CONVERGENCE OF A hp-STREAMLINE DIFFUSION SCHEME
FOR VLASOV-FOKKER-PLANCK SYSTEM

MOHAMMAD ASADZADEH! AND ALEXANDROS SOPASAKIS?

ABSTRACT. We analyze the hp-version of the streamline diffusion finite el-
ement method for the Vlasov-Fokker-Planck system. For this method we
prove stability estimates and derive sharp a priori error bounds in a stabi-
lization parameter § ~ min(h/p, h?/c), with h denoting the mesh size of the
finite element discretization in phase-space-time, p the spectral order of ap-
proximation, and o the transport cross-section. In our study we use some
hp-techniques introduced by Houston, Schwab and Siili, see e.g. [11]-[13].

1. INTRODUCTION

We study stability and convergence of hp-version of the streamline diffusion
(SD) finite element method for a deterministic model for the Vlasov-Fokker-Planck
(VFP) system. The objective is to derive sharp a priori hp-error bounds for a SD
scheme in some Lo type norms.

The Vlasov-Poisson-Fokker-Planck (VPFP) system arising in the kinetic descrip-
tion of a plasma of Coulomb particles under the influence of a self—consistent inter-
nal field and an external force can be formulated as follows: given the initial distri-
bution of particles fo(x,v) > 0, in the phase-space variable (z,v) € R? x R?, d =
1,2, 3, and the physical parameters 8 > 0 and o > 0, find the distribution function
f(z,v,t) for t > 0, satisfying the nonlinear system of evolution equations

(Oif +v-Vof +divy[(E — Bv)f] = 0 A, f, in R?? x (0, 00),
f(z,v,0) = fo(z,v), for (x,v) € R*,
1.1 __ b = d
(1.1) \ E(z,t) = NG *g p(T,1), for (z,t) € R* x (0, 00),
plz,t) = f(z,v,t)do, E=0E, and = +1,
\ R4

where z € R? is the position, v € R? is the velocity, and t > 0 is the time,
V. = (0/0x1,--+,0/0z4), V, = (8/0vy,---,0/0vq), and - is the inner product
in RY. In our studies the parameter ¢ being the transport cross-section is very
small and decoupled from 8 = O(1). Otherwise 8 and ¢ are assumed to be the
viscosity and the thermal diffusivity coefficients, respectively, which are related by
o = BkTy/m, with k being the Boltzmann’s constant, Ty the temperature of the
surrounding medium and m the mass of a particle, (thus for normal temperatures
the physical parameter o is very small). |S|9~! ~ 1/wy is the surface area of the
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unit disc in R?. Finally p(z,t) is the spatial density, and %, denotes the convolution
in z. E and p can be interpreted as the electrical field and charge, respectively.
The macroscopic force field E can be assumed to be of the form

(1.2) E(2,t) = =V, (4(@) + 6(@,1)).

with 1(z) > 0 being an external potential force, and ¢(x,t) the internal potential
field. Then, for § =1 the VPFP system models a gas of charged particles, with an
external potential v, interacting through a mean electrostatic field —V ¢, gener-
ated by their spatial density p. Whereas # = —1 corresponds to a VPFP system
modelling particles under the effect of the gravitational potential .

For a gradient field, when E is divergence free and with no viscosity, i.e. for
B =0, the first equation in (1.1), would become

(1.3) Of+v-Vof + E-Vf =0A,f,

which, with the rest of equations in (1.1), gives rise to a simplified VPFP system.
When E is given (known), we refer to this system as the Vlasov—Fokker—Planck
(VFP) system. For ¢ = 0, and with a zero external force, i.e. ¥(z) = 0 and

hence E(z,t) = —V,¢(x,t), we obtain the classical Vlasov—Poisson equation with
an internal potential field ¢(z,t) satisfying the Poisson equation
(1.4) Bad(a,t) = =6 [ f(a,v, )0 = ~6p(a.1),
Rd
with the asymptotic boundary condition
L5 o(z,t) — 0, for d> 2, as |z| = oo,
(15) d(z,t) = O(log|z|), for d=2, as |z| = oo.

For 8 # 0 (and 9 (z) = 0) we have the following (modified) version of the VPFP
equation

(16) atf +v- sz - vz¢ : va =V, (ﬂvf + vaf)a

where ¢ is assumed to be the exact solution for the Poisson equation (1.4) given by

(1.7) ¢, t)=0 | Gl—y)fly,v', t)dyd,

R2d
with G being the Green’s function associated with the fundamental solution of the
Laplace’s operator —A,.

1.1. The Continuous Problem. The mathematical study of the VPFP/VFP
system has been considered by several authors in various settings, see e.g., [9], [10],
[18], and [21]. Below we summarize a common theoretical framework involving
stability estimates in the deterministic case. These results are due to J.L. Lions
[16] and P. Degond [10] and are stated for (1.3) version, (the corresponding studies
for (1.6) version are similar but somewhat lengthy): given the electric field E™(x,t)
and the initial data fo, with certain regularities, find f™*!, the solution of the
Vlasov-Fokker-Planck system, satisfying

{6tfn+1 +u- szn—',-l +En A van-i-l _ UAUfn+1 — 07

(18) f"+1($,7},0) :fO(xaU)a
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and then compute the charge density p"t! and electrical field E"*! according to

P = [ o tde, B =Ca [ S0 dy.
Rd R4 |$ - yl
Problem (1.8) has a unique solution ™! satisfying, positivity, L1 and Ly, stability
estimates:

(110) >0, (" O < IOl < Nlfoll, N1 Bllo < Ml folloo-

See [1], for the definitions of the norms and function spaces. Note that for o = 0,

equation (1.8) becomes the classical linear transport equation, which can be solved,

e.g. by the method of characteristics, and the stability properties (1.10) are evident.
For the linear Fokker—Planck equation:

(].].].) ft +v me +E- va - UAvf =g, f(.’L',U,O) = fO(xav)a

where
d

E= (Ei(x,v,t)) ,

i=1
is a given vector field and fo(x,v) and g(z,v,t) are given functions; existence,
uniqueness, stability and regularity properties of the solution for the equation (1.11)
are straightforward generalizations of the one-dimensional classical results due to
Baouendi and Grisvard [8] for the degenerate type equations. These generalizations
as well as coupling to the nonlinear problem are due to J. L. Lions [16] and require
some regularity assumptions on the data: fy, g and E.

