in
[14], have been studied for properness in [17] by using the above technique. One
particular result there is that if C' is an [n, k], Near MDS code with

Ak <(1—gh) (Z) (3.4)



then C' is proper.
In fact, for such a code

-An—k
(%)
An—k

g P 1—g = T L () + Y q L)
(k) {=n—k+2

P(C,z2) = q(”’k) L, k()

and the properness is a direct consequence of (3.4) and Lemmas 3.1-3.2

Example 3. All [n, k,d], codes with
qd > (¢—1)n (3.5)

are proper.

This statement follows easily from (2.1), where the terms (qf—l)’(l —&)" " are
strongly increasing in 0 < e < %, and (3.5), implying that £ > % ford <i<n.
(See Klgve and Korzhik [30], p. 49, Theorem 3.1.4, for the binary case). On the
other hand,

-1 .
L ((=1)...(0—i+1) , A
A —qhp, =Y o Ailt — (¢ —i)q] + (,7; > 0,
i=d ?

since by (3.5)
t—(l—i)g=1ig—£Lg—1)>dg—n(g—1) >0

and the properness thus also follows from Theorem 3.1.
Note that the MacDonald codes satisfy (3.5) with equality since for them

::qk__qu
qg—1

(see MacDonald [34], Patel [43]).

The discrete sufficient conditions for properness of [18] have been generalized
in [19] to the case of error correction. Assume that C is an [n, k,d], code cor-
recting ¢ or fewer errors, where d > 2t + 1, and let P,(¢) be the probability for
undetectable transmission error with error vector in a coset of minimum weight
h, where 0 < h < 't. Letting ()5 ¢ denote the number of vectors of weight ¢ in the
cosets of minimum weight h, excluding the cosets leaders, we have, according to
MacWilliams [35] and Kasami and Lin [26] that

n , od=¢" 1 —¢*!, andl1<u<k-1.

Py(e) = zn:Qh,e(q i 1)Z(l —e)nt
=0

8



and
PO(C,e) = Pule).
Let
t
{AD 4D = ZQh,ia i=t+1,...,n}
h=0

be the weight distribution of the vectors in the cosets of minimum weight at
most ¢, excluding the leaders. The sufficient conditions for C' to be t-proper are
expressed in terms of the t-extended binomial moments of the code defined as

L

b
Ay =Y AP r=t41,. 0 (3.6)
i=tt1 M0)
Obviously, the {-extended binomial moments A}, ;;, A7 o4, ... , Ay, are strictly

increasing. The following theorem has been proven by Dodunekova and Do-
dunekov in [20].

Theorem 3.3 Let C be an [n,k,d|, error correcting code. If the t—extended
binomial moments Aj, of C' satisfy

A5, >qA ., L=t+2,....n,
then C' is t-proper.

Note that when ¢ = 0, the case reduces to error correction and Aj, become
the extended binomial moments A from (3.1). Easy to see that Theorem 3.3
reduces in this case to Theorem 3.1.

4 A list of proper codes

Perfect codes

All perfect codes over finite fields, i.e., the repetition codes of odd length, the
Hamming codes, the binary and ternary Golay codes, their extended codes and
their dual codes are proper, see [30] and [32] for details.



Reed-Muller codes ([36])

Let R(r,m) be the r-th order Reed-Muller code. Klgve [28] showed that
e The R(0,m) and R(1,m) codes are proper for m > 1.
e The R(r,r), R(r,r + 1), and R(r,r + 2) codes are proper for r > 0.
e The R(2,5) code is proper.

e The rest of R(r,m) codes are not good.

BCH codes

The primitive binary t-error correcting BCH codes have been investigated inten-
sively. The results are as follows:

e The primitive binary 2-error correcting BCH codes are proper ([31]).

e The primitive binary 3-error correcting BCH codes of length 2™ — 1 and
their extended codes are proper for m odd ([42]).

e For m even, neither the 3-error correcting BCH codes nor their extended
are proper ([44]).
Maximum Distance Separable codes

The MDS codes are proper ([26]).

Near MDS codes

An [n, k,d], code C is a Near MDS code if d + d* = n ([14], see also [10]). The
parameters of C' and C* are respectively [n, k,n — k], and [n,n — k, k],.

The error detecting performance of Near MDS codes has been studied in [17],
[22], and [29]. The following is known.

Theorem 4.1 An [n, k|, Near MDS code is proper for error detection if and
only if

k .
z fn—1 z \J1
A < i -1)— —J . .

1-k<z<1
w<z<

Theorem 4.2 Let C be an [n, k], Near MDS code and assume that for some
£, 1 </t <k, the number of codewords of minimum weight in C' satisfies

sl 0g 2o () ()

Jj=1

Then C' is proper.

10



Corollary 4.3 If C is an [n, k], Near MDS code for which

Ak < (1—g™") (Z)

then C' 1is proper.

Maximum Minimum Distance (MMD) codes

For any [n, k,d], code C holds the Singleton bound d < n — k + 1. (Singleton
[45]). The number s(C') = n—k+1—d is called the defect of C. Clearly s(C) =0
if and only if C is an MDS code.