In our studies, assuming a continuous Poisson solver of type (1.7) for the equa-
tion (1.4), we focus on the numerical convergence analysis of a deterministic model
problem for the VFP system in a bounded phase-space-time domain. This is a
convection dominated convection-diffusion problem of degenerate type, (full con-
vection, but only small diffusion in v), for which we study the hp-version of the
streamline-diffusion (SD) finite element method and derive convergence rates, which
are otherwise more involved using, e.g. particle methods; the most common dis-
cretization schemes for the Vlasov type equations. More specifically, for the locally

regular solution f in the Sobolev class H*%+1(K), we derive optimal a priori error

estimates, basically of order O((Sffﬂ/z), where dx ~ min(hx /pK, h% /o), with hx

and pg being the local mesh size and the local spectral order, respectively. A cor-
responding discontinuous Galerkin study as well as numerical implementations are
the subject of a forthcoming paper.

In classical finite element method (h-version) convergence order improvement
relies on mesh refinement while keeping the approximation order within the ele-
ments at a fixed low value (suitable for problems with highly singular solutions
that require small mesh parameter). Some studies on the h-version of the SD finite
element method can be found, e.g., in [14] for advection-diffusion, Nevier-Stokes
and first order hyperbolic equations, in [15] for Euler and Navier-Stokes equations,
in [2] for the Vlasov-Poisson and in [3], and [4] for the Fokker-Planck and Fermi
equations. On the other hand in the spectral method the accuracy improvement is
accomplished by raising the order of approximation polynomial rather than mesh
refinement (advantageous in approximating smooth solutions). However, most real-
istic problems have local behavior (are locally smooth or locally singular), therefore
a more realistic numerical approach would be a combination of mesh refinement
in the vicinity of singularities (with lower order polynomial approximations), and
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higher order polynomial approximations in high regularity regions (with larger,
non-refined, mesh parameter). This strategy, which can be viewed as a generalized
adaptive approach, is the hp-version of the finite element method. For some basic
hp-finite element studies see, e.g. [7], [19] and [20].

An outline of remaining part of this paper is as follows. In Section 2 we in-
troduce some notation and also our approximation spaces. In section 3 we derive
error estimates for projection operators useful in our final estimates. Section 4 is
devoted to the study of stability estimates and proof of convergence rates for the
hp-streamline diffusion approximation of the VFP system. Finally, in appendix,
we sketch the proof of existence and give an argument for the uniqueness of the
approximate solution.

2. NOTATION AND ASSUMPTIONS

The continuous problem (1.1), formulated in fully unbounded phase-space-time
domain, is not appropriate for numerical considerations. Below we restate the
problem (1.1) for ¢ > 0 and bounded polyhedral domains 2, C R? and 2, C R?
associated with some boundary conditions. For simplicity we assume that Q :=
Q, % €, is a slight deformation of a bounded canonical cubic domain (-, z¢)¢ x
(—vo,v0)%, d = 1,2,3. We start with a, non-homogeneous, initial-boundary value
problem for the Vlasov—Fokker—Planck system viz,

Of+G-Vf—0oA,f —div,(Bvf) =S, in Qr:=Q x (0,7),
(2.1) f(z,v,0) = fo(z,v), in Qo := Q x {0},
flz,v,t) = g(z,v,t), in 002 x (0,T7):=T x (0,7,

Where vf = (VEf;Vfo) = (88_‘;17"'788_‘”];759_517"'788_1};)7 d= 172737 a‘nd
_ _ 9¢ 09\ _
G(f) := (v, V) = (vl,...,vd,—a—xl,...,—a—%) = (Gy,...,Gaa).
Here ¢ satisfies
(2.2) ~Audlot) = [ S, (o0 € R x O.T)
Qy

where V¢ is uniformly bounded with |V, ¢| — 0 as = approaches 99Q,. Note that
G is divergent free

d 2d
0G; dG;
2. i = = =1,2,3.
(2.3) div G(f) 2 B, +i§+1 o =0 d=123

For technical reasons we split the boundary into the in—(out) flow boundaries:

(2.4) I‘_("'):{(;U,U)EI‘::BQEXOQv G-n<0(20)}, n = (n,,n,),

where n, and n, are outward unit normals to 99, and 9%,, respectively, and
G := G(f). Note that (2.4) is more adequate when o is negligible.

Our discretization scheme concerns the modified problem (2.1), formulated for
the bounded domain Q7, and NOT! the original VPFP system stated in R? x R? x
R* as in (1.1). In what follows C' will denote a general constant independent of
the involved parameters on estimations, unless otherwise explicitly specified.
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Let us denote an approximate solution for (2.1) by f and recall the usual general
procedure of a numerical investigation by decomposing the error viz,

f=f=(-1f) = (F-1f) =n-¢
where II is an appropriate projection/interpolation operator from the space of the
continuous solution f into the (finite dimensional) space of approximate solution f.
Considering a suitable norm, denoted by ||| - |||, the process of estimating the error

is split into the following two steps: (i) first we use approximation theory results
to derive sharp error bounds for |||7|||, and then (ii) establish

(2.5) llllE < Climlll,

which rely on the stability estimates of bounding ||| f||| by the |||data/||. The former
step has theoretical nature and is related to the character of the projection operator
II, whereas the latter depending on the structure of the ||| - |||-norm varies in the
order of its difficulty.

Below we present some basic assumptions/notation necessary in hp-studies for
the continuous approximations, (see, e.g. [11]): assume a partition P of Q = Q, %,
into open patches P which are images of canonical 2, 4 or 6-dimensional “cube”:
P=(-1,1)2:=]2¢ g=1,2,3 I=(-1,1), under smooth bijections Fp:

VPeP: P =Fp(P).
A mesh 7 on  is constructed by subdividing the patches: For each P, first we
subdivide P = (—1,1)2¢, into 2d-dimensional generalized quadrilateral elements
(2d-dimensional prisms, i.e. generalized triangular elements would work as well)
labeled 7 which are affine equivalent to P, we call this mesh 7p (on P). On each
P € P we define a mesh Tp by setting
VPeP:  Tp:={r|r=Fp(?), 7+ € Tp}.
Note that each 7(7) is an image of the reference domain P under an affine mapping
A; : P— 7#(F. = FpoA;). Now T := UpcpTp is a mesh on Q. we also define the
function space
FPZ{FP:PEP},
and the polynomial space
Ap = span{(z,0)*: 0 < a; < p, 1 <13 < 2d},
where .
(2,0) € P:={(,9) € R* x R? : |#;| < 1&|9;| < 1}.
We let now p be a polynomial degree vector in T,
P= {p‘r 1T E T}:
and define the continuous hp-finite element spaces
SPRQ, T, Fp):={f € H*Q): fl,oF, €A,,, TE€T}, k=0,1,...,
for polynomials with degree vector p , and
Sp,k(Q’T, F'P) = {f € Sp,k(Q’T’ F’P) p= (p:pa L] Jp)}a

for the uniform polynomial degree p, = p, V7, p > 1.

Finally We denote by ||f||, ; and |f|, ; the H¥*(I) norm and seminorm on I,

respectively (we shall suppress k = 0, corresponding to the Lo-norm). We also
denote by SP(I) the set of polynomials of degree p on I.
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Remark: To invoke the time variable we shall, basically, use the same notation:
we assume a, partltlon Q of Qr = Q x (0,T) into open patches @ which are images
of canonical cube Q = (—1,1)2¢+! subdivided into elements k := 7 x &, where each
# is affine equivalent to I corresponding to the time interval (0,7'). The exception
is that the progress in the time direction is performed successively on the slabs
Q= QX (tmytmt1), m=0,...,M —1, with tc = 0 and ¢y = T, and may have
jump discontinuities across the discrete time levels t,,,, m =1,..., M —1. A global
mesh is now denoted by X, and more specific notations are given in Section 4.

3. APPROXIMATION OF THE PROJECTION ERROR

We recall that proving the stability estimate (2.5) and estimates for the projec-
tion error 7, in some suitable norm, are the main objectives in our investigations.
For our choice of the norm: ||| - |||, as we shall see in the stability estimates of the
next section, the terms involved in projection error are, basically, ||n|| and ||Dn||,
where D := (V,,V,,d/dt) denotes the total gradient operator. In this section we
estimate these two quantities for our 2d + 1 dimensional problem.

To proceed we denote by 7r1‘; f the 1-dimensional Ly-projection of f onto the
polynomials of degree p in the i-th coordinate, where 1 < i < d would correspond
to x;s for the spatial variable, d + 1 < i < 2d to v;s for the velocity, and i = 2d + 1
for the time variable. We shall apply the tensor product in 2d + 1-dimensions to
the following one and two dimensional results due to [20]:

Proposition 3.1. Let f € Hk'H( [) for some k > 0. Then for every p > 1 there
exists a projection wpf € SP(I ) such that,

(3.1) I = ot I < B2
1 (p—39)

(3.2) IIf —Wpf”% = m (p+9)! s+1 i
for any 0 < s < min(p, k). Moreover,
(3.3) mpf (1) = f(£1).
In particular for any f € H'(I) we have that,

' ’ 1 ’
(3.4) W f) iz <20F 1 N fllz < ISfIl7+ \/TTI)W Il -

Corollary 3.1. Let p > 1 and assume that ¢ € H’“Jrl (I1?) for some k > 1. Then
for each i, j, 0 < i, j < 2d + 1, the projectors m,, and 7} satisfy the following

estimates: ”
— 1 (p ) s+1
(3.5) I — mpl|% T D (T ) ot iz,
,/Tz' - 2 (p - S)' .§+1 2
- I = w5 < "y (o a1
+ 2 (p—(s=1)! ||6 6S¢||

pPl+1)?(p+(s-1))! 1=

where we have identified I; x fj by _fz} and 772 by the identity operator.
Proof. See [11]. O
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We just generalize this procedure to arbitrary d (i.e. to 2d + 1 dimensions):
To this approach we let I, = Hfi]q 7T1i) denote the tensor product projector and
D = (Vg,Vy,d/dt) the 2d + 1 total derivative. We also define the binary multi-
index |m|; = 22:1 My, with my, = 0 or 1. Now we can formulate the main result
in this section as:

Theorem 3.2. Let Q := P x I, p> 1, f € H**Y(Q) for some k > 1, and set
0 < s <min(p, k). Then assuming II,f = f at the vertices of Q and np = f-I,f,
we have the following || - || = || - ||L2(Q) estimates for n,:

2d+1

Ipl? < (2d+1) 3727 3T afritig g

i=1 |m|i—1<i—1
and its total derivative Dnp = (Vg, Vg, d/dt)n,

2d+1 2d+1

j m|j— m|i— - j— 1
1D, 17 < Z @d+1)Y ST 2iamigy,, l8lmli-rgsT M g

J=1 |m[j_1<j-1

mi=1
where §lMli-1 = ooy - 0N @y = p(pl—+1)7 and By, = 722;21_{2}3:
Proof. We may use the telescopic identity

2d+1 2d+1 i1

=T =(f =TI =5) =3 (ng,) - ),

k=1 i=1  j=

to get the estimate
2d+1 i1

(3.9) If = T £l < (2d+1) Z H(Hﬂ) —=ih|-

By a straight forward calculus it is easy to show that,

n
@10 [(IL)0-mnf € 5 2af-stap, om0
J:O m n TL
Note that for n = 0, and 1, (3.10) is just as (3.5) and (3.6), respectively. Further,
since 79 = id, we have by the second 1nequahty in (3.4) and twice use of (3.6) that

lmpmy (f = mp I <2l (f — w3 I + 0175 (f — w3 F)II?