If £ > m+ 1 for some integer m > 1, then

g —1
d< %(s—%m), where s = s(C).
When
_ -1
d= prr— (s+m)

C is called a Maximum Minimum Distance (MMD) code. This class of codes
has been studied by Faldum and Willems in [24], Olsson and Willems in [41], cf.
also Faldum and Willems [23]. They have shown that any MMD code is formally
equivalent to (i.e. has the same weight distribution as) a code from one of the
classes A1-A3 below.

Al. Let C be an [n, k,d], code of dimension k& > 3 and defect s > 1. Then C is
a MMD code if and only if it is formally equivalent to one of the following
codes:

e The [tqqk_—_ll, k,tq*"], t-times repeated Simplex code, where t = 1,2,... .

e The [¢" 1, k, (¢—1)¢* 2], generalized Reed-Muller code of first order with
k > 4 when ¢ = 2

e The [12,6, 6|3 extended Golay code.
e The dual [11, 5, 6]3 Golay code.
e The [¢* + 1,4, ¢* — ¢], projective elliptic quadratic code with ¢ # 2.
e The [(2" — 1)g + 2, 3, (2* — 1)g|, Denniston code with 1 # 2¢|,.
A2. Let C be a g-nary MMD code of dimension two and defect s. Then C' is

equivalent to the [(s+1)(¢+1),2,(s+1)q], (s+1)-times repeated Simplex
code.

11



A3. Let C be an MMD code of dimension k£ and defect s = 0. Then C is
equivalent to the binary [k + 1, k, 2] MDS code.

It was shown in [21] by Dodunekova and Dodunekov that the MMD codes are
proper, and in [15] by Dodunekova that the duals of MMD codes are proper as
well. The main tool in the proofs are the discrete sufficient conditions (Theorems
3.1-3.2).

The error correction performance of the ternary cyclic and negacyclic codes
and the binary cyclic codes of length at most 31 has been systematically studied
by Baicheva in [2] by using the sufficient conditions of Theorem 3.3, and a large
amount of ¢-proper codes have been found. One particularly interesting code,
the ternary [13, 7, 5] quadratic residue code, was considered separately in [7] by
Baicheva, Dodunekov, and Kétter. This code is ¢-proper for ¢t = 0,1, and 2.

More particular examples on proper (and good) codes may be found in [17]
and [18].

5 Application to standardized Cyclic Redun-
dancy-Check codes

In [11], [12], [13], [25], [38], [39], and [40], a systematic study has been made on
the error detection performance of standardized CRC codes including

ATM standard for ATM Header Error Control, with generator polynomial
g(z) = 2% + 22 + x + 1 and code length 40;

IEC TC 57 standard, g(z) = 2"+ 2" + 22 + 2" + 2%+ 2® + 2"+ 2 + 2+ 15

IEEE WG 77.1 standard, g(z) = 2"+ 2" + 2 + 2" + 20+ 2% + 28 + 25 +
2+ x4 1;

CCITT X.25 standard, g(z) = 2'® + 2'2 + 2° + 1;
ANSI standard, g(z) = % + 2% + 2? + 1;
IBM-SDLC standard, g(z) =z + 2 + 2P + 2" + 2* + 2?2 + 2 + 1;

IEEE-802 standard, g(z) = 2% + 226 + 22 + 22 + 216 + 212 4+ 2M 4 210 +
B+ + P+ttt o+ 1.

The following is a brief summary of the results.

12



CRC codes with 8 bit redundancy. Four classes of generator polynomials
for this class of codes have been examined:

e The irreducible polynomials of degree 8.

e The irreducible polynomials of degree 7 multiplied by = + 1 (the ATM
standard belongs to this class).

e The irreducible polynomials of degree 6 multiplied by z2 + 1.

e The irreducible polynomials of degree 6 multiplied by z? + = + 1.

The corresponding CRC codes were tested for block lengths 10 < n < min(127, s),
where s is the minimum positive integer z, for which the generator polynomial
divides z* — 1. For n = 40 it turned out that the polynomials

fim) =2 +2"+ 2+ + 2+ +1
and
folx) =2+ 2+ 2® + 2+ + 1

generate codes with minimum undetected error probability for 0.022266 < ¢ < 0.5
and 0 < e < 0.022266 correspondingly.

The polynomial f3(z) = 28+25+2*+1 is the best among weight-4 polynomials
for 0 < ¢ < 1/2. Note that there are several weight-4 polynomials which are
better than the ATM standard. (See Baicheva, Dodunekov, and Kazakov [3])

CRC codes with 16 bit redundancy. Again, four classes of generator poly-
nomials, omitting the reciprocal ones, have been examined for lengths
18 < n < 1024:

e Irreducible of degree 16.

e Irreducible of degree 15, multiplied by x + 1.

e Irreducible of degree 14, multiplied by z? + 1.

e Irreducible of degree 14, multiplied by z? + = + 1.

The polynomial of the IEEE WG 77.1 standard gives a P, function which
turns out to be minimal for the codes of lengths n = 254 and n = 255, and close
to the minimal for the codes of length 181 < n < 253, with difference from the
best polynomial at € = 0.001 up to 5%. For the polynomial IEC TC 57, the values
of P,. are close to the values of the minimal undetected error probability function
for 94 < n < 128, with difference from 1% to 5%, and attain the minimal value
for n = 19. The performance of the standardized codes of lengths 18 < n < 1024
has shown to be unsatisfactory. For more details we refer to the Ph.D. Thesis of
P. Kazakov [27].
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