MP+D
2 (p=38) nett g2 2 (p—(s-=D1) 2
oD wra e g -
2 2 (p-(s=D) 2
oD D Gt (D0
L2 (=)
p(p+1)? (p+ (s —2))!
which gives (3.10) for n = 2. For the remaining values of n, i.e. for 3 <n < 2d+1,

(3.10) is justified by a similar, however lengthy and “induction-like” procedure
which we omit.

19:0:057 111},
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The first assertion of the theorem now follows from (3.9) and (3.10). To show
the second estimate we start by rewriting and subsequently simplifying, via (3.9),
the total derivative an,

e
(1) -

(s - H )| <

Below we split the estimate of ||9; (Hl —o p)( f—n f)||z2 into the following three
possible cases:

1Dnp|* =

Case I: 4 < j — 1. Using the first estimate in (3.4) we have

(Tl )| -

(Hw) (Hﬂ)f clE

l;éz l;ﬁz
Now since 0; is no longer in the direction of any of the remaining projections in the
product, we can use the second estimate in (3.4) and (3.10) as

(HW ) f-nlf H <> 2j_2al;m‘j_15|m\j_1Halm‘f‘laj_‘m‘j_lﬂfH;,

mlj-1<j—1
l;éz m;=1

where |m|;j—1 = |m|j_1, withmp =0or 1fork#i, 0<k<j—1,andm; =1 1In
this way the contribution of 9; is included in the right hand side above. Hence, we
have shown the second assertion of the theorem in case I.

Case II: 4 = j. Thus we can write

Jo.(TL =)~ I —Hé’(Hw) ~a [l = 10,7 ~ P,
U

where F = (Hl o ) f. By (3.1) we have [|0;(F — w3 F)[|3 < 50||8;+1f||2é. This
quantity can now be estimated by a (repeated) use of the second estimate in (3.4):

H(H” )SDH > Pl

|m|j—1<j—

so that, replacing ¢ by 8;“ f, we obtain the desired result also for the case i = j.

Case III i > j. Here we can apply (3.10) directly since 9; and the projections in
6:(TTia ) (f - 7ij)||2», are decoupled and therefore

| (H”) = ) H Yo P, X

[m[j—1<j—1

x ||ai3|m\j—15]5_—\m|j—1f”%_

So, summing over 4, we conclude that the second estimate of the theorem holds and
the proof is complete. |
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Remark. We can write the above estimates in a general setting for a partition
R of a bounded, convex, curved polyhedral domain D ¢ RV: Let R € R be an
image of the \/-dimensional canonical hypercube & := (—1, 1)V, under the bijective
map Gr: R=G R(R), and with a generalized N -dimensional quadrilateral mesh
Mpg. Then for a global generalized quadrilateral mesh M := Uger Mg on D, the
projection error estimates are obtained by change of variables and a simple scaling
argument where we assume that the patch R is the canonical deformation of R
with no significant rescaling. More specifically we assume that there are positive
constants ¢; and ¢y such that

(3.16) o < hg/hg <e¢;, VK eM,

where hx = diam(K), hx = diam(K), K = Gr(K), and K C R is a reference
element in the mesh Mg. All the corresponding notation such as the polynomial
degree distribution r = {rx : K € M := UrerMRg}, the affine mapping A, :
R — K, the patch-map vector Gr = {Gr : R € R}, and the element map
Gk = Gro Ay with K = Gk (R), as well as the function space S™*(D, M,Gx)
are defined correspondingly as in the Section 2. However, since in the streamline
diffusion method we allow discontinuities in time, we formulate the generalization
in fully discontinuous setting using a local version of S™*(D, M,Gx) with, only,
elementwise high regularity:

Sr*(D,M,GR) = {f € S%°(D,M,GR) : flx € H*T(K)},

loc
where k := {kx : K € M}, and we have the following general result:

Theorem 3.3. Let R € R and the polynomial degree distribution r be defined
as above. YK € Mg, let flx € H**Y(K) for some kx > 1 and define IIf €
SI¥(D, M, Gr) elementwise by (I1f)|x 0Gr = I, (flx ©Gr), YK € Mg. Then,
forrk > 1 and for 0 < sk < min(rk, ki) we have the following estimates:

) hK 28 +2 -
r-mi<e Y (M) sl
KeMpg

h 28K .
126 -1 <0 3 (P5) T @arr sl i

KeMg

where f = foGgr, K = Gr(K), ||- |54 11,5 @ the Sobolev norm in H*s«+Y(K) and

N
Bi(ps) =N 270 DT B,
=1

[m|;—1<i—1

N N '
Bop,s) =ND Y2 D g By,

i=1 j=1 |m|j—1<j—1
m;=1

Proof. The proof is based on a scaling argument due to the use of a corresponding
affine mapping Ay, this time A, : R — K, on the results of theorem 3.2 above.
It is just a consequence of applying tensor product to the proof of Theorem 3.4 in
[11]. d
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4. THE STREAMLINE DIFFUSION METHOD

The SD-method for (2.1) is based on using finite elements over the phase-space-
time domain Q7. To define this method, following the notation in Section 2, we
let 7, = {7} be a finite element subdivision of = Q, x , into open elements
7 := Fp(7), where P corresponds to a patch in Q, andlet 0 =ty < t; < --- <ty =
T be a subdivision of the time interval (0,T) into subintervals I, := (tm,tmy1).
Let Kp = {K} be the corresponding subdivision of Qr into elements K = 7 x
I, with h being piecewise constant mesh function defined by h(z,v,t) := hg =
diam(K), (z,v,t) € K. For each m = 0,...,M — 1, we denote the corresponding
subdivision of Q, 1= Q x Iy by Kpp :={K: K =7x1Inp, 7€ Tp}. Thus K} =
UmKh,m- We assume that the family of partitions {Kp}r>0 is and shape regular
(quasi-uniform); i.e., for each K € K there is an inscribed (2d 4+ 1 dimensional)
sphere in K such that the ratio of the diameter of this sphere and the diameter of
K is bounded below independent of K and hg: there is a positive constant Cj,
independent of h, such that

(4.1) Coh33t! < meas(K), VK € UpKp,.
Now on each slab 2, we define a corresponding finite element space by

Vhpm = {f € Spm’k(Qmalch,m) : f‘K € Ppr (1) X Ppre (Im); VK =17 x Im}:

where P, (K) denotes the set of polynomials in 2, v, and ¢ of degree at most py, > 1
on K. We let now q = (po, P2,---Pm—1) be the polynomial degree (multi-) vector
in the mesh K}, for the Qr, and define

M-1
q _ Pm
w= 1L v
m=0

to be a finite element space in the whole Q7 = Q x (0,T'). Further, for convenience,
we introduce the slabwise representations:

(£,9m = £, Dan gl = (9,903,

and define the inner product and seminorm at the time level ¢,, by

(o9 m = (FComstm)s (9, tm)s 1glm = (99000
We also present the jump term by,

lgl=9% -9,
where (to include also the case with o = 0),
gt = lim g(z,v,t+s), for (z,v) € (Int Q) x Q,, tel,
s—0+
gt = lim g(x + sv,v,t +s), for (x,v) € 00, x Qy, tel,
s—0+

and use the following notation for the boundary integrals

() / FFGF G m) dv,  G" =G = Glfsp),

N A =T x I,

m

T
(FF,9%) e = / (FF, ) dt, A® =T x (0,T).
0
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4.1. Stability of the time dependent SDM. In the conventional h version of the
SD-method for time dependent problems, assuming f to be an approximate solution

and using test functions of the form: u + 6(ut +G(f) - Vu), where § is a small
parameter (normally § ~ h), would supply us with a necessary (missing) diffusion

term of order ¢ in the direction of the streamlines: (1,G(f)): More specifically,
in the stability estimates we will be able to control an extra term of the form

O|lut + G(f) - Vul|| ~ h|luy + G(f) - Vu||. In the hp studies, however, the choice
of ¢ is somewhat more involved and depends on the equation type as well as the
parameters h and p which are chosen locally (elementwise) in an optimal manner.
Therefore, in our estimates, § would appropriately appear as an elementwise (local)
parameter. Below we formulate both global and local time-dependent SD-method
for problem (2.1) and continue the analysis of hp-version for the local case. The
SD-method for (2.1) can now be formulated as follows: find fsp € V! such that
form=0,...M -1,

(i + G - VS u+ 8 +Gfsp) - Vu)) +0(Vef,%u)

+ ([}, u")y = 60 (Aufus + G(fsp) - Vi)

~ (Vo (Bof)u+ d(ui + Glfsp) - Vu))

= (Syu+d(u+G(fsp) - Vu)) + (g% ut) + (g7 u7) g
The problem (4.4) is equivalent to: find fsp € V;® such that,

(4.5) B;(G(fsp); fsp,u) — Js(fsp,u) = Ls(u)  Vue V),

where for a given appropriate function f, the trilinear form By is defined as

M-1

Bs(G(f); fw) = 3 [(f+ G Va0 + 6w+ G(fsp) - V)

m=0

4 U(va, vvu)m — o (Avf, us +G(fsp) - Vu)m]

M-1
+ Z <[f]7u+)m + <f+7u+>A— + (f_au_)A+ + <f+7u+)07

the bilinear form Js by,

M—1
Js(fyu) = 3 (Vo (Bof),u+d(us +Glfsp) - Vu)
m=0
and finally the linear form Ls is given by,
M—1
Ls(w) = Y (Ssu+dui+Gfsp) - V) +(fo,ut)o+(g*,ut)pm +(g7,u ) s
m=0

Note that both Bs and Js depend implicitly on fsp through the term G(fsp).

In the sequel we let the parameter 8 = O(1), and relate the cross-section ¢ to
the element size hx by assuming that ¢ < ming hx, K € Kp. Note also that the
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discrete version of (2.3) takes now the following form:
(4.8) div G(fsp) = 0.
Stability and convergence estimates for (4.5) are derived in a triple norm defined
by
1 M—1
llull* = 5 |20 Voulléy, + lulsr + [ulg + D Ml + 26||us + G(fsp) - Vulld, +
m=1
+3 u2|Gh-n|duds .
oaxI

Let now (-,-)x denote the Ly-inner product over K and define the nonnegative
piecewise constant function § by

6|K:6K; for KEICh,
where §k is a nonnegative constant on element K. To formulate the local version of
(4.5) we replace in the definitions for Bs, Js and L; the inner products (-, -),, over
the slab Q,,, by the corresponding sum: > pcx, (,+)k, and all § by k. Thus,
more specifically we have the problem (4.5), with the trilinear form Bs defined as:

Bs(G( Z Z [(ft+G () Vfa“+5K(“t+G(fSD)-Vu))K

m= OKEIChm

= J(va, vvu)K —dxo(Auf,us+Glfsp) - V) |
M-1

+ Z +<f+7u+)A— +<f_7u_)A++<f+7u+)07
m=1

the bilinear form J; as,

DY (V- (Bof),u+ 8k (e + G(fsp) - Vu))

m= OKE’Chm

and the linear form L given by,

Z Z (S u+(5[{ ut +G(fSD) Vu))K

m=| OKE]Chm

+ (fo,uT)o + (g, uT) - + {97 uT)pe-

Note that in the h version of the SD approach for the time dependent problems we
interpret (-, ), as 2%2—01 (+,-)m and, assuming discontinuities in the time variable,
include jump terms in the time direction. Thus we estimate sum of the norms over
slabs €2, as well as the contributions from the jumps over time levels t,,, m =
1,...M — 1. Whereas in hp version we have, in addition to slabwise estimates, a
further step of identifying (-, ")m by Y g, . (+s*)k counting for the local character
of the parameters hg, px and dk, and coﬁsequently replacing some of the terms
of the form (-,-),, and || - || (e.g., those involving k), by the equivalent ones:
(5 )m = Xkexnn (5)x and ||+ lm = X kex, . || - [Ix, respectively.

In the remaining part of this section we prove stability estimates and derive
convergence rates for the error in || - |||.
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Proposition 4.1. We assume that the mesh K}, consists of shape-regular elements
2

K and the SD-parameter 0k (:= 6|k) on K satisfies 0 < g < min (%, %),
I I

with Cr = C(Ciny,Co), where Cipy is the constant in an inverse estimate and Cy

is as in (4.1). then the trilinear form Bs(G(fsp),-,-) is coercive on V;* x V;:

1
Bs(G(fsp);u,u) > §|||U|||2, Vu € V!

Further, for any constant Cy > 0 we have for any u € V;,

M
1 -
lulla, < | gl +Gfsn) - Tull, + Yl + [

u? |Gh- n| dv ds] 5e€19,
o0 xI

m=1

Proof. Starting from our trilinear form,

Bs(G(fsp);u,u) :(ut,u)QT + (Wt ut)y—o Z Ok (Avu,ut +G(fsp) -Vu)

KeKy K
M-1
+ Y Okllu+ G(fsp) - Vulli + ol Voulld, + Y ([ul,u™),,
KeKy, m=1

+ MX? [(G(fsp) -Vu, u)m + (u*,u*)/\; + (u’,u’)/\;].
m=0

We work separately on pieces of this form. Integrating by parts,

(112) (), + 0wty + 3 (), = 2 [lufls + 3+ 3 JllP].

To estimate the term involving dxo we apply Cauchy-Schwartz and the inverse
inequalities, and use the assumption on Jx, to get

. <
6K0<Avu,ut + G(fSD) V’U.)K <
1
(4.13) <5 O obic [olIVul + bicllus + G(fsp) - Vull

1
<5 |olVoulli + éxllus + G(fsp) - Vullk].

where, as we mentioned earlier, the inverse inequality C7 depends on the constant
in inverse estimate and the shape-regularity of the triangulation KCp.
Further using Green’s formula and (2.3) we have

(G(fSD) : VU,U)Q+<U+,U+>F— + <u77u7)I‘+ =

(4.14) :% /89 w?|G(fsp) -n|dv+ (utu™) o + (u,u )y

3
=5 [ wI6(fsp)-nl dv
o0

Now summing (4.13) over K, integrating (4.14) over I,,, summing over m and
combining with (4.12) gives the first assertion of the proposition. For the second
part we apply (4.14) and Gronwall’s inequality on [|u||3,. following Lemma 3.2 of
[2]. O
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Proposition 4.2. Let fsp € V;! and write f — fsp =n — &, where n = f —II,f,
€= fsp—I,f and 11, f € V;* is defined as in Section 3. Further assume that
(4.15) IV flloo + IG(H)lloo + [ Valleo < C,

then we have the following estimate:

ol -

| B5(G(f); £,€) — Bs(G(£sp); I, £, )] < €l +C/m In2|G(fSD) -n|dv ds

+0 Y 1 (Il + mlle +19110%) + A€l + imllc)?
KeKy,

M
+ O(lEllar + lnllar) lEllar + D In-Im,

m=1

Proof. Using the definition of n and £ we write

Bs(G(f); f,€) — Bs(G(fsp); Upf,€) =

= Bs(G(fsp);n,&) + Bs(G(f); f,€) — Bs(G(fsp); f,€)
= T1 +T2 - T3.

Now we estimate the terms 77 and T» — T3 separately. Starting with 77, we have
Ty = Bs(G(fsp);n, &) =

= (m:€)g, + :€)0 =0 > 3k (Avn & + G(fsp) - VE)

KeKy K
+ Y bx(m+Gfsp) - V.6 + Gfsp) - VE) +0(%um, Vi) o,
KeKy,
M-—1 M—1
+ 3 e+ Y (GUsp) - Vn€) 4 (e €a)an + (16 ) ps
m=1 m=0

From the inverse inequality and the assumptions on ¢ and §x we have the estimates:

o| (Ven, %) | < ollVenllclIVélin < ChR Il Vgl
(4.16)

_ 1 _ o
< Chitlnllk + %UZHVU&“%{ < Chilnll% + gIIVUEIIfK

and

dko| (Avn,& +G(fsp) 'vf)K| < éko||Avnllkllé + G(fsp) - VE||x

< Créxohinllkllé& + G(fsp) - VE|k
(4.17) < Crokhg Inllxllé + G(fsp) - V€l

1, — d
< Cryfoxchit [t lnlli + 56 + G(fsp) - Vel
_ 0
< Gy [l + Sol16 + G(fsp) - VEIK],

where by assumption on dx we have C)p := Cr /6Kh1_{1 < pI_{l/ 2 Then integrating
by parts on the remaining terms, using (4.8), and a similar argument as in the proof
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of Proposition 4.1 we get,

> (m+GUfsp) - Vi€ +3k(& + Glfs) - V)

KeKy K
M-1
+ Z ([n]7§)m + <n+7§+)0 + (77+7£+)A— + (n—7£—>1\+
m=1

=—(m&+G(fsp) - VE) g + & )p + C/OQ I77§|Gh- n| dv ds

M—-1
= > €+ Y bk (e + Gfsp) - Vn, & + Glfsp) - VE)
m=1 KeKy

which using Cauchy-Schwartz inequality together with (4.16) and (4.17) gives

1 _
i< gl o [ alehnldvds+ 3wl
0O xI KekKn

M
F S Y llne+ Gfso) -anl%]-

m=1 KeKy,

(4.18)

Using basic properties on solutions of Poisson equations and the definition of G' we
now bound the last term on the right hand side of (4.18) (see [2] for details),

IG(fsp) — G(f)llar < CIIf = fspllar < C(Eller + [Inller),
which gives
lIne + G(fsp) - Vallar < lIneller + I1G(F)lloolIVnllar+
+ ClIVallo ([l€llar + lInllor)-

To estimate the term (T, — T3), we follow a similar argument as in [2] and get
T2 — T3] <C([[¢llar + [Inlle) IV £l lléllor

+CIVIIZ Y he(lElx + lnllx)®
(4.21) Keky,

+ % > 6kllé + G(fsp) - VEllk-

KeKy

(4.20)

Now combining the estimates (4.18)—(4.21), using assumption (4.15) and hiding the
term 1 see, Ocllés +G(fsp) - VEI in J€]| the proof is complete. O

Proposition 4.3. Under the assumptions of Proposition 4.2 we have

[Ts(fsp,€) = Js(1,6)| < GIEI +Cllel, +C 3 hd Il

KekKn

Proof. Using the definition of £ and 1, we have the identity
J(S(fSDJE) - J5(fa£) = J5(§a€) - J(5(na€) = Jl - J2-

Below we bound the terms J; and Js, separately. For the first term, using integra-
tion by parts, boundedness of 2, and the fact that £ =0, on 9Q x (0,7T) (£ is the
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difference of two functions in V}, which on the boundary 9Q x (0,T') are coinciding
with the projection of g on the finite element space), we can easily show that

=] 3 (- (B08), €+ oxc (6 + Glfsp) - VE)) |

KeKy
<8 Y |(de+v-Vig €+ k(& +G(fs) - 7€) |
(4.23) feekn
< CRAEllE, +8 Y (1o oIVl + dlig: + G(fsp) - Vellk]
KeKny
< CRAEllE, +8 Y [WklIVutllk + 6316 + G(fsp) - Vellk].
KeKy,

The term J, is estimated using the integration by parts, boundedness of Q”, and
that £ =0 on 09Q x (0,T) viz,

(4.24)
12l =| 32 (o (Bom), € + 0xc(6e + Gfsp) - VO)) |
KekKhy
=B|(dn+v-Vun, €)g, + Y bx(dn+v-Vun & +G(fsp) - VE) |
KeKy,
=Bla(n,€)q, — (0,0 %ub)g, + D O (dn+v- Vo, & + G(fsp) - VE) |
KeKn

_ B A A
< B(d+ 13 llia, + Zo(1IElR, + oIVl )

1
+8 Y dxc(dnlik + ol Vol + 3116 + G(fsp) - Velk )

KeKy,

< CB[7 Inlia, + SNl + CudlIVut i,
+ 37 ok (Inllic + Collnli? & + & + G(fsp) - VEI% )]

KekKy

Combining these two estimates, recalling the assumption on 3, and dx and hiding

the terms 3" e, Oxc 1€ + G(fsp) - VEI and X e, IrclI Vol in [J€]]2 we get
the desired result. O

Note that in the above estimate for J; we may use the element-size and inverse
to write [v[7 _ s [IVonll% < h2-h72|Inll%- Thus, in the last step, we can replace

Inll? & by kb’ lInll% = |Inll% and hence get a gradient-free estimate.
We will now derive a stability estimate underlying our main convergence result.

Lemma 4.1. For £ and ) as above, there exist a constant C > 0 such that,

|||§|||250[ [ alGhn] vds+s il + 3" bl o+ 3 e s ]
xT

m=1 m=1
Proof. The exact solution f satisfies (4.5), i.e
Bs(G(f); f,u) = Js(f,u) = Ls(u)  Vue VL
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The coercivity result: Proposition 4.1 yields
(4.27)

SIEll” < Bs(GIsp): fsn —T1f,€) = Ls(€) + Jo(fsn,€) — Bs(G(Isp); 111, €)

= Bs(G(f); f,€) — Bs(G(fsp); 11f, &) + Js(fsp, &) — Js(f,€)

= ABjs + AJ;.
Now we use Propositions 4.2 and 4.3 to bound the terms ABs and AJs. Further
using the second result in Proposition 4.1 we estimate |||, = and [|7]|,, with suf-

ficiently large C;. Combining all these estimates we obtain the desired result and
the proof is complete. a

4.2. Convergence. We now put together all of the previously established results
and prove our main convergence estimate. Recalling our previous notation e :=

f_fSD =f—Hf+Hf—fSD :=’r]—£, we show that:

Theorem 4.1. If fsp € V9 satisfies (4.5) and g = min (%, pzf&) for each
I

K € T, then there is a constant C > 0 such that,

s ¢ ’ i
we) - felP <0 3w RO e

KeMg p

where ®(pk, sk) = max(®1 (pk, sk ), P2(PK, 5k)) as defined in Theorem 3.3.

Proof. We split the right hand side of the estimation in Lemma 4.1 and rewrite it
consicely as

(4.29) lIEN? < C(Ar + Az + As),
with
A=) 5 Inllk + 8linlli on
KeKn
M
Ay ::/ n?|G"- n|dvds + z [n— 2.,
o0 x1I m=1
M
Az:=> [z, > hxdk.
m=1 KeKn,m
Below We estimate each A; separately: As for A; we have using Theorem 3.3,
hK 28K B .
@30 A< () SO e+ 5N,
KeK

To get an estimate for Ay we use trace estimate combined with an inverse inequality,
see [1], to get

(4.31) Inll5x < CUIVallxlinllx + iz lInll%), VK € Mg,

which gives,

h SK h sk+1
150 3 [(M)” a0 (B) " 0l o0
(4.32) Kek

hK 2sg+2 R
I - IR [
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where both terms in A, are estimated combining (4.31) with Theorem 3.3 and using

R hik
oC? prCr

0k = min ( ) Summing up we can now rewrite (4.29) as,

M
st1 P(PK, S A
433) Nl < o[ ¥ met Py e S e S ],
m=1

Kek KeKn,m

To proceed we need to estimate also the A3 term. To this approach we use the
following discrete Gronwalls type estimate as, e.g. in [2]: If

Jj<m KeKn,m
then,
(4.35) y(tm) < CeT' < Ce™T.

Note that (4.33) also implies,

Sk o Pk, S P l
(4.36) 62, <C[ Y n3: “%wn‘;m +> 0B > hkdk],
m=1

Kek KeKh,m

which gives using (4.34), (where we interpret the term under ). as a new constant
depending on f, K and q), that

snt1 2(Prcs SK) 1 2
(4.37) &2 <Cc> | PR T
Kek
Thus we now also have an estimate for Az, which together with (4.30), (4.32),
0|k := Ok, gives the desired result. See also [2] and [15]. O

Remark. One can show that the convergence rate (4.28): hff’““ﬂpp"}{&l is of
order 5??"“. However this remaining part is basically, similar to the type of
estimates derived in [12] in their full details and therefore are omitted in here.

5. APPENDIX: A SKETCH OF EXISTENCE AND UNIQUENESS

Proposition 5.1. Let fo and S € Ly(Q2r), then for any h > 0 the problem (4.5)
admits at least one solution.

Proof. We apply a version of Brouwer’s fix point theorem to prove that for each
m =0,...,M —1, given fi,(-,tmm) the problem (4.4) admits a solution. To this
approach we define G™ : VhP"‘ — Vhp’" by

(5.1)
" fuls = Y [(fe+ G- Vi ut dxclus + G(fsp) - Vu))
KeKh,m
— (oA + Vi (Bof) + S,u+ (e + G(fsp) - V) ]
+ () = s ut)y = (g ut) sy — (g u )y Vu eV,
where

[f:u]6 = (f_au_)m-i-l + <f+au+>m + (fa u)m-
Note that (for a fixed h) G™ is well defined and continuous on Vhp’" with the norm
[[]ls given by the scalar product [-,-]s. Further G™f = 0 if and only if f satisfies
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(4.4). Now using inverse estimate, recalling that o < ming hx and following the
same procedure as in the stability proofs we have that

071, 1l 251 s + 15 B+ 2043 [ PIGU) -nl vt
+2 Y oxllfi+G(fsp) - VSIIk]
KEKnm
(52) = UfsplmlSHm = 9%z 1 g = 197 g 1 g

~ [BIf1lm + Bllo - Vo fllm + B[V fllm + 1S lm] %
(171 + > dxlife + G(fsp) - Vfllx )

KeKn,m

so that using the second estimate of proposition (4.1) we get

(9™ . f1s > CIUAE = ClUAs[ISllm + | fsplm + 197 |t + 167 5z

+ ¥ S s + Bl + [0+ Vo Fllm)|.

Hence [G™f, f]s > 0if |[f]|s = v is large enough and by Brouwer’s fix point theorem
(see [17]) it follows that there exists a f € V;¥™ with |[f]|s < 7 such that G™f =0
and the proof is complete. |

(5.3)

Proposition 5.2. As a consequence of reqularity assumption (4.15) in the Proposi-
tion (4.2) and the convergence Theorem 4.1 we can show that for sufficiently small h
the solutions of the discrete problem (4.5) are unique, i.e., for eachm =0,...M—1

there is a unique solution f

m

Proof. Suppose that fsp and fsp are two solutions of (4.5) with corresponding
velocities G(fsp) and G(fsp). By subtraction we then have for any m, writing

u = fsp — fsp and assuming u(-,t,,)~ = u‘ag =0,
(5.4)
> 51{( G(fsp) — G(fsp)) - V“)K =
KeKh,m

(s wm + |t 2, + (Gfsp) - Vuyu) + ol Gull

+ Y ( (fsp) — (fSD))'VfSD,U+5K(ut+G(fSD)-Vu))K

KeKh,m

+ D Oxllun+G(fsp) - Vulfi = B(dllull?, + (- Vou, w)m)

KeKn,m

-8 3 5K(du+v-vvu,ut+G(f5D) -VU)K

KeKn,m

-0 Z 5K(Avu,ut+G(f5D) VU)K

KeKn,m

+ Z 0K (fsp,t +G(fsp) - Vfsp,(G(fsp) — G(fsp)) -VU)K

KeKn,m
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By Theorem 4.1 and inverse estimate it is easy to see that

87| fspll1,00 + IGsp(fsp)llo < C,

with v =1/2if k =1 and v =0 if k¥ > 2. Taking account in the previous relation,
this proves that

[0 s + [ [ + 0l Voulli + D Sxllue + G(fsp) - Vullk < Ch 77 ull3,,
KeKn,m

by virtue of the fact that
IG(fsp) = G(fsp)llm < l[ullm-

However by argument in the proof of second relation in proposition (4.2), see [2]
we have

(55)  llulln <C (% llue + G(fsp) - Vullk + dclut i + ollulik],
KeKh,m

and thus
6 HlullZ, < C67|ull2,,

which shows that w = 0 if § is sufficiently small, and the uniqueness follows. |

Remark. A more realistic streamline diffusion mesh structure, for time-dependent
convection dominated convection-diffusion problem, (i.e. in our case o/|G(f)|
small), would be obtained via characteristic streamline diffusion (CSD) method:
The idea is for each m = 0,..., M let 7,™ be a subdivision of € x {t,,} into open
elements 7, with mesh parameter h,, = h,(z,v) := diam(r;,), (z,v) € 7, and
set Iy := (tm, tm41) With |Ly| = km = timt1 — tm, (that is on each slab we have a
decoupled phase-space and time mesh). On each slab ,,,, a function space thm,nm,

replaces the previously defined Vhpm and induced a mesh 7,>* on Q x {t,,}. Now
let G (f) € V,f::”mm denote a nodal interpolant of G,,(f) = G(f(-,tm_1)) and
introduce a map F,, : Qn — Q, with the “local” tilting velocity G* . Apply-
ing F,, would result to new function space 17,?7:‘,% and mesh 77;’” on Q. In
this way there are two phase-space meshes associated on each interior time level
tm, m=1,...,M — 1: The mesh 7,® associated to Q x {t;,}, that is the “bottom
mesh” on the slab Q,, and

Tow™ = {Fm-1(Tm1 X {tm—1}) : Tm—1 € Tyt 1},

that is the “top mesh” on the previous slab ,,_1 which is obtained by letting
the previous “bottom mesh” 7,%_, be transported by the flow. Usually the two
meshes do not coincide and it is necessary to use Lo-projection to interpolate a
function on 7,®:~ into V,f:n’“. In this way then we can define the streamline diffusion
approximation, fgp, of f by

M
fSD = Z Cm(t)Em(:L'; v, t):
m=1
where (,,(t) and =y, (z,v,t) are basis functions in ¢ and (z,v), respectively, with =
functions moving in the direction of characteristics. We have studied this method
in a simpler setting for the Fermi pencil beam equation in [6].
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